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Abstract. We consider first passage percolation with i.i.d. weights on edges of
the d-dimensional cubic lattice Zd. Under the assumptions that a weight is equal
to zero with probability smaller than the critical probability of bond percolation
in Zd, and has the α-th moment for some α > 1, we investigate upper bounds
on the so-called non-random fluctuations of the model. In addition, we give
an application of our result to a lower bound for variance of the first passage
percolation in the case where the limit shape has flat edges.

1. Introduction

1.1 The model and the main result

First passage percolation was originally introduced in 1965 by Hammersley

and Welsh [5]. In this model, we place i.i.d. random weights on edges of the d-

dimensional cubic lattice Zd, and consider the minimum (random) traveling time

from a subset of Zd to another one. Let E be the edge set of Zd and consider the

measurable space Ω := [0,∞)E endowed with the canonical σ-field G. Moreover,

for a given probability measure ν on [0,∞), let P := ν⊗E be the corresponding

product measure on (Ω,G). For a nearest neighbor path γ = (γ0, . . . , γl) on Zd,

we define the passage time of γ as

T (γ) :=
l−1∑
i=0

ω({γi, γi+1})

with the convention
∑−1

i=0 ω({γi, γi+1}) := 0. Here we use the notation {x, y} to

denote the edge of Zd with endpoints x and y. For any two subsets A and B of

Zd we define the first passage time from A to B as
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T (A, B) := inf

{
T (γ); γ is a nearest neighbor path on Zd

from some site in A to some site in B

}
.

In particular, write T (x, y) = T ({x}, {y}) for x, y ∈ Zd. We may extend the first

passage time over Rd. For x ∈ Rd, let [x] be a lattice point such that

‖[x] − x‖∞ = min
{
‖v − x‖∞; v ∈ Zd

}
≤ 1

2
,

where ‖·‖∞ is the `∞-norm. If x and y are in Rd, we rewrite T (x, y) := T ([x], [y]).

To shorten notation, given a vector ξ ∈ Rd, the first passage time from the origin

0 to nξ is denoted by

a0,n(ξ) := T (0, nξ).

It is well known from the standard subadditive ergodic theorem that if E[ω(e)] <

∞, then for any ξ ∈ Zd, P -a.s. and in L1,

µ(ξ) = lim
n→∞

1

n
a0,n(ξ) = lim

n→∞

1

n
E[a0,n(ξ)] = inf

n≥1

1

n
E[a0,n(ξ)].(1.1)

From [6, pages 158–160], such a limit also exists for a general ξ ∈ Rd, and we

call µ(ξ) the time constant for ξ ∈ Rd.

In this paper, we study rates of convergence to the time constant in the first

passage percolation. Kesten [7, (3.2), page 317] derived a bound on the so-called

non-random fluctuations in first passage percolation, i.e., there exists a constant

C > 0 such that

E[a0,n(ξ)] − nµ(ξ) ≤ Cn1−1/(2d+4)(log n)1/(d+2), ξ ∈ Rd,(1.2)

under the assumptions that

ν({0}) < pc(1.3)

where pc is the critical probability of bond percolation in Zd, and

E[eαω(e)] < ∞ for some α > 0.(1.4)

Alexander [1] improved (1.2) by a different method. On the other hand, Zhang [10]

studied the same problem under a weaker moment condition than (1.4): If

mν,α := E[ω(e)α] < ∞ for some α > 1,(1.5)
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then there exists a constant C > 0 such that for each coordinate direction ξ′ of

Rd,

E[a0,n(ξ′)] − nµ(ξ′) ≤ Cn1/2(log n)7.(1.6)

For the proof of (1.6), he used symmetry properties of Zd with respect to the

coordinate axis. Therefore, his approach does not work for any direction except

coordinate axis, and we need a new method. The next theorem is our main

result.

THEOREM 1.1. Assume (1.3) and (1.5). Then, there exists a constant C > 0

such that for all `2-unit vector ξ ∈ Rd,

E[a0,n(ξ)] − nµ(ξ) ≤ Cn1−1/(6d+12)(log n)1/3.(1.7)

1.2 Application of Theorem 1.1

In this subsection, we state an application of Theorem 1.1. Bound (1.7) may

not be optimal, but it is very useful that for all direction ξ we can uniformly

take the exponent of the convergence rate strictly smaller than 1. Auffinger and

Damron [2, Theorem 2.5] established that the variance of the first passage time

has a lower bound with a logarithmic order in the case where the limit shape has

flat edges. For Theorem 2.5 of [2], they require not only (1.5) with α = 2 but also

a bound on the non-random fluctuations at that time. Thanks to Theorem 1.1,

we can check their condition whereas (1.5) holds for α = 2.

Let d = 2 and write supp(ν ′) for the support of the probability measure

ν ′. Moreover, let ~pc be the critical parameter for oriented percolation on Z2.

Furthermore, denote by θq the unique angle such that the line segment connecting

0 and the point Nq := (1/2 + αq/
√

2, 1/2 − αq/
√

2) ∈ R2 has angle θq with the

x-axis, where αq is the asymptotic speed of oriented percolation with parameter

q. For details of oriented percolation, we refer the reader to [3]. For q ≥ ~pc, Mq

is defined by the set of probability measures ν ′ satisfying conditions

(C1) supp(ν ′) ⊂ [1,∞),

(C2) ν ′({1}) = q.

Note that if ν ∈ Mq (in particular, (C1) holds for ν), then we have ν({0}) =

0 < pc, i.e., (1.3) is satisfied.

We now assume that (1.5) holds for α = 2 and the law ν satisfies one of

conditions

(a) inf supp(ν) = 0 and ν({0}) < pc,

(b) λ := inf supp(ν) > 0 and ν({λ}) < ~pc.
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In [8, Theorem 2], under the above assumptions Newman and Piza showed that

there is a constant C > 0 such that for all n ≥ 1 and θ ∈ [0, 2π),

Var(T (0, nξθ)) ≥ C log n,(1.8)

where ξθ := (cos θ, sin θ) ∈ R2. This means that the variance of the first passage

time diverges as n → ∞ in these cases. On page 980 of [8], they also state that

the variance does not diverge for θ ∈ (θq, π/2−θq) in the case ν ∈ Mq with q > ~pc.

We are now concerned with the divergence of Var(T (0, nξθ)) for θ ∈ [0, θq) in the

same situation. If ξθ is a coordinate direction, then Zhang [9, Theorem 2] proved

(1.8) under assumption (1.4). After that, Auffinger and Damron [2, Theorem 2.5]

improved it as follows.

THEOREM 1.2. (Auffinger and Damron) For a given q ∈ [~pc, 1), let ν ∈ Mq

and θ ∈ [0, θq). Suppose that (1.5) holds with α = 2 and there exists β < 1 such

that for all large n,

E[T (0, nξθ)] < nµ(ξθ) + nβ,(1.9)

where ξθ := (cos θ, sin θ) ∈ R2. Then, there exists a positive constant C = C(θ)

such that (1.8) holds for all n.

If we assume (1.4), then (1.2) yields (1.9) for all angles θ, and (1.8) holds for

all θ ∈ [0, θq). Under the assumption of Theorem 1.2, (1.6) only guarantees the

validity of (1.9) for each coordinate direction ξθ. We use Theorem 1.1 to obtain

(1.9) for all angles θ. With these observations, the whole picture of divergence

for Var(T (0, nξθ)) is completed under (1.5) with α = 2.

COROLLARY 1.3. For a given q ∈ [~pc, 1), let ν ∈ Mq and θ ∈ [0, θq). Suppose

that (1.5) holds with α = 2. Then, (1.8) holds for all n.

1.3 Organization of the paper

Let us describe how the present article is organized. In Section 2, we introduce

truncated weights following the method of Zhang [10]. Since the argument of

Sections 2 and 3 in [10] contains an oversight, we will present one of ways to

fix this (see Lemma 2.1 below). In addition, we give a method to compare the

expectation of the first passage time for the truncated weights with that for the

original weights.

In Section 3, we give the proof of Theorem 1.1. To do this, we improve the

approach taken in [7, Section 3, page 317] under our assumption (1.5). This

section is divided into two subsections. In Subsection 3.1, for the reader’s con-

venience, we explain the outline of Kesten’s approach under (1.4), and clarify
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differences between his and ours. In Subsection 3.2, we present a new method to

derive the convergence rate for all directions under low moment conditions.

In the following sections, Ci, i = 1, 2, . . . , are always positive constants de-

pending on d, ν and α.

2. Preliminaries

In this section, we shall introduce truncated weights, following basically the

strategy taken in [10]. By assumptions (1.3) and (1.5), we can take κ ∈ (0, 1)

such that

P (ω(e) < κ) ∨ P (ω(e) > κ−1) < pc.

From now on, we fix κ as above. Then, an edge e ∈ E is said to be bad if ω(e) < κ,

and a site x ∈ Zd is said to be unhealthy if some weights of 2d adjacent edges of

x are larger than κ−1. Let us now introduce two connectivities of paths on Zd.

We say that a path γ = (γ0, . . . , γi) is Zd- or ∗-connected if for all i ∈ [0, l − 1],

‖γi+1 − γi‖2 or ‖γi+1 − γi‖∞ equals 1, respectively. Here‖ · ‖2 is the `2-norm. A

Zd-connected path γ = (γ0, . . . , γi) is called bad if each edge {γi, γi+1} is bad.

Furthermore, a ∗-connected path γ = (γ0, . . . , γi) is called unhealthy if each site

γi is unhealthy. Let C−(x) be a bad Zd-connected cluster containing a site x, i.e.,

the set of all sites connected to x by a bad Zd-connected path. We also denote

by C+(x) an unhealthy ∗-connected cluster containing a site x, i.e., the set of all

sites connected to x by an unhealthy ∗-connected path.

Fix δ < 1/d. We now define a truncated weight σ(e) as follows. If one of the

following conditions 1–3 holds, then we set σ(e) := ω(e), otherwise σ(e) := 1:

1. κ ≤ ω(e) ≤ κ−1,

2. ω(e) < κ, and e is connected to a bad Zd-connected cluster with less than

nδ vertices,

3. ω(e) > κ−1, and e is connected to an unhealthy ∗-connected cluster with

less than nδ vertices.

Then, let Tσ be the first passage time on the truncated weights σ. Moreover, for

x ∈ Rd and n ≥ 1, let

Dn(x) := x +
[
−3dκ−1nδ, 3dκ−1nδ

]d
.

We now consider the first passage time T (Dn(0), Dn(nξ)) for each `2-unit vector

ξ ∈ Rd. Note that for all x ∈ Dn(0) and y ∈ Dn(nξ),

T (Dn(0), Dn(nξ)) ≤ T (x, y) ≤ T (Dn(0), Dn(nξ)) + Jn(ξ, ω),(2.1)
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where Jn(ξ, ω) is the sum of ω(e) over all edges included in Dn(0) ∪ Dn(nξ).

The following lemma is a minor modification of Lemma 8 and (3.23) in [10].

LEMMA 2.1. We can choose κ satisfying that, for each `2-unit vector ξ ∈ Rd,

there exist constants C̃1, C̃2 > 0 (which depend only on the law ν, d, α, δ and κ)

such that

P
(
T (Dn(0), Dn(nξ)) 6= Tσ(Dn(0), Dn(nξ))

)
≤ C̃1 exp{−C̃2n

δ},(2.2)

and, for all u > 0,

P
(
|Tσ(Dn(0), Dn(nξ)) − E[Tσ(Dn(0), Dn(nξ))]| ≥ un1/2+3δ

)
≤ C̃1 exp{−C̃2u

2nδ}.
(2.3)

Proof. We replace the component (log n)1+δ appearing in (1.10) of [10] with nδ.

Then, the proofs of (2.2) and (2.3) follow from the same strategy taken in [10,

Sections 2 and 3], and we do not repeat it here. As mentioned in Subsection 1.3,

an oversight is contained in the proof of Lemma 8 in [10] and let us present a

way to fix it. In the beginning of its proof, the following claim is stated:

By Proposition 5.8 in [6], with a probability larger than 1−C1 exp(−C2n),

there exists an optimal path γ for T (Dn(0), Dn(nu)) with #γ ≤ Ln.

Because we now only assume mν,α < ∞, this does not directly follow from

Proposition 5.8 in [6]. To fix this problem, we replace the phrase “#γ ≤ Ln”

with “#γ ≤ exp{Lnδ}”. Let

An :=
{
any optimal path γ for T (Dn(0), Dn(nξ)) satisfies #γ > exp{Lnδ}

}
.

Proposition 5.8 in [6] then shows that there are constants C1, C2 and C3 such

that

P
(
∃ a path γ from 0 with #γ ≥ exp{Lnδ} but T (γ) ≤ C1 exp{Lnδ}

)
≤ C2 exp

{
−C3 exp{Lnδ}

}
.

Chebyshev’s inequality hence implies

P (An) ≤ C2(#Dn(0)) exp
{
−C3 exp{Lnδ}

}
+ P

(
T (Dn(0), Dn(nξ)) > C1 exp{Lnδ}

)
≤ C2(#Dn(0)) exp

{
−C3 exp{Lnδ}

}
+ C−1

1 mν,1n exp{−Lnδ}
≤ C4 exp{−C5n

δ}

(2.4)
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for some constants C4 and C5. If

T (Dn(0), Dn(nξ)) 6= Tσ(Dn(0), Dn(nξ)),

then we have an edge e ∈ γ satisfying that #C−(ve) > nδ or #C+(ve) > nδ, where

ve is an endpoint of the edge e. Note that if e ∈ γ with #γ ≤ exp{Lnδ}, then

ve ∈ [− exp{Lnδ}, exp{Lnδ}]d holds. Therefore, we have

P
(
T (Dn(0), Dn(nξ)) 6= Tσ(Dn(0), Dn(nξ))

)
≤ P (An) +

∑
e∈[− exp{Lnδ},exp{Lnδ}]d

P
(
#C−(ve) > nδ or #C+(ve) > nδ

)
.

By the choice of κ, Theorem 6.1 of [4] implies that there are constants C6 and

C7 such that the second term on the right-hand side is bounded above by∑
e∈[− exp{Lnδ},exp{Lnδ}]d

2 exp{−C6n
δ} ≤ C7 exp{dLnδ − C6n

δ}.

This, together with (2.4), gives (2.2) for sufficiently small L.

We need the following lemma to estimate the difference between the expec-

tations of T and Tσ.

LEMMA 2.2. For each `2-unit vector ξ ∈ Rd there exist constants C̃3, C̃4 > 0

(which depend only on ν, d, α, δ and κ) such that∣∣E[T (Dn(0), Dn(nξ))] − E[Tσ(Dn(0), Dn(nξ))]
∣∣ ≤ C̃3n exp{−C̃4n

δ}.

Proof. Let Γ := {T (Dn(0), Dn(nξ)) 6= Tσ(Dn(0), Dn(nξ))}, and set

C8 :=
√

dC̃
(α−1)/α
1 m1/α

ν,α , C9 := C̃2(α − 1)/α.

Using Hölder’s inequality and (2.2), we have

E [T (Dn(0), Dn(nξ))1Γ] ≤
√

dC̃
(α−1)/α
1 m1/α

ν,α n exp{−nδC̃2(α − 1)/α}
= C8n exp{−C9n

δ}.

Therefore,

E[Tσ(Dn(0), Dn(nξ))] + C8n exp{−C9n
δ} ≥ E[T (Dn(0), Dn(nξ))].

Similarly, since σ(e) ≤ ω(e) + 1 holds for all e ∈ E ,

E[T (Dn(0), Dn(nξ))] + C10n exp{−C11n
δ} ≥ E[Tσ(Dn(0), Dn(nξ))]

for some constants C10 and C11. Thus, Lemma 2.2 follows by choosing C̃3 :=

C8 ∨ C10 and C̃4 := C9 ∧ C11.
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In the next section, C̃i’s are always constants appearing in this section.

3. Proof of Theorem 1.1

3.1 Kesten’s approach

Let us first prepare some notations. Fix an `2-unit vector ξ ∈ Rd, and for

M ∈ N let U1, . . . , UK be all the vectors with integer components and ‖Uk‖∞ =

M, 1 ≤ k ≤ K. Define

Λ(M,n) := min

{ K∑
k=1

p(k)E[T (0, Uk)]

}
− nµ(ξ),

where the minimum is over all choices of p(k) ∈ N0 such that∥∥∥∥ K∑
k=1

p(k)Uk − nξ

∥∥∥∥
∞

≤ M.(3.1)

In [7, pages 317–327], the proof of (1.2) is composed of three steps. The

main parts are Steps 1 and 2 of [7, pages 317–326], so that we will explain only

these steps here. Step 3 in [7, pages 326–327] will be explained in the proof of

Theorem 1.1.

In Step 1 of [7, page 317], Kesten shows that there exists a constant C1 > mν,1

such that for M ∈ [n1/(d+1), n] and l ≥ 1,

lΛ(M,n) − C1lM
1/dn(d−1)/d ≤ Λ(M, ln) ≤ C1ln.(3.2)

His proof works under assumption (1.5).

In Step 2 of [7, page 321], it is proved that there are constants c, c′, C, C ′ > 0

such that for large n and M as above and for l ≥ 2,

P

(
a0,ln(ξ) ≤ lnµ(ξ) +

l

2
Λ(M,n)

)
≤ ce−ln + exp

{
c′

ln

M
log M + ClM (2−d)/(2d)n(d−1)/d − C ′ lΛ(M,n)2

nM1/2

}
.

(3.3)

We have to modify this estimate under assumption (1.5). In particular, (1.4) is

required for bounds (3.12) and (3.11) below. Thus, if (1.5) is assumed instead

of (1.4), then we must get a bound similar to (3.3) without (3.11) and (3.12).

In fact, this is possible by replacing (3.13) with Lemma 3.1, which is proved in

Subsection 3.2.
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Let us give a sketch of Kesten’s proof of (3.3). Let γ := (v0, v1, . . . , vp) be

any self-avoiding nearest neighbor path from v0 = 0 to vp = [lnξ] with passage

time T (γ) ≤ lnµ(ξ) + (l/2)Λ(M,n). In addition, define the indices τ0 := 0 and

τi+1 := min{k ∈ (τi, p]; ‖vk − vτi
‖∞ = M}, i ≥ 0,

with the convention min ∅ = ∞. Set Q := max{i ≥ 0; τi < ∞} and ai := vτi
for

i ∈ [0, Q]. By definition of Q, we have

‖vk − vτQ
‖∞ < M, τQ < k ≤ p,

and in particular,

‖vτQ
− lnξ‖∞ ≤ ‖vτQ

− vp‖∞ + ‖[lnξ] − lnξ‖∞ ≤ M.(3.4)

Moreover,

‖ai − ai−1‖∞ = ‖vτi
− vτi−1

‖∞ = M, 1 ≤ i ≤ Q,(3.5)

so that ai−ai−1 is one of the Uk’s (which appear in the beginning of this section).

It holds from [7, pages 322–323] that there exists constants C2, C3 such that

P (Q ≥ C2ln/M) ≤ C3e
−ln.(3.6)

We now fix Q < C2ln/M and a1, . . . , aQ satisfying (3.4) and (3.5). We denote

by p(k) the number of i ∈ [1, Q] with ai − ai−1 = Uk. The p(k)’s are fixed at

the moment. Then, (3.28)–(3.32) of [7, page 323] enable us to show that for any

β ≥ 0,

P

(
∃ a self-avoiding path γ with vτi

= ai, 1 ≤ i ≤ Q,

and satisfying (3.4) and T (γ) ≤ lnµ(ξ) + (l/2)Λ(M,n)

)
≤ exp

{
−βl

2
Λ(M,n) + βC1lM

1/dn(d−1)/d

}
×

K∏
k=1

E
[
exp

{
−β(T (0, Uk) − E[T (0, Uk)])

}]p(k)
.

(3.7)

It remains to estimate the product in (3.7). Note that
∑K

k=1 p(k) = Q, which is

the number of (ai − ai−1)’s, and

E
[
exp

{
−β(T (0, Uk) − E[T (0, Uk)])

}]
≤ exp

{
C4

βl

Q
Λ(M,n)

}
+ exp{βE[T (0, Uk)]}P

(
T (0, Uk) − E[T (0, Uk)] ≤ −C4l

Q
Λ(M,n)

)
,

(3.8)
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where C4 will be chosen such that for large M and for n ≥ M and l ≥ 2d,

C4l

Q
Λ(M,n) ≤ d

2
Mmν,1 and C4 ≤

1

4
.(3.9)

The argument below (3.34) of [7] guarantees the existence of such a C4. In

particular, for n ≥ M and l ≥ 2d,

Q ≥ ln

dM
− 1 ≥ ln

2dM
.(3.10)

We shall estimate the last probability in (3.8). Set η := Uk/‖Uk‖2 and m :=

b‖Uk‖2c ∈ [M,dM ]. Note that ‖[mη] − Uk‖∞ ≤ 2. Assumption (1.4) guarantees

that there exist constants c, C, C ′ > 0 such that for t ≥ 0,

P
(∣∣T (0, [mη]) − E[T (0, [mη])]

∣∣ ≥ t
√

m
)
≤ Ce−C′t,(3.11)

and for t ≤ cm,

P
(∣∣T (0, [mη]) − E[T (0, [mη])] − T (0, Uk) + E[T (0, Uk)]

∣∣ ≥ t
)
≤ Ce−C′t,(3.12)

which are (2.49) and (3.36) of [7], respectively. By choosing t suitably (see

(3.37) of [7, page 325] for details), these estimates show that for some constants

C5, C6 > 0,

P

(
T (0, Uk) − E[T (0, Uk)] ≤ −C4l

Q
Λ(M,n)

)
≤ C5 exp

{
− C6

QM1/2
lΛ(M,n)

}
.

(3.13)

Therefore, the right-hand side of (3.8) is at most

exp

{
C4

βl

Q
Λ(M,n)

}
+ C7 exp

{
βdMmν,1 −

C6

QM1/2
lΛ(M,n)

}
.

for some constant C7. Choose β such that the two exponents become equal, so

that the left-hand side of (3.8) is smaller than

CQ
8 exp

{
C9lM

δ−(d−2)/(2d)n(d−1)/d − C10
l2Λ(M,n)2

QM3/2

}
.

for some constants C8, C9, C10. Hence (3.3) follows by summing the left-hand

side of (3.7) over all possible values of Q and a1, . . . , aQ. (See the first paragraph

of [7, page 326] for details.)

With these observations, under (1.5) we must estimate the last probability

in (3.8) without (3.11) and (3.12). In fact, this is possible as follows. (See

Subsection 3.2 for the proof.)
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LEMMA 3.1. Assume (1.3) and (1.5). For δ ≤ 1/6 there exist constants C11, C12

> 0 such that, for all large n, if Λ(M,n) ≥ C11nM−(1−dδ) and Q < C2ln/M ,

then

P

(
T (0, Uk) − E[T (0, Uk)] ≤ −C4l

Q
Λ(M,n)

)
≤ 2C̃1 exp

{
−C12M

−(2−δ)

(
l

Q

)2

Λ(M,n)2

}
.

3.2 Proofs of Lemma 3.1 and Theorem 1.1

Let us first give the proof of Lemma 3.1.

Proof of Lemma 3.1. Recall that η := Uk/‖Uk‖2 and m := b‖Uk‖2c ∈ [M,dM ].

Note that ‖mη − Uk‖∞ ≤ 1 and 0 ∈ Dm(0) and Uk ∈ Dm(mη) hold for large m.

By (2.1),

T (Dm(0), Dm(mη)) ≤ T (0, Uk) ≤ T (Dm(0), Dm(mη)) + Jm(ξ, ω).

This, together with Lemma 2.2, gives

E[T (0, Uk)] ≤ E[Tσ(Dm(0), Dm(mη))] + C̃3m exp{−C̃4m
δ} + C13m

dδ

for some constant C13. Therefore,

P

(
T (0, Uk) − E[T (0, Uk)] ≤ −C4l

Q
Λ(M,n)

)
≤ P

(
T (Dm(0), Dm(mη)) − E[Tσ(Dm(0), Dm(mη))]

≤ −C4l

Q
Λ(M,n) + C̃3m exp{−C̃4m

δ} + C13m
dδ

)
.

(3.14)

Take C11:= 4ddδC2(C̃3∨C13)/C4. Since we have assumed Λ(M,n)≥C11nM−(1−dδ)

and Q < C2ln/M , the choice of n, M and m implies for all large n,

C4l

2Q
Λ(M,n) ≥ C̃3m exp{−C̃4m

δ} + C13m
dδ.

It follows that the right-hand side of (3.14) is smaller than

P

(
T (Dm(0), Dm(mη)) − E[Tσ(Dm(0), Dm(mη))] ≤ −C4l

2Q
Λ(M,n)

)
.
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Thanks to (2.2) and (2.3), this is bounded from above by

C̃1 exp{−C̃2m
δ}

+ P

(
|Tσ(Dm(0), Dm(mη)) − E[Tσ(Dm(0), Dm(mη))]| ≥ C4l

2Q
Λ(M,n)

)
≤ C̃1 exp{−C̃2m

δ} + C̃1 exp

{
−

(
C̃2C

2
4

4

)
(l/Q)2Λ(M,n)2

m1+5δ

}
.

By (3.9) and δ ≤ 1/6, there exists a constant C12 > 0 such that the right-hand

side is smaller than

2C̃1 exp

{
−C12M

−(2−δ)

(
l

Q

)2

Λ(M,n)2

}
.

Hence the proof is complete.

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. Let us first show that there exist constants C14, C15, C16 >

0 such that, for all large n, if Λ(M,n) ≥ C11nM−(1−dδ), then

P

(
a0,ln(ξ) ≤ lnµ(ξ) +

l

2
Λ(M,n)

)
≤ C14e

−ln + exp

{
C15

ln

M
log M + C15lM

δ−(d−1)/dn(d−1)/d − C16
lΛ(M,n)3

n2M1−δ

}
,

(3.15)

which is the counterpart of (3.3) under (1.5). From Lemma 3.1, the right-hand

side of (3.8) is at most

exp

{
C4

βl

Q
Λ(M,n)

}
+ 2C̃1 exp

{
βdMmν,1 − C12M

−(2−δ)

(
l

Q

)2

Λ(M,n)2

}
.

Finally, we choose β such that the two exponents above here become equal, i.e.,

β = C12M
−(2−δ)

(
l

Q

)2

Λ(M,n)2

(
dMmν,1 −

C4l

Q
Λ(M,n)

)−1

.

In particular, by (3.9),

β ≤ C12M
−(2−δ)

(
l

Q

)2

Λ(M,n)2

(
d

2
Mmν,1

)−1

≤ C17M
−(1−δ)
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for some constant C17. By (3.9) and (3.10), the left-hand side of (3.7) is smaller

than

exp{βC1lM
1/dn(d−1)/d} ×

K∏
k=1

(
(2C̃1 + 1) exp

{(
C4 −

1

2

)
βl

Q
Λ(M,n)

})p(k)

≤ (2C̃1 + 1)C2ln/M exp

{
C1C17lM

δ−(d−1)/dn(d−1)/d − C18
lΛ(M,n)3

n2M1−δ

}
for some constant C18. Therefore, bound (3.15) follows by summing the left-hand

side of (3.7) over all possible values of Q and a1, . . . , aQ. See the first paragraph

in [7, page 326] for details.

We complete the proof of Theorem 1.1 following basically Step 3 of [7,

pages 326–327]. Pick

δ := 1/(d + 4).(3.16)

Here, note that δ < 1/d. We first treat the case Λ(M,n) ≥ C11nM−(1−dδ).

Choose

M := bn1/(dδ+1)c.(3.17)

If we have

C16
lΛ(M,n)3

n2M1−δ
> C15

ln

M
log M + C15lM

δ−(d−1)/dn(d−1)/d,(3.18)

then by (3.15),

lim
l→∞

P

(
a0,ln(ξ) ≤ lnµ(ξ) +

l

2
Λ(M,n)

)
= 0.

However, this contradicts to (1.1), and (3.18) fails to hold. This means that

Λ(M,n) ≤ C19

{
nM−δ/3(log M)1/3 + n1−1/(3d)M1/(3d)

}
for some constant C19. By (3.16), Λ(M,n) is smaller than

2C19nM−δ/3(log M)1/3 ≤ C20n
1−1/(6d+12)(log n)1/3

for some constant C20. This, together with the definition of Λ(M,n), enables us

to take p(k) ≥ 0 satisfying (3.1) and

ν∑
k=1

p(k)E[T (0, Uk)] ≤ nµ(ξ) + C20n
1−1/(6d+12)(log n)1/3.
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Now set ρ =
∑ν

k=1 p(k) and let u1, . . . , uρ be the sites defined by ui − ui−1 = Uk

for
∑k−1

j=1 p(j) < i ≤
∑k

j=1 p(j). Note that uρ =
∑ν

k=1 p(k)Uk. Subadditivity of

the first passage time gives

E[a0,n(ξ)] ≤
ρ∑

i=1

E[T (ui−1, ui)] + E[T (uρ, nξ)].

By the choice of u1, . . . , uρ,

ρ∑
i=1

E[T (ui−1, ui)] =
ν∑

k=1

p(k)E[T (0, Uk)]

≤ nµ(ξ) + C20n
1−1/(6d+12)(log n)1/3.

In addition, by (3.1),

E[T (uρ, nξ)] ≤ d‖[nξ] − uρ‖∞E[ω(0)] ≤ d(M + 1)E[ω(0)],

and (1.7) immediately follows in the case Λ(M,n) ≥ C11nM−(1−dδ).

In the case Λ(M,n) < C11nM−(1−dδ), the definition of Λ(M,n) implies

nµ(ξ) + C11nM−(1−dδ) > min

{ K∑
k=1

p(k)E[T (0, Uk)]

}
,

where the minimum is taken over all choices of p(k) satisfying (3.1). Subaddi-

tivity of the first passage time shows that

K∑
k=1

p(k)E[T (0, Uk)] ≥
K∑

k=1

E

[
T

(
k−1∑
j=1

p(j)Uj,

k∑
j=1

p(j)Uj

)]
≥ −d(M + 1)mν,1 + E[a0,n(ξ)].

With these observations,

E[a0,n(ξ)] ≤ nµ(ξ) + C11nM−(1−dδ) + d(M + 1)mν,1.

This, together with (3.16) and (3.17), is bounded from above by

nµ(ξ) + (C11 + 2dmν,1)n
1−1/(d+2)(log n)1/3.

Since n1−1/(6d+12) ≥ n1−1/(d+2), (1.7) is valid in all cases.
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