# SOME RESULTS ON LP-SASAKIAN MANIFOLDS WITH A COEFFICIENT $\alpha$

By

#### Krishnendu De and Uday Chand De

(Received February 11, 2012)

**Abstract.** The object of the present paper is to study an LP-Sasakian manifold with a coefficient  $\alpha$  and several interesting results are obtained on that manifold. Also locally  $\phi$ -symmetric and  $\phi$ -conformally flat LP-Sasakian manifolds with a coefficient  $\alpha$  have been studied. Also it is proved that a 3-dimensional LP-Sasakian manifold with a constant coefficient  $\alpha$  satisfies cyclic parallel Ricci tensor if and only if it is locally  $\phi$ -symmetric. Finally we give some examples of 3-dimensional LP-Sasakian manifolds with a coefficient  $\alpha$ .

#### 1. Introduction

In 1989, Matsumoto [10] introduced the notion of LP-Sasakian manifolds. Then Mihai and Rosca [12] introduced the same notion independently and they obtained several results in this manifold. LP-Sasakian manifolds have been studied by several authors ([1], [5], [11]). In a recent paper De, Shaikh and Sengupta [4] introduced the notion of LP-Sasakian manifolds with a coefficient  $\alpha$  which generalizes the notion of LP-Sasakian manifolds. Lorentzian para-Sasakian manifold with a coefficient  $\alpha$  have been studied by De et al ([2], [3]). Recently, T.Ikawa and his coauthors ([7], [8]) studied Sasakian manifolds with Lorentzian metric and obtained several results in this manifold. Motivated by the above studies we like to generalize LP-Sasakian manifold which is called an LP-Sasakian manifold with a coefficient  $\alpha$ . In [2] it is shown that if a Lorentzian manifold admits a unit torse-forming vector field, then the manifold becomes an LP-Sasakian manifold with a coefficient  $\alpha$  where  $\alpha$  is a non-zero smooth function.

The paper is organized as follows.

In section 2, some preliminary results are recalled. After preliminaries in section 3, we prove that the Ricci operator Q commutes with  $\phi$ . Then we study locally  $\phi$ -symmetric LP-Sasakian Manifold with a coefficient  $\alpha$ . In the next section, we study  $\phi$ -conformally flat LP-Sasakian manifold with a coefficient  $\alpha$ . In section 6, it is proved that a 3-dimensional LP-Sasakian manifold with a constant coefficient

<sup>2010</sup> Mathematics Subject Classification: 53c15, 53c25

Key words and phrases: LP-Sasakian manifold with a coefficient  $\alpha$ ,  $\phi$ -conformally flat manifold, locally  $\phi$ -symmetric manifold,  $\eta$ - Einstein manifold,  $\eta$ - parallel Ricci tensor

 $\alpha$  satisfies cyclic parallel Ricci tensor if and only if it is locally  $\phi$ -symmetric. Finally we construct some examples of 3-dimensional LP-Sasakian manifolds with a coefficient  $\alpha$ .

# 2. Preliminaries

Let  $M^n$  be an n-dimensional differentiable manifold endowed with a (1,1) tensor field  $\phi$ ,a contravariant vector field  $\xi$ , a covariant vector field  $\eta$  and a Lorentzian metric g of type (0,2) such that for each point  $p \in M$ , the tensor  $g_p:T_pM \times T_pM \to \mathbb{R}$  inner product of signature (-,+,+,....,+), where  $T_pM$  denotes the tangent vector space of M at p and  $\mathbb{R}$  is the real number space which satisfies

(2.1) 
$$\phi^2(X) = X + \eta(X)\xi, \eta(\xi) = -1,$$

(2.2) 
$$g(X,\xi) = \eta(X), g(\phi X, \phi Y) = g(X,Y) + \eta(X)\eta(Y)$$

for all vector fields X, Y. Then such a structure  $(\phi, \xi, \eta, g)$  is termed as Lorentzian almost paracontact structure and the manifold  $M^n$  with the structure  $(\phi, \xi, \eta, g)$  is called Lorentzian almost paracontact manifold [10]. In the Lorentzian almost paracontact manifold  $M^n$ , the following relations hold [10]:

$$\phi \xi = 0, \eta(\phi X) = 0,$$

$$\Omega(X,Y) = \Omega(Y,X),$$

where  $\Omega(X,Y) = g(X,\phi Y)$ .

In the Lorentzian almost paracontact manifold  $M^n$ , if the relations

$$(\nabla_Z \Omega)(X, Y) = \alpha [(g(X, Z) + \eta(X)\eta(Z)) \eta(Y) + (g(Y, Z) + \eta(Y)\eta(Z))\eta(X)],$$
(2.5)

(2.6) 
$$\Omega(X,Y) = \frac{1}{\alpha}(\nabla_X \eta)(Y),$$

hold where  $\nabla$  denotes the operator of covariant differentiation with respect to the Lorentzian metric g, and  $\alpha$  is a non-zero scalar function then  $M^n$  is called an LP-Sasakian manifold with a coefficient  $\alpha$  [4]. An LP-Sasakian manifold with a coefficient 1 is an LP-Sasakian manifold [10].

If a vector field V satisfies the equation of the following form:

$$\nabla_X V = \beta X + T(X)V,$$

where  $\beta$  is a non-zero scalar function and T is a covariant vector field, then V is called a torse-forming vector field [15].

In the Lorentzian manifold  $M^n$ , if we assume that  $\xi$  is a unit torse-forming vector field, then we have the equation:

$$(2.7) \qquad (\nabla_X \eta)(Y) = \alpha [g(X, Y) + \eta(X)\eta(Y)],$$

where  $\alpha$  is a non-zero scalar function. Especially, if  $\eta$  satisfies

$$(2.8) \qquad (\nabla_X \eta)(Y) = \epsilon [g(X, Y) + \eta(X)\eta(Y)], \quad \epsilon^2 = 1$$

then  $M^n$  is called an LSP-Sasakian manifold[10]. In particular, if  $\alpha$  satisfies (2.7) and the equation of the following form:

(2.9) 
$$\nabla_X \alpha = d\alpha(X) = \sigma \eta(X),$$

where  $\sigma$  is a smooth function and  $\eta$  is the 1- form, then  $\xi$  is called a concircular vector field.

Let us consider an LP-Sasakian manifold  $M^n$   $(\phi, \xi, \eta, g)$  with a coefficient  $\alpha$ . Then we have the following relations [4]:

(2.10) 
$$\eta(R(X,Y)Z) = (\alpha^2 - \sigma)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)],$$

(2.11) 
$$S(X,\xi) = (n-1)(\alpha^2 - \sigma)\eta(X),$$

(2.12) 
$$R(X,Y)\xi = (\alpha^2 - \sigma)[\eta(Y)X - \eta(X)Y],$$

(2.13) 
$$(\nabla_X \phi)(Y) = \alpha[g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X],$$

for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor and the Ricci tensor of the manifold.

Now we state the following result which will be needed in the later section.

**LEMMA 2.1.** ([4]) In a Lorentzian almost paracontact manifold  $M^n(\phi, \xi, \eta, g)$  with its structure  $(\phi, \xi, \eta, g)$  satisfying  $\Omega(X, Y) = \frac{1}{\alpha}(\nabla_X \eta)(Y)$ , where  $\alpha$  is a nonzero scalar, the vector field  $\xi$  is torse-forming if and only if  $\psi^2 = (n-1)^2$  holds good.

# 3. Fundamental results of LP-Sasakian manifold with a coefficient $\alpha$

In this section we begin with the following:

**THEOREM 3.1.** Let  $(M^n, g)$  be an LP-Sasakian manifold with a coefficient  $\alpha$ . Then the Ricci operator Q commutes with  $\phi$ .

*Proof.* We assume that X, Y, Z are (local) vector fields such that  $(\nabla X)_P = (\nabla Y)_P = (\nabla Z)_P = 0$ , for a fixed point P of  $M^n$ .

By the Ricci identity for  $\phi$ , that is,

$$R(X,Y)\phi Z - \phi R(X,Y)Z = (\nabla_X \nabla_Y \phi)Z - (\nabla_{[X,Y]} \phi)Z,$$

$$(3.1)$$

we have at the point P

$$R(X,Y)\phi Z - \phi R(X,Y)Z = \nabla_X(\nabla_Y \phi)Z$$

$$-\nabla_Y(\nabla_X \phi)Z.$$

Using (2.13), it follows that

$$\nabla_{Y}(\nabla_{X}\phi)Z = \sigma\eta(Y)[(g(X,Z) + \eta(X)\eta(Z))\xi + (X + \eta(X)\xi)\eta(Z)] + \alpha^{2}[2g(X,Y)\eta(Z)\xi + 6\eta(X)\eta(Y)\eta(Z)\xi + 2g(Y,Z)\eta(X)\xi + Xg(Y,Z) + X\eta(Y)\eta(Z) + Yg(X,Z) + g(X,Z)\eta(Y)\xi + 2Y\eta(X)\eta(Z)]$$
(3.3)

Using (3.3), from (3.2) we have

$$R(X,Y)\phi Z - \phi R(X,Y)Z = (\alpha^2 - \sigma)[g(X,Z)\eta(Y) - g(Y,Z)\eta(X)]\xi + (\alpha^2 - \sigma)\eta(Z)[X\eta(Y) - Y\eta(X)].$$
(3.4)

Replacing X, Y by  $\phi X, \phi Y$  respectively in (3.4) and taking the inner product on both sides by  $\phi W$  we get

$$(3.5) q(R(\phi X, \phi Y)\phi Z, \phi W) = q(\phi R(\phi X, \phi Y)Z, \phi W).$$

Now

$$\begin{split} g(\phi R(\phi X, \phi Y)Z, \phi W) &= g(R(\phi X, \phi Y)Z, W) \\ &= g(R(Z, W)\phi X, \phi Y) \\ &= g(\phi R(Z, W)X, \phi Y) + (\alpha^2 - \sigma)[g(Z, X)g(W, \phi Y) \\ &- g(W, X)g(Z, \phi Y)] + (\alpha^2 - \sigma) \\ &[g(Z, \phi Y)\eta(X)\eta(W) - g(W, \phi Y)\eta(X)\eta(Z)]. \end{split}$$

Therefore from (3.4) we have

$$g(R(\phi X, \phi Y)\phi Z, \phi W) = g(R(X, Y)Z, W) + (\alpha^2 - \sigma)$$
$$[\eta(X)\eta(Z)g(W, Y) - \eta(W)\eta(X)g(Y, Z)]$$
$$+ (\alpha^2 - \sigma)[X\eta(Z) - g(X, Z)\xi]\eta(Y).$$

From (3.6) it follows that

$$\phi R(\phi X, \phi Y)\phi Z = R(X, Y)Z + (\alpha^2 - \sigma)$$

$$\eta(X)[\eta(Z)Y - g(Y, Z)\xi] + (\alpha^2 - \sigma)$$

$$[X\eta(Z) - g(X, Z)\xi]\eta(Y).$$

We now consider the following two cases:

Case (i): If n = 2m + 1, let  $\{e_i, \phi e_i, \xi\}$ , i = 1, 2, ...., m be an orthonormal frame at any point of the manifold. Then putting  $Y = Z = e_i$  in (3.7) and taking summation over i and using  $\eta(e_i) = 0$ , we get

(3.8) 
$$\sum_{i=1}^{m} \epsilon_i \phi R(\phi X, \phi e_i) \phi e_i = \sum_{i=1}^{m} \epsilon_i R(X, e_i) e_i - m(\alpha^2 - \sigma) \eta(X) \xi,$$

where  $\epsilon_i = g(e_i, e_i)$ .

Again setting  $Y=Z=\phi e_i$  in (3.7) and taking summation over i and using  $\eta.\phi=0$  , we get

(3.9) 
$$\sum_{i=1}^{m} \epsilon_i \phi R(\phi X, e_i) e_i = \sum_{i=1}^{m} \epsilon_i R(X, \phi e_i) \phi e_i - m(\alpha^2 - \sigma) \eta(X) \xi.$$

Adding (3.8) and (3.9) and using the definition of the Ricci tensor, we obtain

$$\phi(Q\phi X - R(\phi X, \xi)\xi) = QX - R(X, \xi)\xi - 2m(\alpha^2 - \sigma)\eta(X)\xi.$$

Using (2.12) and  $\phi \xi = 0$  in the above relation, we have

$$\phi Q\phi X = QX - 2m(\alpha^2 - \sigma)\eta(X)\xi.$$

Operating both sides by  $\phi$  and using (2.1),symmetry of Q and  $\phi \xi = 0$  we get  $\phi Q = Q \phi$ .

Case (ii): If n=2m+2, let  $\{e_i,\phi e_i,\xi\}$ , i=1,2,....,m+1 be an orthonormal frame at any point of the manifold. Then putting  $Y=Z=e_i$  in (3.7) and taking summation over i and using  $\eta(e_i)=0$ , we get

(3.10) 
$$\sum_{i=1}^{m+1} \epsilon_i \phi R(\phi X, \phi e_i) \phi e_i = \sum_{i=1}^{m+1} \epsilon_i R(X, e_i) e_i - (m+1)(\alpha^2 - \sigma) \eta(X) \xi,$$

where  $\epsilon_i = g(e_i, e_i)$ .

Again setting  $Y = Z = \phi e_i$  in (3.7) and taking summation over i and using  $\eta.\phi = 0$ , we get

(3.11) 
$$\sum_{i=1}^{m+1} \epsilon_i \phi R(\phi X, e_i) e_i = \sum_{i=1}^{m+1} \epsilon_i R(X, \phi e_i) \phi e_i - (m+1)(\alpha^2 - \sigma) \eta(X) \xi.$$

Adding (3. 10) and (3. 11) and then proceeding similarly as in Case (i) we can easily obtain  $\phi Q = Q\phi$ . This proves the theorem.

**PROPOSITION 3.1.** In an LP-Sasakian manifold with a coefficient  $\alpha$  the relation

(3.12) 
$$S(\phi X, \phi Y) = (n-1)(\alpha^2 - \sigma)g(X, Y) + S(X, Y)$$

holds.

*Proof.* We have S(X,Y) = g(QX,Y). Then

$$S(\phi X, \phi Y) = g(Q\phi X, \phi Y)$$

$$= g(\phi Q X, \phi Y), since Q\phi = \phi Q$$

$$= g(QX, Y) + \eta(QX)\eta(Y)$$

$$= S(X, Y) + S(X, \xi)\eta(Y).$$

Using (2.11) we get from above

$$S(\phi X, \phi Y) = S(X, Y) + (n-1)(\alpha^2 - \sigma)g(X, Y).$$

**DEFINITION 3.1.** The Ricci tensor S of an LP-Sasakian manifold with a coefficient  $\alpha$  is said to be  $\eta$ -parallel if it satisfies

$$(3.13) \qquad (\nabla_X S)(\phi Y, \phi Z) = 0,$$

for all vector fields X, Y and Z.

This notion was introduced in the context of Sasakian manifolds by M. Kon [9].

Differentiating (3.12) covariantly with respect to Z we get

$$(3.14) \quad (\nabla_Z S)(\phi X, \phi Y) = (\nabla_Z S)(X, Y) + (n-1)[2\alpha d\alpha(Z) - d\sigma(Z)]g(X, Y).$$

Hence we can state the following:

**COROLLARY 3.1.** In an LP-Sasakian manifold with a coefficient  $\alpha$ ,  $\eta$ -parallelity of the Ricci tensor and the Ricci-symmetry are equivalent provided  $\alpha$ ,  $\sigma = constant$ .

# 4. Locally $\phi$ -symmetric LP-Sasakian Manifold with a coefficient $\alpha$

**DEFINITION 4.1.** An LP-Sasakian manifold with a coefficient  $\alpha$  ( $M^n$ , g) is said to be locally  $\phi$ -symmetric if

$$\phi^2((\nabla_W R)(X, Y)Z) = 0$$

for all vector fields W,X,Y,Z orthogonal to  $\xi$ . This notion was introduced for Sasakian manifolds by Takahashi [14].

Let us consider an LP-Sasakian manifold with a coefficient  $\alpha$   $(M^n, g)$  which is locally  $\phi$ -symmetric. Then by using (2.1)in (4.1) we have

$$(4.2) \qquad (\nabla_W R)(X, Y)Z + \eta((\nabla_W R)(X, Y)Z)\xi = 0,$$

for any X, Y, Z, W orthogonal to  $\xi$ . It follows from (4.2) that

$$(\nabla_W R)(X, Y)Z - q((\nabla_W R)(X, Y)\xi, Z)\xi = 0,$$

which yields by virtue of (2.12) that

$$(4.3) \qquad (\nabla_W R)(X,Y)Z = \alpha(\alpha^2 - \sigma)[g(X,Z)g(W,Y) - g(W,X)g(Y,Z)]\xi,$$

for any X, Y, Z, W orthogonal to  $\xi$ . Next, if the relation (4.3) holds, it follows by  $\phi \xi = 0$  that (4.1) holds and hence the manifold is locally  $\phi$ -symmetric. Thus we can state the following:

**THEOREM 4.1.** An LP-Sasakian manifold with a coefficient  $\alpha$ ,  $(M^n, g)$  is locally  $\phi$ -symmetric if and only if the relation (4.3) holds for all horizontal vector fields X, Y, Z, W on M.

#### 5. $\phi$ -conformally flat LP-Sasakian Manifold with a coefficient $\alpha$

**DEFINITION 5.1.** An LP-Sasakian manifold with a coefficient  $\alpha$   $(M^n, g)$  (n > 3) is said to be  $\phi$ -conformally flat if it satisfies

$$\phi^2(C(\phi X, \phi Y)\phi Z) = 0$$

for any vector field X, Y, Z in  $T_pM$  where C is the Weyl conformal curvature tensor defined by

$$\begin{split} C(X,Y)Z &= R(X,Y)Z \\ &- \frac{1}{n-2} [g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y] \\ &+ \frac{r}{(n-1)(n-2)} [g(Y,Z)X - g(X,Z)Y]. \end{split}$$

The notion of  $\phi$ -conformally flat for K-contact manifolds was first introduced by G. Zhen [16]. In a recent paper [13] Chian Ozgur studied  $\phi$ -conformally flat Lorentzian Para-Sasakian Manifold.

**DEFINITION 5.2.** An LP-Sasakian manifold with a coefficient  $\alpha$  is said to be an  $\eta$ -Einstein manifold if the Ricci tensor S satisfies the condition

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where a, b are smooth functions.

First let (5.1) holds. Then we have

$$g(C(\phi X, \phi Y)\phi Z, \phi W) = 0.$$

Hence using the definition of conformal curvature tensor, the above relation implies that

$$\begin{split} \widetilde{R}(\phi X, \phi Y, \phi Z, \phi W) &= \frac{1}{(n-2)} [S(\phi Y, \phi Z) g(\phi X, \phi W) \\ &- S(\phi X, \phi Z) g(\phi Y, \phi W) + g(\phi Y, \phi Z) S(\phi X, \phi W) \\ &- g(\phi X, \phi Z) S(\phi Y, \phi W)] - \frac{r}{(n-1)(n-2)} \\ (5.2) & [g(\phi Y, \phi Z) g(\phi X, \phi W) - g(\phi X, \phi Z) g(\phi Y, \phi W)], \end{split}$$
 where 
$$\widetilde{R}(\phi X, \phi Y, \phi Z, \phi W) = g(R(\phi X, \phi Y) \phi Z, \phi W).$$

Now using (3.6) and (3.12) in (5.2) we have

$$g(R(X,Y)Z,W) + (\alpha^{2} - \sigma)[\eta(X)\eta(Z)g(W,Y) - g(Y,Z)\eta(W)\eta(X) + g(X,W)\eta(Y)\eta(Z) - g(X,Z)\eta(Y)\eta(W)] = \frac{1}{(n-2)}$$

$$[[S(Y,Z) + (n-1)(\alpha^{2} - \sigma)g(Y,Z)]$$

$$[g(X,W) + \eta(X)\eta(W)] - [S(X,Z) + (n-1)(\alpha^{2} - \sigma)g(X,Z)]$$

$$[g(Y,W) + \eta(Y)\eta(W)] + [S(X,W) + (n-1)(\alpha^{2} - \sigma)g(X,W)]$$

$$[g(Y,Z) + \eta(Y)\eta(Z)] - [S(Y,W) + (n-1)(\alpha^{2} - \sigma)g(Y,W)]$$

$$[g(X,Z) + \eta(X)\eta(Z)]] - \frac{r}{(n-1)(n-2)}[[g(Y,Z) + \eta(Y)\eta(Z)]$$

$$[g(X,W) + \eta(X)\eta(W)] - [g(X,Z) + \eta(X)\eta(Z)][g(Y,W) + \eta(Y)\eta(W)]].$$
(5.3)

Taking an orthonormal frame field and contracting over X and W in (5.3), it follows that

$$S(Y,Z) = \left[\frac{r}{(n-1)} - (\alpha^2 - \sigma)\right] g(Y,Z) + \left[\frac{r}{(n-1)} - n(\alpha^2 - \sigma)\right] \eta(Y) \eta(Z).$$
(5.4)

It is known [4] that if an LP-Sasakian manifold with a coefficient  $\alpha$  is  $\eta$ -Einstein, then the Ricci tensor S is of the form

(5.5) 
$$S(Y,Z) = \left[\frac{r}{n-1} - \alpha^2 - \frac{\psi\sigma}{n-1}\right] g(Y,Z) + \left[\frac{r}{n-1} - n\alpha^2 - \frac{n\psi\sigma}{n-1}\right] \eta(Y)\eta(Z).$$

By virtue of (5.4) and (5.5) we get

$$[\sigma + \frac{\psi \sigma}{n-1}]g(X,Z)$$

$$+ [n\sigma + \frac{n\psi \sigma}{n-1}]\eta(X)\eta(Z) = 0.$$

Putting  $Z = \xi$  in (5.6) we obtain

(5.7) 
$$\eta(Y)\sigma[\psi + (n-1)] = 0,$$

which gives

$$(5.8) \psi^2 = (n-1)^2.$$

Hence by Lemma 2.1 we conclude that  $\xi$  is torse-forming. Thus we can state the following:

**THEOREM 5.1.** In a  $\phi$ -conformally flat LP-Sasakian manifold with a coefficient  $\alpha$ , the characteristic vector field  $\xi$  is a torse-forming vector field.

# 6. 3-dimensional lp-sasakian manifold with a constant coefficient $\alpha$

Let us consider a 3-dimensional LP-Sasakian Manifold with a constant coefficient  $\alpha$ . In a 3-dimensional Riemannian manifold we have

$$R(X,Y)Z = g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y - \frac{r}{2}[g(Y,Z)X - g(X,Z)Y],$$
(6.1)

where Q is the Ricci operator, that is, g(QX,Y) = S(X,Y) and r is the scalar curvature of the manifold.

Since  $\alpha$  is constant and the dimension of the manifold is 3, equation (2.10) and (2.11) reduces to

(6.2) 
$$\eta(R(X,Y)Z) = \alpha^{2} [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)],$$

$$(6.3) S(X,\xi) = 2\alpha^2 \eta(X).$$

From (6.2) we get

(6.4) 
$$R(X,Y)\xi = \alpha^{2} [\eta(Y)X - \eta(X)Y].$$

Putting  $Z = \xi$  in (6.1) and using (6.4) we have

(6.5) 
$$\eta(Y)QX - \eta(X)QY = (\frac{r}{2} - \alpha^2)[\eta(Y)X - \eta(X)Y].$$

Putting  $Y = \xi$  in (6.5) and using (2.1) and (6.3), we get

(6.6) 
$$QX = \frac{1}{2}[(r - 2\alpha^2)X + (r - 6\alpha^2)\eta(X)\xi],$$

that is,

(6.7) 
$$S(X,Y) = \frac{1}{2}[(r - 2\alpha^2)g(X,Y) + (r - 6\alpha^2)\eta(X)\eta(Y)].$$

Using (6.6) in (6.1), we get

$$R(X,Y)Z = (\frac{r - 4\alpha^2}{2})[g(Y,Z)X - g(X,Z)Y] + (\frac{r - 6\alpha^2}{2})[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y].$$
(6.8)

**THEOREM 6.1.** A 3-dimensional LP-Sasakian manifold with a constant coefficient  $\alpha$  is locally  $\phi$ -symmetric if and only if the scalar curvature r is constant.

*Proof.* Differentiating (6.8) covariently with respect to W, we get

$$(\nabla_{W}R)(X,Y)Z = \frac{dr(W)}{2} [g(Y,Z)X - g(X,Z)Y]$$

$$-\frac{dr(W)}{2} [g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi$$

$$+ \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y]$$

$$-(\frac{r - 6\alpha^{2}}{2}) [g(Y,Z)(\nabla_{W}\eta)(X)\xi - g(X,Z)(\nabla_{W}\eta)(Y)\xi$$

$$+ g(Y,Z)\eta(X)\nabla_{W}\xi - g(X,Z)\eta(Y)\nabla_{W}\xi$$

$$+ (\nabla_{W}\eta)(Y)\eta(Z)X + \eta(Y)(\nabla_{W}\eta)(Z)X$$

$$- (\nabla_{W}\eta)(X)\eta(Z)Y - \eta(X)(\nabla_{W}\eta)(Z)Y].$$
(6.9)

Now taking W, X, Y, Z are horizontal vector fields, that is, W, X, Y, Z are orthogonal to  $\xi$ , then we get from the above

(6.10) 
$$\phi^{2}(\nabla_{W}R)(X,Y)Z = -\frac{dr(W)}{2}[g(Y,Z)X - g(X,Z)Y].$$

Hence from the definition (4.1) the above Theorem follows.

**THEOREM 6.2.** A 3-dimensional LP-Sasakian manifold with a constant coefficient  $\alpha$  satisfies cyclic parallel Ricci tensor if and only if  $r = 6\alpha^2$ .

*Proof.* A. Gray [6] introduced two classes of Riemannian manifold determined by covariant derivative of Ricci tensor. The class A consisting of all Riemannian manifold whose Ricci tensor S is a Codazzi tensor, i.e.,

$$(\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z).$$

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel i.e.,

(6.11) 
$$(\nabla_X S)(Y, Z) + (\nabla_Y S)(X, Z) + (\nabla_Z S)(X, Y) = 0.$$

A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the Ricci tensor is non-zero and satisfies the condition (6.11). From (6.11) it follows that r = constant.

Differentiating (6.7) covariantly, we have

(6.12) 
$$(\nabla_Z S)(X,Y) = \frac{1}{2} (r - 6\alpha^2) \{ \eta(Y)(\nabla_Z \eta) X + \eta(X)(\nabla_Z \eta) Y \},$$

since r = constant.

Applying (6.12) in (6.11) we have

$$\frac{1}{2}(r - 6\alpha^2) \left\{ \eta(Y)(\nabla_X \eta)Z + \eta(Z)(\nabla_X \eta)Y + \eta(X)(\nabla_Y \eta)Z + \eta(Z)(\nabla_Y \eta)X + \eta(X)(\nabla_Z \eta)Y + \eta(Y)(\nabla_Z \eta)X \right\} = 0.$$
(6.13)

Taking a frame field we get from (6.13)

$$(r - 6\alpha^2)3\alpha\eta(X) = 0.$$

Here  $\alpha \neq 0$ , hence  $r = 6\alpha^2$ .

Conversely, if  $r=6\alpha^2$  then from (6.12) it follows that  $(\nabla_Z S)(X,Y)=0$  and hence the manifold satisfies cyclic parallel Ricci tensor. This completes the proof.

#### 7. Examples

**EXAMPLE 7.1.** We consider the 3-dimensional manifold  $M = \{(x, y, z) \in \mathbb{R}^3\}$ , where (x, y, z) are standard coordinate of  $\mathbb{R}^3$ .

The vector fields

$$e_1 = e^{-z} \left( \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right), \ e_2 = e^{-z} \frac{\partial}{\partial y}, \ e_3 = e^{-2z} \frac{\partial}{\partial z}$$

are linearly independent at each point of M.

Let q be the Lorentzian metric defined by

$$g(e_1, e_3) = g(e_1, e_2) = g(e_2, e_3) = 0,$$
  
 $g(e_1, e_1) = g(e_2, e_2) = 1,$   
 $g(e_3, e_3) = -1.$ 

Let  $\eta$  be the 1-form defined by  $\eta(Z) = g(Z, e_3)$  for any  $Z \in \chi(M)$ . Let  $\phi$  be the (1, 1) tensor field defined by

$$\phi(e_1) = e_1, \quad \phi(e_2) = e_2, \quad \phi(e_3) = 0.$$

Then using the linearity of  $\phi$  and g, we have

$$\eta(e_3) = -1,$$

$$\phi^2 Z = Z + \eta(Z)e_3,$$

$$g(\phi Z, \phi W) = g(Z, W) + \eta(Z)\eta(W),$$

for any  $Z, W \varepsilon \chi(M)$ .

Then for  $e_3 = \xi$ , the structure  $(\phi, \xi, \eta, g)$  defines a Lorentzian paracontact structure on M.

Let  $\nabla$  be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$[e_1, e_2] = -e^{-z}e_2$$
 ,  $[e_1, e_3] = e^{-2z}e_1$  and  $[e_2, e_3] = e^{-2z}e_2$ .

Taking  $e_3 = \xi$  and using Koszul's formula for the Lorentzian metric g, we can easily calculate

$$\nabla_{e_1} e_3 = e^{-2z} e_1, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_1 = e^{-2z} e_3,$$

$$\nabla_{e_2} e_3 = e^{-2z} e_2, \quad \nabla_{e_2} e_2 = e^{-2z} e_3 - e^{-z} e_1, \quad \nabla_{e_2} e_1 = e^{-2z} e_2,$$

$$\nabla_{e_3} e_3 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_1 = 0.$$
(7.1)

From the above it can be easily seen that  $M^3(\phi, \xi, \eta, g)$  is an LP-Sasakian manifold with  $\alpha = e^{-2z} \neq 0$ .

**EXAMPLE 7.2.** We consider the 3-dimensional manifold  $M = \{(x, y, z) \in \mathbb{R}^3\}$ , where (x, y, z) are standard coordinate of  $\mathbb{R}^3$ .

The vector fields

$$e_1 = e^z \frac{\partial}{\partial y}, \ e_2 = e^z (\frac{\partial}{\partial x} + \frac{\partial}{\partial y}), \ e_3 = \frac{\partial}{\partial z}$$

are linearly independent at each point of M.

Let g be the Lorentzian metric defined by

$$g(e_1, e_3) = g(e_1, e_2) = g(e_2, e_3) = 0,$$
  
 $g(e_1, e_1) = g(e_2, e_2) = 1,$   
 $g(e_3, e_3) = -1.$ 

Let  $\eta$  be the 1-form defined by  $\eta(Z) = g(Z, e_3)$  for any  $Z \in \chi(M)$ . Let  $\phi$  be the (1, 1) tensor field defined by

$$\phi(e_1) = e_1, \quad \phi(e_2) = e_2, \quad \phi(e_3) = 0.$$

Then using the linearity of  $\phi$  and q, we have

$$\eta(e_3) = -1,$$

$$\phi^2 Z = Z + \eta(Z)e_3,$$

$$g(\phi Z, \phi W) = g(Z, W) + \eta(Z)\eta(W),$$

for any  $Z, W \varepsilon \chi(M)$ .

Then for  $e_3=\xi$  , the structure  $(\phi,\xi,\eta,g)$  defines a Lorentzian paracontact structure on M.

Let  $\nabla$  be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$[e_1, e_2] = 0$$
 ,  $[e_1, e_3] = -e_1$  and  $[e_2, e_3] = -e_2$ .

Taking  $e_3 = \xi$  and using Koszul's formula for the Lorentzian metric g, we can easily calculate

$$\nabla_{e_1} e_3 = -e_1, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_1 = -e_3,$$

$$\nabla_{e_2} e_3 = -e_2, \quad \nabla_{e_2} e_2 = -e_3, \quad \nabla_{e_2} e_1 = 0,$$

$$\nabla_{e_3} e_3 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_1 = 0.$$
(7.2)

From the above it can be easily seen that  $M^3(\phi, \xi, \eta, g)$  is an LP-Sasakian manifold with a coefficient  $\alpha$ . Here  $\alpha = -1$ .

With the help of the above results it can be easily verified that

$$R(e_1, e_2)e_3 = 0$$
,  $R(e_2, e_3)e_3 = -e_2$ ,  $R(e_1, e_3)e_3 = -e_1$ ,   
 $R(e_1, e_2)e_2 = e_1$ ,  $R(e_2, e_3)e_2 = -e_3$ ,  $R(e_1, e_3)e_2 = 0$ ,   
 $R(e_1, e_2)e_1 = -e_2$ ,  $R(e_2, e_3)e_1 = 0$ ,  $R(e_1, e_3)e_1 = -e_3$ .

From the above expressions of the curvature tensor we obtain

$$S(e_1, e_1) = g(R(e_1, e_2)e_2, e_1) - g(R(e_1, e_3)e_3, e_1)$$
  
= 2.

Similarly we have

$$S(e_2, e_2) = 2$$

and

$$S(e_3, e_3) = -2.$$

Therefore,

$$r = S(e_1, e_1) + S(e_2, e_2) - S(e_3, e_3) = 6.$$

Hence the scalar curvature is constant. Thus the 3-dimensional LP-Sasakian manifold with a constant coefficient  $\alpha$  is locally  $\phi$ -symmetric. Therefore Theorem 6.1 is verified.

Also from the expression of the Ricci tensor we find that the manifold under consideration satisfies cyclic parallel Ricci tensor. Since  $r = 6 = 6(\alpha^2)$  for  $\alpha = -1$ , therefore Theorem 6.2 holds.

### References

- [ 1 ] Al-Aqeel, A., De, U. C. and Ghosh, G. C., On Lorentzian Para-Sasakian manifolds, KJSE, **31** (2004), 1–13.
- [ 2 ] De, U. C. and Arslan, K., Certain curvature conditions on an LP-Sasakian manifold with a coefficient α, Bull. Korean Math. Soc., 46 (2009), 401–408.
- [ 3 ] De, U. C., Jun, J. B. and Shaikh, A. A., On conformally flat LP-Sasakian manifolds with a coefficient α, Nihonkai Math. J., 13 (2002), 121–131.
- [4] De, U. C., Shaikh, A. A. and Sengupta, A., On LP-sasakian manifolds with acoefficient α, Kyungpook Math. Jour., 42 (2002), 177–186.
- [5] De, U. C. and Tripathi, M. M., Lorentzian almost paracontact manifolds and their sub-manifolds, Korean Society of Math. Education, Series B: Pure and Applied Maths, 8 (2001), 101–125.
- [ 6 ] Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259–280.
- [7] Ikawa, T. and Erdogan, M., Sasakian manifolds with Lorentzian metric, *Kyungpook Math. J.*, **35** (1996), 517–526.
- [8] Ikawa, T. and Jun, J. B., On sectional curvatures of a normal contact Lorentzian manifold, *Korean J. Math. Sciences*, 4 (1997), 27–33.
- [ 9 ] Kon, M., Invariant submanifolds in Sasakian manifolds, *Math. Ann.*, **219** (3) (1976), 277–290.
- [ 10 ] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci., 12 (1989), 151–156.

- [ 11 ] Matsumoto, K. and Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold, *Tensor N.S.*, **47** (1988), 189–197.
- [ 12 ] Mihai, I. and Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis, World Sci. Publi., Singapore, (1992), 155–169.
- [ 13 ] Ozgur, Cihan,  $\phi$ -conformally flat Lorentzian Para-Sasakian Manifolds. *Radovi matematicki*, **12** (2003), 99–106.
- [ 14 ] Takahashi T., Sasakian  $\phi$ -symmetric spaces, Tohoku Math. J., 29 (1977), 91–113.
- [ 15 ] Yano, K., On the torse-forming direction in Riemannian spaces, *Proc. Imp. Acad. Tokyo*, **20** (1944), 340–345.
- [ 16 ] Zhen, G., On Conformal Symmetric K-contact manifolds, *Chinese Quart. J. of Math.*, 7 (1992), 5–10.

Krishnendu De, Konnagar High School(H.S.), 68 G.T. Road (West), Konnagar, Hooghly, Pin.712235, West Bengal, India. E-mail: krishnendu\_de@yahoo.com

Uday Chand De, Department of Pure Mathematics, Calcutta University, 35 Ballygunge Circular Road Kol 700019, West Bengal, India. E-mail: uc\_de@yahoo.com