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Abstract. In this paper we will study an alternative row version of Josephus
problem. Suppose that nnumbers 1, 2, $\cdot$ . . , $n$ are arranged in a line from left to
right in this order. Starting with number 1, and counting each number from
left to right, every second number is eliminated. Subsequently, starting with
the right most number of the remains and counting each number in turn in the
contrary direction, $i.e$ . from right to left, every second number is eliminated.
Repeat such a process by alternate changing the order of cunting and eliminating
until only one number is left. Denote by $f_{t}(n)$ the number of the $(n-t+1)$-th
element which is removed by the process described above. If $n’ s$ binary expansion
is $\sum_{k=0}^{\infty}2^{k}n_{k}(n_{k}=1,0)$ , let us denote $f(n)=\sum_{k=0}^{\infty}2^{2k+1}n_{2k+1}$ . Let $g_{t}(n)$

be either $0$ for $t=1$ , or $(-2)^{r}\{f(\sigma^{r}(2n-1))+f(\sigma^{r}(n-1))-2t+3\}$ for
$t\geq 2$ , where $ r=\lfloor\log_{2}\frac{n-1}{t-1}\rfloor$ and $\sigma(n)=L\frac{n}{2}\rfloor$ , i.e. $\sigma(n)$ is one-bit shift right of
$n’ s$ binary expansion. In this paper we prove that

$f_{t}(n)=f(n-1)+1+g_{t}(n)$ .

1. Introduction

In the most general form of the Josephus Problem can be described as follows
$[3, 5]$ : Suppose that nnumbers 1, 2, $\cdot$ . . , $n$ are arranged in a circle, and are num-
bered from 1 to $n$ . The counting may be clockwise but carried out in the same
direction. Starting with number 1, and counting each number in tum around
the circle, every $k$-th number is eliminateted. Let $J(n, k, i)$ be the $i$ -th element
which is removed by the process.

Numerous aspects of the Josephus Problem have treated in the literatures
[1, 3, 4, 6, 7, 8, 9]. In [3] explicit non-recursive formula to compute $J(n, 2, i)$ and
$J(n, 3, i)$ are given, and explicit upper and lower bounds for $J(n, k, i)$ (where
$k\geq 4)$ which differ by $2k-2$ are derived. In paticular they obtained the following
formula (see [1], [2]):

$J(n, 2, n-i+1)=2(n-(2i-1)\cdot 2^{L^{log_{2}n-\ell og_{2}(2i-1)\rfloor}})+1$ .
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Figure 1 $f_{1}^{3}(9)=8$ .

Now, we would like to propose an alternative row version of Josephus problem
as follows.

Problem

Suppose that $n$ numbers 1, 2, $\cdots n$ are arranged in a line from left to right

in this order. Starting with number 1, and counting each number in tum from
left to right, every $k$-th number is eliminated. Subsequently, starting with the
right most number of the remains and counting each number in the contrary
direction, $i.e$ . from right to left, every $k$-th number is eliminated. Repeat such
a process by alternate changing the order of cunting and eliminating until only
one number is left. Let $f_{t}^{k}(n)$ be the $(n-t+1)$ -th element which is determined
by the process (see Fig.1.). Determine $f_{t}^{k}(n)$ .

In this paper we give a non-recursive explicit formula $mpute$ to the $f_{t}^{k}(n)$

which corresponds to the above formula for $J(n, 2, n-i+1)$ obtained by Halbeisen
and Hungerbuhler. By using it, we can fast and easily to calculate $f_{t}^{k}(n)$ . From
now on we denote simply $f_{t}^{2}(n)$ by $f_{t}(n)$ .

For a positive integer $n$ , let $n=(b_{m}b_{m-1}\cdots b_{1}b_{0})_{2}$ be $n’ s$ binary expansion,
that is,

$n=b_{m}2^{m}+b_{m-1}2^{m-1}+\cdots+b_{1}2+b_{0}$ ,

where each $b_{i}$ is either $0$ or 1 and the leading bit $b_{m}$ is 1. Denote $\sigma(n)=L\frac{n}{2}\rfloor$ ,
i.e. $\sigma(n)$ is one-bit shift right of $n’ s$ binary expansion. For a non-negative
integer $r$ , denote $\sigma^{r}(n)=\sigma(\sigma\cdots\sigma(n))(the$ image of $n$ under r-times composition
of $\sigma$ ), i.e. $\sigma^{r}(n)$ is r-bit shift right of $n’ s$ binary expansion. Moreover, for
$n=\sum_{k=0}^{\infty}2^{k}n_{k}(n_{k}=1,0)$ , denote

$f(n)=\sum_{k=0}^{\infty}2^{2k+1}n_{2k+1}$ .

The following is our result. The proof is given in the later section.

THEOREM 1. Let $g_{t}(n)$ be either $0$ for $t=1$ , or $(-2)^{r}\{f(\sigma^{r}(2n-1))+f(\sigma^{r}(n-$

$1))-2t+3\}$ for $t\geq 2$ , where $ r=\lfloor\log_{2}\frac{n-1}{t-1}\rfloor$ and $\sigma(n)=L\frac{n}{2}\rfloor,$ $i.e$ . $\sigma(n)$ is one-bit
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shift right of $n’ s$ binary expansion. Then

$f_{t}(n)=f(n-1)+1+g_{t}(n)$ .

2. Lemmas

We prepare some lemmas to prove Theorem 1. The first lemma is related to
$f_{t}(n)$ .

LEMMA 2. The following recursion holds.
(i) If $n<2t-1$ , then $f_{t}(n)=2(n-t)+2$ .

(ii) If $n$ is even and $2t\leq n$ , then $f_{t}(n)=f_{t}(n-1)$ .
(iii) If $n$ is odd and $2t-1\leq n$ , then $f_{t}(n)=n+2-2f_{t}(\sigma(n)+1)$

Proof. (i) In the first $r\frac{n}{2}\rceil$ steps, even numbers removed in order. Hence if
$n<2t-1$ , then $f_{t}(n)=2(n-t)+2$ .
(ii) In the case of $n-1$ elements, all elements with even numbers are eliminated
after the first $\frac{n-1}{2}$ steps. The elements left are the same as in the case of $n$

elements. Hence if $2t\leq n$ , then $f_{t}(n)=f_{t}(n-1)$ .
(iii) Denote $n=2k+1$ with $k\geq 0$ . From $n\geq 2t-1$ , we have $t\leq k+1$ .
Since $\sigma(n)=k$ , it suffices to show

$f_{t}(2k+1)=2k+3-2f_{t}(k+1)$ .

By eliminating every second element from left to right in the sequence 1, 2, . . . , $n$ ,
$k+1$ elements $(i.e. 1,3, \cdots 2k+1)$ are left. Starting with right side element
of the remains, and counting every element of them, the number of ith element
is $2k+3-2i$ . Hence the last equation holds. $\blacksquare$

Next we note a simply property of $f(n)$ .

LEMMA 3. Let $m$ be a positive integer. Then
(i) $2f(m)+f(2m)=2m$ .

(ii) 2$f(m)+f(2m+1)=2m$ .

Proof. (i) It is clear from the definition of $f$ .
(ii) It follows from (i) and $f(2m)=f(2m+1)$ . $\blacksquare$
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3. Proof of Theorem 1

We divide the proof into two cases.
Case 1. $t=1$ We prove by induction on $n$ that $f_{1}(n)=f(n-1)+1$ .
If $n=1$ , then $f_{1}(1)=1=f(O)+1$ , and we are done.
Suppose that $n>1$ . If $n$ is odd, by Lemma 3,

$f_{1}(n)=n+2-2f_{1}(\sigma(n)+1)$

$=n+2-2(f(\sigma(n))+1)$

$=n-2f(\sigma(n))$

$=n-(n-1-f(n))$

$=f(n)+1$

$=f(n-1)+1$

by induction hypothesis

by Lemma 2 (ii) and $m=2m+1$

since $n$ is odd.

If $n$ is even, then we can use Lemma 1(ii) since $t\leq\frac{n}{2}$ Then

$f_{1}(n)=f_{1}(n-1)$

$=f(n-2)+1$

$=f(n-1)+1$ .
by induction hypothesis

Case 2. $t\geq 1$ We proceed by induction on $n$ .
Case 2.1. $r=0$ . In this case, we have $\frac{n-1}{t-1}<2$ since $r=0$ , and hence $n<2t-1$ .
By Lemma 1, $f_{t}(n)=2(n-t)+2$ . On the other hand,

$f(n-1)+1+g_{t}(n)$

$=f(n-1)+1+(f(2n-1)+f(n-1)-2t+3)$
$=1+2(n-1)-2t+3$ by Lemma 2 (ii) with $m=n-1$

$=2(n-t)+2$ .

Case 2.2. $r\geq 1$ . In this case, we have $\frac{n-1}{t-1}\geq 2$ . If $n$ is odd, from Lemma 3 and
induction hypothesis, then we have

$f_{t}(n)=n+2-2f_{t}(\sigma(n)+1)$

$=n+2-2\{f(\sigma(n))+1$

$+(-2)^{r-1}\{f(\sigma^{r-1}(2\sigma(n)+1))+f(\sigma^{r-}1 (\sigma(n)))-2t+3\}\}$ ,

by using the following fact:

$r=\lfloor\log_{2}\frac{\sigma(n)}{t-1}\rfloor=\lfloor\log_{2}\frac{n-1}{t-1}\rfloor-1=r-1$ .
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On the other hand, $f(\sigma^{r-1}(2\sigma(n)+1))=f(\sigma^{r-1}(n))=f(\sigma^{r}(2n-1))$ , since $n$

is odd.
By using that $\sigma^{r}(n)=\sigma^{r}(n-1)$ and $n-2f(\sigma(n))=f(n)+1=f(n-1)+1$ ,
we have $f_{t}(n)=f(n-1)+1+g_{t}(n)$ .
Next we assume that $n$ is even. Since $n\geq 2t-1,$ $f_{t}(n)=f_{t}(n-1)$ by Lemma 1.
Thus by induction hypothesis we have

$f_{t}(n)=f_{t}(n-1)$

$=f(n-2)+1+(-2)^{s}\{f(\sigma^{s}(2n-3))+f(\sigma^{s}(n-2))-2t+3\}$ ,

where $ s=\lfloor\log_{2}\frac{n-2}{t-1}\rfloor$ .

By putting $ r=\lfloor\log_{2}\frac{n-1}{t-1}\rfloor$ , we have $s=r$ , since $n$ is even.
On the other hand,

$f(n-2)=f(n-1)$ , and
$f(\sigma^{r}(2n-3))=f(\sigma^{r}(2n-1)),$ $\sigma^{r}(n-2)=\sigma^{r}(n-1)$ , since $r\geq 1$ .

Hence we have

$f_{t}(n)=f(n-1)+1+(-2)^{r}\{f(\sigma^{r}(2n-3))+f(\sigma^{r}(n-1))-2t+3\}$

$=f(n-1)+1+g_{t}(n)$ . $\blacksquare$

4. Example

Let us calculate $f_{t}(n)$ for $n=321$ and $t=24$ . We see that

$n=321=(101000001)_{2}$

$f(n-1)=f(320)=f((101000000)_{2})=0$ ,

$r=\lfloor\log_{2}\frac{320}{23}\rfloor=3$ .

On the otherhand,

$f(\sigma^{r}(2n-1))+f(\sigma^{r}(n-1))-2t+3$

$=f(\sigma^{3}(641))+f(\sigma^{3}(320))-48+3$

$=f((1010000)_{2})+f((101000)_{2}-45$

$=0+(2^{5}+2^{3})-45$

$=-5$ ,
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and

$g_{t}(n)=(-2)^{r}\{f(\sigma^{r}(2n-1))+f(\sigma^{r}(n-1))-2t+3\}$ .
$=(-2)^{3}(-5)$

$=40$ .

By Theorem 1, $f_{t}(n)=f(n-1)+1+g_{t}(n)$ , and hence we have

$f_{24}(321)=0+1+40=41$ .
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