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Abstract. The object of the present paper is to study an LP-Sasakian manifold
with a coefficient α and several interesting results are obtained on that manifold.
Also locally φ-symmetric and φ-conformally flat LP-Sasakian manifolds with a co-
efficient α have been studied. Also it is proved that a 3-dimensional LP-Sasakian
manifold with a constant coefficient α satisfies cyclic parallel Ricci tensor if and
only if it is locally φ-symmetric.Finally we give some examples of 3-dimensional
LP-Sasakian manifolds with a coefficient α.

1. Introduction

In 1989, Matsumoto [10] introduced the notion of LP-Sasakian manifolds.

Then Mihai and Rosca [12] introduced the same notion independently and they

obtained several results in this manifold. LP-Sasakian manifolds have been stud-

ied by several authors ([1], [5], [11]). In a recent paper De, Shaikh and Sengupta

[4] introduced the notion of LP-Sasakian manifolds with a coefficient α which gen-

eralizes the notion of LP-Sasakian manifolds. Lorentzian para-Sasakian manifold

with a coefficient α have been studied by De et al ([2], [3]). Recently, T.Ikawa

and his coauthors ([7], [8]) studied Sasakian manifolds with Lorentzian metric

and obtained several results in this manifold. Motivated by the above studies we

like to generalize LP-Sasakian manifold which is called an LP-Sasakian manifold

with a coefficient α. In [2] it is shown that if a Lorentzian manifold admits a unit

torse-forming vector field, then the manifold becomes an LP-Sasakian manifold

with a coefficient α where α is a non-zero smooth function.

The paper is organized as follows.

In section 2, some preliminary results are recalled. After preliminaries in section

3, we prove that the Ricci operator Q commutes with φ. Then we study locally

φ-symmetric LP-Sasakian Manifold with a coefficient α. In the next section, we

study φ-conformally flat LP-Sasakian manifold with a coefficient α. In section 6,

it is proved that a 3-dimensional LP-Sasakian manifold with a constant coefficient
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α satisfies cyclic parallel Ricci tensor if and only if it is locally φ-symmetric.

Finally we construct some examples of 3-dimensional LP-Sasakian manifolds with

a coefficient α .

2. Preliminaries

Let Mn be an n-dimensional differentiable manifold endowed with a (1, 1)

tensor field φ,a contravariant vector field ξ, a covariant vector field η and a

Lorentzian metric g of type (0, 2) such that for each point p εM , the tensor

gp:TpM × TpM → R inner product of signature (−, +, +, ....., +), where TpM

denotes the tangent vector space of M at p and R is the real number space

which satisfies

(2. 1) φ2(X) = X + η(X)ξ, η(ξ) = −1,

(2. 2) g(X, ξ) = η(X), g(φX, φY ) = g(X,Y ) + η(X)η(Y )

for all vector fields X,Y . Then such a structure (φ, ξ, η, g) is termed as

Lorentzian almost paracontact structure and the manifold Mn with the struc-

ture (φ, ξ, η, g) is called Lorentzian almost paracontact manifold [10]. In the

Lorentzian almost paracontact manifold Mn, the following relations hold [10]:

(2. 3) φξ = 0, η(φX) = 0,

(2. 4) Ω(X,Y ) = Ω(Y,X),

where Ω(X,Y ) = g(X,φY ).

In the Lorentzian almost paracontact manifold Mn, if the relations

(∇ZΩ)(X,Y ) = α[(g(X,Z) + η(X)η(Z)) η(Y )

+(g(Y, Z) + η(Y )η(Z))η(X)],(2. 5)

(2. 6) Ω(X,Y ) =
1

α
(∇Xη)(Y ),

hold where ∇ denotes the operator of covariant differentiation with respect

to the Lorentzian metric g, and α is a non-zero scalar function then Mn is called

an LP-Sasakian manifold with a coefficient α [4]. An LP-Sasakian manifold with
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a coefficient 1 is an LP-Sasakian manifold [10].

If a vector field V satisfies the equation of the following form:

∇XV = βX + T (X)V,

where β is a non-zero scalar function and T is a covariant vector field, then V is

called a torse-forming vector field [15].

In the Lorentzian manifold Mn, if we assume that ξ is a unit torse-forming

vector field,then we have the equation:

(2. 7) (∇Xη)(Y ) = α[g(X,Y ) + η(X)η(Y )],

where α is a non-zero scalar function. Especially, if η satisfies

(2. 8) (∇Xη)(Y ) = ε[g(X,Y ) + η(X)η(Y )], ε2 = 1

then Mn is called an LSP-Sasakian manifold[10]. In particular, if α satisfies (2. 7)

and the equation of the following form:

(2. 9) ∇Xα = dα(X) = ση(X),

where σ is a smooth function and η is the 1− form, then ξ is called a concircular

vector field.

Let us consider an LP-Sasakian manifold Mn (φ, ξ, η, g) with a coefficient α.

Then we have the following relations [4]:

(2. 10) η(R(X,Y )Z) = (α2 − σ)[g(Y, Z)η(X) − g(X,Z)η(Y )],

(2. 11) S(X, ξ) = (n − 1)(α2 − σ)η(X),

(2. 12) R(X,Y )ξ = (α2 − σ)[η(Y )X − η(X)Y ],

(2. 13) (∇Xφ)(Y ) = α[g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X],

for all vector fields X,Y, Z, where R,S denote respectively the curvature

tensor and the Ricci tensor of the manifold.

Now we state the following result which will be needed in the later section.
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LEMMA 2.1. ([4]) In a Lorentzian almost paracontact manifold Mn(φ, ξ, η, g)

with its structure (φ, ξ, η, g) satisfying Ω(X,Y ) = 1
α
(∇Xη)(Y ), where α is a non-

zero scalar, the vector field ξ is torse-forming if and only if ψ2 = (n − 1)2 holds

good.

3. Fundamental results of LP-Sasakian manifold with a coefficient α

In this section we begin with the following:

THEOREM 3.1. Let (Mn, g) be an LP-Sasakian manifold with a coefficient α.

Then the Ricci operator Q commutes with φ.

Proof. We assume that X,Y, Z are (local) vector fields such that (∇X)P =

(∇Y )P = (∇Z)P = 0, for a fixed point P of Mn.

By the Ricci identity for φ, that is,

R(X,Y )φZ − φR(X,Y )Z = (∇X∇Y φ)Z

− (∇Y ∇Xφ)Z − (∇[X,Y ]φ)Z,(3. 1)

we have at the point P

R(X,Y )φZ − φR(X,Y )Z = ∇X(∇Y φ)Z

−∇Y (∇Xφ)Z.(3. 2)

Using (2. 13),it follows that

∇Y (∇Xφ)Z = ση(Y )[(g(X,Z) + η(X)η(Z))ξ

+ (X + η(X)ξ)η(Z)] + α2[2g(X,Y )η(Z)ξ

+ 6η(X)η(Y )η(Z)ξ + 2g(Y, Z)η(X)ξ

+ Xg(Y, Z) + Xη(Y )η(Z) + Y g(X,Z)

+ g(X,Z)η(Y )ξ + 2Y η(X)η(Z)](3. 3)

Using (3. 3), from (3. 2) we have

R(X,Y )φZ − φR(X,Y )Z = (α2 − σ)[g(X,Z)η(Y ) − g(Y, Z)η(X)]ξ

+ (α2 − σ)η(Z)[Xη(Y ) − Y η(X)].(3. 4)

Replacing X,Y by φX, φY respectively in (3. 4) and taking the inner product

on both sides by φW we get

(3. 5) g(R(φX, φY )φZ, φW ) = g(φR(φX, φY )Z, φW ).
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Now

g(φR(φX, φY )Z, φW ) = g(R(φX, φY )Z,W )

= g(R(Z,W )φX, φY )

= g(φR(Z,W )X,φY ) + (α2 − σ)[g(Z,X)g(W,φY )

− g(W,X)g(Z, φY )] + (α2 − σ)

[g(Z, φY )η(X)η(W ) − g(W,φY )η(X)η(Z)].

Therefore from (3. 4) we have

g(R(φX, φY )φZ, φW ) = g(R(X,Y )Z,W ) + (α2 − σ)

[η(X)η(Z)g(W,Y ) − η(W )η(X)g(Y, Z)]

+ (α2 − σ)[Xη(Z) − g(X,Z)ξ]η(Y ).(3. 6)

From (3. 6) it follows that

φR(φX, φY )φZ = R(X,Y )Z + (α2 − σ)

η(X)[η(Z)Y − g(Y, Z)ξ] + (α2 − σ)

[Xη(Z) − g(X,Z)ξ]η(Y ).(3. 7)

We now consider the following two cases:

Case (i): If n = 2m + 1 , let {ei, φei, ξ}, i = 1, 2, .....,m be an orthonormal

frame at any point of the manifold. Then putting Y = Z = ei in (3. 7) and

taking summation over i and using η(ei) = 0 , we get

(3. 8)
m∑

i=1

εiφR(φX, φei)φei =
m∑

i=1

εiR(X, ei)ei − m(α2 − σ)η(X)ξ,

where εi = g(ei, ei).

Again setting Y = Z = φei in (3. 7)and taking summation over i and using

η.φ = 0 , we get

(3. 9)
m∑

i=1

εiφR(φX, ei)ei =
m∑

i=1

εiR(X,φei)φei − m(α2 − σ)η(X)ξ.

Adding (3. 8) and (3. 9) and using the definition of the Ricci tensor, we obtain

φ(QφX − R(φX, ξ)ξ) = QX − R(X, ξ)ξ − 2m(α2 − σ)η(X)ξ.

Using (2. 12) and φξ = 0 in the above relation, we have

φQφX = QX − 2m(α2 − σ)η(X)ξ.
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Operating both sides by φ and using (2. 1),symmetry of Q and φξ = 0 we get

φQ = Qφ.

Case (ii): If n = 2m+2 , let {ei, φei, ξ}, i = 1, 2, .....,m+1 be an orthonormal

frame at any point of the manifold. Then putting Y = Z = ei in (3. 7) and taking

summation over i and using η(ei) = 0 , we get

(3. 10)
m+1∑
i=1

εiφR(φX, φei)φei =
m+1∑
i=1

εiR(X, ei)ei − (m + 1)(α2 − σ)η(X)ξ,

where εi = g(ei, ei).

Again setting Y = Z = φei in (3.7) and taking summation over i and using

η.φ = 0, we get

(3. 11)
m+1∑
i=1

εiφR(φX, ei)ei =
m+1∑
i=1

εiR(X,φei)φei − (m + 1)(α2 − σ)η(X)ξ.

Adding (3. 10) and (3. 11) and then proceeding similarly as in Case (i) we can

easily obtain φQ = Qφ.This proves the theorem.

PROPOSITION 3.1. In an LP-Sasakian manifold with a coefficient α the rela-

tion

(3. 12) S(φX, φY ) = (n − 1)(α2 − σ)g(X,Y ) + S(X,Y )

holds.

Proof. We have S(X,Y ) = g(QX, Y ).

Then

S(φX, φY ) = g(QφX, φY )

= g(φQX, φY ), sinceQφ = φQ

= g(QX, Y ) + η(QX)η(Y )

= S(X,Y ) + S(X, ξ)η(Y ).

Using (2. 11) we get from above

S(φX, φY ) = S(X,Y ) + (n − 1)(α2 − σ)g(X,Y ).
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DEFINITION 3.1. The Ricci tensor S of an LP-Sasakian manifold with a coef-

ficient α is said to be η-parallel if it satisfies

(3. 13) (∇XS)(φY, φZ) = 0,

for all vector fields X,Y and Z.

This notion was introduced in the context of Sasakian manifolds by M. Kon

[9].

Differentiating (3. 12) covariantly with respect to Z we get

(3. 14) (∇ZS)(φX, φY ) = (∇ZS)(X,Y ) + (n − 1)[2αdα(Z) − dσ(Z)]g(X,Y ).

Hence we can state the following:

COROLLARY 3.1. In an LP-Sasakian manifold with a coefficient α, η-paralle-

lity of the Ricci tensor and the Ricci-symmetry are equivalent provided α, σ =

constant.

4. Locally φ-symmetric LP-Sasakian Manifold with a coefficient α

DEFINITION 4.1. An LP-Sasakian manifold with a coefficient α (Mn, g) is said

to be locally φ-symmetric if

(4. 1) φ2((∇W R)(X,Y )Z) = 0

for all vector fields W,X,Y,Z orthogonal to ξ. This notion was introduced for

Sasakian manifolds by Takahashi [14].

Let us consider an LP-Sasakian manifold with a coefficient α (Mn, g) which

is locally φ-symmetric. Then by using (2. 1)in (4. 1) we have

(4. 2) (∇W R)(X,Y )Z + η((∇W R)(X,Y )Z)ξ = 0,

for any X,Y, Z,W orthogonal to ξ. It follows from (4. 2) that

(∇W R)(X,Y )Z − g((∇W R)(X,Y )ξ, Z)ξ = 0,

which yields by virtue of (2. 12) that

(4. 3) (∇W R)(X,Y )Z = α(α2 − σ)[g(X,Z)g(W,Y ) − g(W,X)g(Y, Z)]ξ,

for any X,Y, Z,W orthogonal to ξ. Next, if the relation (4. 3) holds, it follows

by φξ = 0 that (4. 1) holds and hence the manifold is locally φ-symmetric. Thus

we can state the following:
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THEOREM 4.1. An LP-Sasakian manifold with a coefficient α, (Mn, g) is lo-

cally φ-symmetric if and only if the relation (4. 3) holds for all horizontal vector

fields X,Y,Z,W on M.

5. φ-conformally flat LP-Sasakian Manifold with a coefficient α

DEFINITION 5.1. An LP-Sasakian manifold with a coefficient α (Mn, g) (n >

3) is said to be φ-conformally flat if it satisfies

(5. 1) φ2(C(φX, φY )φZ) = 0

for any vector field X,Y, Z in TpM where C is the Weyl conformal curvature

tensor defined by

C(X,Y )Z = R(X,Y )Z

− 1

n − 2
[g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y ]

+
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X,Z)Y ].

The notion of φ-conformally flat for K-contact manifolds was first introduced

by G. Zhen [16]. In a recent paper [13] Chian Ozgur studied φ-conformally flat

Lorentzian Para-Sasakian Manifold.

DEFINITION 5.2. An LP-Sasakian manifold with a coefficient α is said to be

an η-Einstein manifold if the Ricci tensor S satisfies the condition

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions.

First let (5. 1) holds. Then we have

g(C(φX, φY )φZ, φW ) = 0.

Hence using the definition of conformal curvature tensor, the above relation

implies that

R̃(φX, φY, φZ, φW ) =
1

(n − 2)
[S(φY, φZ)g(φX, φW )

− S(φX, φZ)g(φY, φW ) + g(φY, φZ)S(φX, φW )

− g(φX, φZ)S(φY, φW )] − r

(n − 1)(n − 2)

[g(φY, φZ)g(φX, φW ) − g(φX, φZ)g(φY, φW )],(5. 2)

where R̃(φX, φY, φZ, φW ) = g(R(φX, φY )φZ, φW ).
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Now using (3. 6) and (3. 12) in (5. 2) we have

g(R(X,Y )Z,W ) + (α2 − σ)[η(X)η(Z)g(W,Y )

− g(Y, Z)η(W )η(X) + g(X,W )η(Y )η(Z)

− g(X,Z)η(Y )η(W )] =
1

(n − 2)

[[S(Y, Z) + (n − 1)(α2 − σ)g(Y, Z)]

[g(X,W ) + η(X)η(W )]

− [S(X,Z) + (n − 1)(α2 − σ)g(X,Z)]

[g(Y,W ) + η(Y )η(W )]

+ [S(X,W ) + (n − 1)(α2 − σ)g(X,W )]

[g(Y, Z) + η(Y )η(Z)]

− [S(Y,W ) + (n − 1)(α2 − σ)g(Y,W )]

[g(X,Z) + η(X)η(Z)]]

− r

(n − 1)(n − 2)
[[g(Y, Z) + η(Y )η(Z)]

[g(X,W ) + η(X)η(W )]

− [g(X,Z) + η(X)η(Z)][g(Y,W ) + η(Y )η(W )]].(5. 3)

Taking an orthonormal frame field and contracting over X and W in (5. 3),

it follows that

S(Y, Z) = [
r

(n − 1)
− (α2 − σ)]g(Y, Z)

+ [
r

(n − 1)
− n(α2 − σ)]η(Y )η(Z).(5. 4)

It is known [4] that if an LP-Sasakian manifold with a coefficient α is η-

Einstein, then the Ricci tensor S is of the form

S(Y, Z) = [
r

n − 1
− α2 − ψσ

n − 1
]g(Y, Z)

+ [
r

n − 1
− nα2 − nψσ

n − 1
]η(Y )η(Z).(5. 5)

By virtue of (5. 4) and (5. 5) we get

[σ +
ψσ

n − 1
]g(X,Z)

+ [nσ +
nψσ

n − 1
]η(X)η(Z) = 0.(5. 6)
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Putting Z = ξ in (5. 6) we obtain

(5. 7) η(Y )σ[ψ + (n − 1)] = 0,

which gives

(5. 8) ψ2 = (n − 1)2.

Hence by Lemma 2.1 we conclude that ξ is torse-forming. Thus we can state

the following:

THEOREM 5.1. In a φ-conformally flat LP-Sasakian manifold with a coefficient

α ,the characteristic vector field ξ is a torse-forming vector field.

6. 3-dimensional lp-sasakian manifold with a constant coefficient α

Let us consider a 3-dimensional LP-Sasakian Manifold with a constant coef-

ficient α. In a 3-dimensional Riemannian manifold we have

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2
[g(Y, Z)X − g(X,Z)Y ],(6. 1)

where Q is the Ricci operator, that is, g(QX, Y ) = S(X,Y ) and r is the scalar

curvature of the manifold.

Since α is constant and the dimension of the manifold is 3, equation (2. 10)

and (2. 11) reduces to

(6. 2) η(R(X,Y )Z) = α2[g(Y, Z)η(X) − g(X,Z)η(Y )],

(6. 3) S(X, ξ) = 2α2η(X).

From (6. 2) we get

(6. 4) R(X,Y )ξ = α2[η(Y )X − η(X)Y ].

Putting Z = ξ in (6. 1) and using (6. 4) we have

(6. 5) η(Y )QX − η(X)QY = (
r

2
− α2)[η(Y )X − η(X)Y ].

Putting Y = ξ in (6. 5) and using (2. 1) and (6. 3), we get

(6. 6) QX =
1

2
[(r − 2α2)X + (r − 6α2)η(X)ξ],
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that is,

(6. 7) S(X,Y ) =
1

2
[(r − 2α2)g(X,Y ) + (r − 6α2)η(X)η(Y )].

Using (6. 6) in (6. 1), we get

R(X,Y )Z = (
r − 4α2

2
)[g(Y, Z)X − g(X,Z)Y ] + (

r − 6α2

2
)[g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].(6. 8)

THEOREM 6.1. A 3-dimensional LP-Sasakian manifold with a constant coeffi-

cient α is locally φ-symmetric if and only if the scalar curvature r is constant.

Proof. Differentiating (6. 8) covariently with respect to W , we get

(∇W R)(X,Y )Z =
dr(W )

2
[g(Y, Z)X − g(X,Z)Y ]

− dr(W )

2
[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ]

−(
r − 6α2

2
)[g(Y, Z)(∇W η)(X)ξ − g(X,Z)(∇W η)(Y )ξ

+ g(Y, Z)η(X)∇W ξ − g(X,Z)η(Y )∇W ξ

+ (∇W η)(Y )η(Z)X + η(Y )(∇W η)(Z)X

− (∇W η)(X)η(Z)Y − η(X)(∇W η)(Z)Y ].(6. 9)

Now taking W,X, Y, Z are horizontal vector fields, that is, W,X, Y, Z are

orthogonal to ξ, then we get from the above

(6. 10) φ2(∇W R)(X,Y )Z = −dr(W )

2
[g(Y, Z)X − g(X,Z)Y ].

Hence from the definition (4.1) the above Theorem follows.

THEOREM 6.2. A 3-dimensional LP-Sasakian manifold with a constant coeffi-

cient α satisfies cyclic parallel Ricci tensor if and only if r = 6α2.

Proof. A. Gray [6] introduced two classes of Riemannian manifold determined

by covariant derivative of Ricci tensor. The class A consisting of all Riemannian

manifold whose Ricci tensor S is a Codazzi tensor, i.e.,

(∇XS)(Y, Z) = (∇Y S)(X,Z).
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The class B consisting of all Riemannian manifolds whose Ricci tensor is

cyclic parallel i.e.,

(6. 11) (∇XS)(Y, Z) + (∇Y S)(X,Z) + (∇ZS)(X,Y ) = 0.

A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the

Ricci tensor is non-zero and satisfies the condition (6. 11). From (6. 11) it follows

that r = constant.

Differentiating (6. 7) covariantly, we have

(6. 12) (∇ZS)(X,Y ) =
1

2
(r − 6α2){η(Y )(∇Zη)X + η(X)(∇Zη)Y },

since r =constant.

Applying (6. 12) in (6. 11) we have

1

2
(r − 6α2) { η(Y )(∇Xη)Z + η(Z)(∇Xη)Y

+ η(X)(∇Y η)Z + η(Z)(∇Y η)X

+ η(X)(∇Zη)Y + η(Y )(∇Zη)X} = 0.(6. 13)

Taking a frame field we get from (6. 13)

(r − 6α2)3αη(X) = 0.

Here α 6= 0, hence r = 6α2.

Conversely, if r = 6α2 then from (6. 12) it follows that (∇ZS)(X,Y ) = 0

and hence the manifold satisfies cyclic parallel Ricci tensor.This completes the

proof.

7. Examples

EXAMPLE 7.1. We consider the 3-dimensional manifold M = {(x, y, z)εR3},
where (x, y, z) are standard coordinate of R3.

The vector fields

e1 = e−z(
∂

∂x
+ y

∂

∂y
), e2 = e−z ∂

∂y
, e3 = e−2z ∂

∂z

are linearly independent at each point of M.
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Let g be the Lorentzian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = 1,

g(e3, e3) = −1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Zεχ(M).

Let φ be the (1, 1) tensor field defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = −1,

φ2Z = Z + η(Z)e3,

g(φZ, φW ) = g(Z,W ) + η(Z)η(W ),

for any Z,Wεχ(M).

Then for e3 = ξ , the structure (φ, ξ, η, g) defines a Lorentzian paracontact

structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g

and R be the curvature tensor of g. Then we have

[e1, e2] = −e−ze2 , [e1, e3] = e−2ze1 and [e2, e3] = e−2ze2.

Taking e3 = ξ and using Koszul’s formula for the Lorentzian metric g, we can

easily calculate

∇e1e3 = e−2ze1, ∇e1e2 = 0, ∇e1e1 = e−2ze3,

∇e2e3 = e−2ze2, ∇e2e2 = e−2ze3 − e−ze1, ∇e2e1 = e−2ze2,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.(7. 1)

From the above it can be easily seen that M3(φ, ξ, η, g) is an LP-Sasakian

manifold with α = e−2z 6= 0.

EXAMPLE 7.2. We consider the 3-dimensional manifold M = {(x, y, z)εR3},
where (x, y, z) are standard coordinate of R3.

The vector fields

e1 = ez ∂

∂y
, e2 = ez(

∂

∂x
+

∂

∂y
), e3 =

∂

∂z
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are linearly independent at each point of M .

Let g be the Lorentzian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = 1,

g(e3, e3) = −1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Zεχ(M).

Let φ be the (1, 1) tensor field defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = −1,

φ2Z = Z + η(Z)e3,

g(φZ, φW ) = g(Z,W ) + η(Z)η(W ),

for any Z,Wεχ(M).

Then for e3 = ξ , the structure (φ, ξ, η, g) defines a Lorentzian paracontact

structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g

and R be the curvature tensor of g. Then we have

[e1, e2] = 0 , [e1, e3] = −e1 and [e2, e3] = −e2.

Taking e3 = ξ and using Koszul’s formula for the Lorentzian metric g, we can

easily calculate

∇e1e3 = −e1, ∇e1e2 = 0, ∇e1e1 = −e3,

∇e2e3 = −e2, ∇e2e2 = −e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.(7. 2)

From the above it can be easily seen that M3(φ, ξ, η, g) is an LP-Sasakian

manifold with a coefficient α. Here α = −1.

With the help of the above results it can be easily verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = −e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = −e3.



ON LP-SASAKIAN MANIFOLDS 93

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) − g(R(e1, e3)e3, e1)

= 2.

Similarly we have

S(e2, e2) = 2

and

S(e3, e3) = −2.

Therefore,

r = S(e1, e1) + S(e2, e2) − S(e3, e3) = 6.

Hence the scalar curvature is constant. Thus the 3-dimensional LP-Sasakian

manifold with a constant coefficient α is locally φ-symmetric. Therefore Theorem

6.1 is verified.

Also from the expression of the Ricci tensor we find that the manifold under

consideration satisfies cyclic parallel Ricci tensor. Since r = 6 = 6(α2) for

α = −1, therefore Theorem 6.2 holds.
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