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SPLIT FREUDENTHAL VECTOR SPACE
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Abstract. A maximal compact subgroup of the noncompact exceptional Lie
group of type E;(7) acts on the split Freudenthal R-vector space. We give the
orbit space of the split R-vector space under this action.

1. Introduction

In [1], the author showed that any element P of the split Freudenthal R-vector
space P’ can be transformed to a diagonal form by some element of a maximal
compact subgroup (E7(7))k of the noncompact exceptional Lie group E;¢7y. In
this paper we show that this diagonal form is uniquely determined by P € P’
independent of the choice of a = p(A) € (Eqq))k (2 SU(8)/Z,), A € SU(8)
under the certain conditions of parameters. As a result, the orbit space ' /SU(8)
of P’ with respect to SU(8) is given as follows:

, _ 5 §4<6 <86 <& }
PB'/SUB) = {(50,51_, £2,83,84) ER 462 < (& + &) (€ — &) ]

2. Preliminaries

2.1 Split Cayley algebra ¢’

We denote by R,C = {ag + aje1 |ar € R} (12 = —1) and H = {ao +
a1 + azez + azes|ar € R} (ex? = —1,e1e; = e3,e0e3 = €1, €361 = €3, exe; =
—eiex (k # 1)), the fields of real numbers, complex numbers and quaternions,
respectively. Let €' = H @ He' be the split Cayley algebra over R with the
multiplication

(a +be')(c+ de') = (ac+ db) + (bc + da)e!, a+be',c+de’' € €,
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where ¢, d are the conjugate elements of c,d € H, respectively. In @', the
conjugation is defined by a + be’ = @ — be'.

2.2 Split Jordan algebra J'

Let
J={XeM3B) X=X}

& T3 T
;{XZX(ﬁk,xk)z T3 & w

T2 Ty &3

)kkeRJkee}

be the split Jordan algebra with the Jordan multiplication
XoY = %(XY + Y X).

In J', we define the inner product (X,Y), the Freudenthal multiplication X x Y
respectively by

(X,Y) =tr(X oY),
XxV = %(2){ oY —tr(X)Y — tr(¥)X + (t:(X)tr(Y) — (X, Y))E),

where E is the unit matrix.
2.3 Split Freudenthal R-vector space ¢’ and Lie group Eq )
We define the split Freudenthal R-vector space B’ by
P=JoJOoROR
with the inner product
(P,Q) =(X,2) + (Y, W) + & + nw,
for P = (X,Y,£6,7), Q= (ZW,(w)€P. For ¢ € ege)(:= {¢ € Homp(J')|

(X, X x X) =0}), A B € J and v € R, we define an R-linear mapping
#(¢,A,B,v) : B’ = P’ by '

X ¢X — v X +2BxY +nA
Y| _|2AxX -ty + vy +¢B

¢(¢3A,B’V) 6 - (A,Y) +l/§ ’
n (B,X)“'W?
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where ¢ € eg(6) is the transpose of ¢ with respect to the inner product (X,Y):
(*¢X,Y) = (X,4Y). Next, for P = (X,Y,£,1), Q = (Z,W,(,w) € P', we define
an R-linear mapping P x Q : ¢’ — P’ by

=-3(XVW+2ZVY),

PxQ= ¢, A,B,v), A=-1QY xW - ¢Z - (X),
B= {(2X xZ—nW -uY),
v=§((X,W)+(2,Y) - 3(&w +(n)),

where X VW € eq6) is defined by (X VW)U = (W, U)X + (X, W)U —2W x
(X xU) for U € J'. Then the noncompact simple Lie group of type Eq(7) is
given by

E7;7y = {a € Isor(P') |a(P x Q)a™! = aP x aQ }
@] BD-

3. Orbit space P’'/SU(8) of P’ with respect to SU(8)

3.1 Orbit space P'/SU(8)
We shall recall the following groups:

O(n)={Ae€e M(n,R)|'AA = E},
Un)={Ae M(n,C)|A*A=FE},
SU(n) ={Ae€U(n)|detA =1},

R-vector spaces:

J4H)={XeM4H)|X" =X},
J(4,H)o ={X € 3(4,H) | tr(X) =0},
6(n,C) ={S e M(n,C)|'S =-S5},

and R-isomorphism: x : P’ — &(8,C),
_ ¢ _n
X(X,Y,6,m) = k(9X — 2B)Js + ek (9(vY) - 2E)J,

where k : M(4, H) - M(8,C) is the naturally extended mapping of k¥ : H =
C ®Ce, —» M(2,C),

k(a + bey) = (—az f) )

a
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933, "")3(4aH)0a

¢ e T — boe! A1 b by b3
B 1 / as 3€ Q2 26/ b A az T
9( as — bge & a; + be ) 1% 2 x ol

bs ax @ A\

M= 5@ +E+E), =26 -6 - &)

Az = %4(52 & —-6&), M= %(53 — & — &),

0

. ,
1 0 and v : §' = J, vX (&, ar +

Jy = diag(J, J,J,J) € M(8,C),J =

bre') = X (&, ar — bre’) ([1], [2], [3])-
Hereafter, we regard U(n—1) C U(n): U(1) CU(2) C --- C U(n-1) c U(n),

| identifying A € U(n — 1) with (é 31) € U(n).

LEMMA 1. For a given vector *(z;,xs,23,... ,2,) € C™, there exists D €
U(n —1) C U(n) satisfying

I T,
T2 S

D|z3| =10 , S€R
Tn 0

(Note that the first term x, leaves invariant under the action of D.)

Proof. For = *(z9,23,... ,2,) € C" ! let y = t(s,0,...,0) € C™ 1, where
s = ||z|| := y/|z2|> + - - - + |z,|2. We may assume that s > 0. Since the unitary
group U(n — 1) acts transitively on the sphere S2"~3 = {2 € C"!|||2]|| = s},
there exists D € U(n — 1) such that Dx = y. This D € U(n — 1) C U(n) is the
required matrix.

LEMMA 2. Any complex skew-symmetric matriz X € S(n,C) is transformed
to the following canonical form by some unitary matriz A € U(n):

(0) (0) = 0 if n is odd,
AX A = Ry \ B empty if n is even,
0 Tk

h sz( >,0ST1S"‘S7'n2-
Rin/2) e 00 /e



ORBIT SPACE OF SPLIT FREUDENTHAL VECTOR SPACE 5

Moreover, this form is uniquely determined by X independent of the choice of

AeU(n).

Proof. For the first column vector = (0, z51,. .. ,Zn1) of X, construct D; €
U(n —1) C U(n) of Lemma 1. Then X is transformed to the form

0 % “--. *
Sy ke %
X1=D1XtD1_—‘ 0. =x x|, s2€R.
0 *= .- *
Since X, is also skew-syrhinetric, the first row vector of X; is (0, —s,0,... ,0).
Therefore, X, is of the form
0 —s2 0 --- O
82
X,=|0 - , 2€R YeMn-1,C), Y =Y.

: Y
0
For the complex skew-symmetric matrix Y € M(n — 1, C), applying the similar

process as above, we can obtain that X; is transformed by some unitary matrix
U to a real skew-symmetric tridiagonal form

0 —89 \
So 0~ —s3
83 0 —84
X, = UX,'U = sa 0
0 -s,

\ s, O

Since X, is a real skew-symmetric matrix, as is well known, X, can be trans-
formed to the canonical form of the lemma by some orthogonal matrix O €
O(n) C U(n). Thus, the first half of the lemma is proved.

We shall now show the uniqueness of the canonical form. For the sake of
brevity, we suppose n = 2m and

tA _ 3: 0 T 0 m >
AXA—dla,g((_r1 o) ol 0 ), 7 >0.
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Then, we have

AXX*) A= AX'AAX*A* = (AX'A)(AX'A)* = diag(ri2, 712, ... ,Tm>, Tm2).

Therefore, r12,... ,7»? are the eigenvalues of Hermitian matrix XX*. Thus
r1?,...,rm?, namely, r1,...,r, are uniquely determined by X. (Note that
r+ > 0.) The case n = 2m + 1 is also proved in exactly the same way.

PROPOSITION 3. Any complex skew-symmetric matriz X € &(n, C) is trans-
formed to the following canonical form by some special unitary matriz A €
SU(n). Moreover, this form is uniquely determined by X independent of the
choice of A € SU(n). :
(1) In the case detX =0,

(0) (0) = { 0 if n is odd,

R, empty if n is even
AX A = pty if )

0 Tk

- sz( )aOSTIS"'Srn2'
Rinya) ~Te 0 e

(2) In the case detX # 0,

R, . -
tg —
AXA— ,‘. , b sz( 0 rk), k:2,_..,n/2,
—Tk 0

Rnyg 0<|c|<rg < - < 1ppya.

Proof. For a given X € &(n,C), let AX*A be expressed in the canonical form of
Lemma 2. Now, constructing a matrix A’ € M(n,C) by A’ = (a E) A, where

a = 1/detA € C, we obtain that A’ € SU(n) and A'X*4’ has the canonical

form of the proposition. (Note that |a| = 1.) The remainder of the proof is the
uniqueness of the form above independent of the choice of A € SU(n).

In the case detX =0, it is obvious from Lemma, 2.

In the case detX # 0, we may assume that there exists some matrix A €
U(n),n = 2m such that

0 T

tg _ 32 ‘ = =
AX'A = diag(Ry,... ,Rm) (putR ), Rk ("‘Tk 0

)7 O<T1S"'Srm-

Note that the matrix R is uniquely determined by X € &(n,C). To prove
the uniqueness of the form (2), we shall first show that if AX!A = R =
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BX'B, A,B € U(n) then detA = detB. To do this, it is sufficient to show
that if CR'C = R, C € U(n) then detC = 1. Now, let

R = diag(R;,... ,Rm)
=diag(a1J,... ,a1J, azd,... ,a3J, ..., aiJ,... ,a4J)
- SN 2, < ih

B E—
mi ma my

= diag(a1Jm,,02dmy, - - - yudm,;), a; #a; (i #7),

where J;, = diag(J,... ,J), and C be partitioned into 2 x 2 block matrices:
e ‘
k

C= (Cij)ISi,jSm’ Ci; € M(2,C).

Then, since CR'C = R, i.e., CR = RC, we have
Cinj = R,Uij for 1<i,7<m.
Therefore, noting that the conditions C;;R; = R;C;; (Rx # 0) imply

if R; # R; then Ci; =0,
if R, = R; then CijJ = J—C—'-ij,

we obtain
C = diag(C1,Cs,... ,C1), CikJm, = Jm,Cr, Cr € U(2my).
In particular,
Cx € Sp(m, C) NU(2my,) (pjtsp(mk) );

where Sp(m,C) = {A € M(2m,C)|AJ,'A = Jn,}. Besides, we have
detCy = %1 from CrJy,'Ck = Jn,. Furthermore, the sign of detCj is con-
stant, since, as is well known, the symplectic group Sp(my) is connected. Then
we obtain detC}, = 1, that is, detC = 1, since E € Sp(my) and detE = 1. Next,
for X € 6(n,C),n = 2m, suppose

tA__ s 0 C 0 T9 0 T'm < < <L
AXA—dlag((_c 0),(_7_2 0) "\ 0 ),0<|c|_r2_ < T,

0 d 0 s 0 sm
t : L 0 dl < <:-< Sm,
BX B—dlag(( / 0),( 2 0)’ ,( s 0)), <| |_.82_ =S

c,de€ C, A,B € SU(n). Then we have

(5" ) 4xa (7 ) = (5 5) (25 - (0. 5))
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(0" &) mxs (" g) =ans(( 5 '9) (2, 5) (5. 5))

Hence we get
Icl = ld' T =82,...,Tm = 8m,

since the above form is unique for X by Lemma 2. Then, by the result of the
first half, we obtain

de t((c”C' )A) de t((d/ldl E)B), that is, ¢ = d.

We-have thus completed the proof of the proposition.
We have known the following proposition.

PROPOSITION 4 ([1], [2], [3]). A mazimal compact subgroup (Er(ny))k of Eq(7y:

(E7(7))K = {Ot € E7(7) | (aP: aQ) = <P7 Q) }’

where the positive definite inner product (P, Q) is defined by (P, Q) = (P, vQ)
(V(X,Y,&n) = (vX,7Y,&,n)), is isomorphic to the group SU(8)/Z, by the
isomorphism induced from the homomorphism ¢ : SU(8) — (E7(n) K C Eq(r),

p(A)P = x"'(Ax(P)'A), Pewp.

By using Propositions 3 and 4, we can prove the following key lemma.

LEMMA 5. Any element P € P’ can be transformed to the following canonical
form by some a = p(A) € (Er¢))k, A € SU(8):

& 00 & 0 O
§4 <& <& <6,
P = 0 0 ’ 0 0 ’ y T ’
e (0 502 §3) (0 f(;) Eo) o 460° < (b2 + &) (8a — &).

Moreo'ver this form is uniquely determined by X independent of the choice of
a € (Ern))k-

Proof. For a given element P € PB', x(P) € &(8,C) is transformed to the
following form by some A € SU(8):

0 r —i:re
Rl m= (L0 ),

—T1 —Toéy
R,

Ax(P)A = 0

R3 ’ Ry = (-—-F’I‘ 0) , k= 2a3,4,
R4 k
VroZ+r12<r; <r3<ry, 7 €R,
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from [Proposition 3 Then we have

X" (Ax(P)*A)

TN +Tg—73 —7T4 0 0

1
2(5 0 7‘1—7‘2+7‘3—7‘4 0 ,
0 0 Ty —T9—T3+ T4

To 0 0 1 1
510 ro 0], —z(ri+ry+r3+74), ——To), (3.1)
2 2 2

0 0 To :

from straightforward calculation. Moreover, its form is uniquely determined by
P € ' under the condition

Vo2 +7m2<rp <r3 <74 (3.2)
Now, put
& 0 0 & 0 0
(the right-hand side of (3.1)) = ((O & O) , (0 o 0], &, —&)-
0 0 & 0 0 &
Then we havev
To = 2§0a
n= @G e —E), o= 26— 6= ba- £, (3.3)

1 o1 .
T3 = 5(—61 +& -8 —&), ra= 5(—51 — &2+ &5 — &)
Substituting (3.3) into [(3.2), we obtain the following inequalities
U< (L +86)E&—8&), L+E&+E6 <& <& <&, (3.4)

which are equivalent to [3.2). Further, noting that 0 < 4&% < (& + &)(& —
§1), L+ &+ & < & imply & — & < 0, we can easily obtain the inequalities
40° < (&2 + &) (& — &), & < & < & < & are equivalent to (3.4), ie., [3.2).

We have thus proved the lemma.
Consequently, we have the following theorem.

THEOREM 6. The orbit space B’ /SU(8) of‘,B with respect to SU(8) of which
the action is defined through ¢ :SU(8) —» (E7(7))K C Ey(ry, is given by

’ - 5| <& <&<& }
B/SUE = {66 botat B[ SSHSREE
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with the cross section o : P'/SU(8) — ',
(80,182,835, 4) = (diag(és, &2, &3), diag(éo, &0, o), &4, —&o).

By exchanging the parameters \; for & in such that \y = & (k =
0,1,2), 2X3 = §2+&3, 204 = & —&;, we can also express the orbit space B'/SU(8)
in the following form:

IsUE) = {(AO,Al,Az,As,m epMSshs 0}

Ao? < Aghg
with the cross section o : PB'/SU(8) — P,

o(X0; A1, Az, A3, Ag) = (diag(A1, Az, —A2 + 2X3), diag(Ao, Ao, Ao), A1 + 24, —Ao).
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