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Abstract. We consider semilinear eigenvalue problems for hemivariational in-
equalities at resonance. First we consider problems which are at resonance in a
higher eigenvalue A\, (with k > 1) and prove two multiplicity theorems asserting
the existence of at least k pairs of nontrivial solutions. Then we consider problems
which are resonant at the first eigenvalue A\; > 0. For such problems we prove the
existence of at least three nontrivial solutions. Our approach is variational and
is based on the nonsmooth critical point theory of Chang, for locally Lipschitz
functions.

1. Introduction

In a recent paper Goeleven-Motreanu-Panagiotopoulos studied a class
of eigenvalue problems for semilinear hemivariational inequalities and obtained
conditions for the existence of multiple solutions. Extensions to quasilinear hemi-
variational inqualities were established by Gasinski-Papageorgiou [13]. The res-
onant case was examined by Goeleven-Motreanu-Panagiotopoulos in (semi-
linear problems) and Gasiriski-Papageorgiou (quasilinear problems). In both
these papers, we find results on the existence of one solution, but no multiplicity
theorems. The purpose of this paper is to prove theorems on the existence of mul-
tiple solutions for semilinear hemivariational inequalities at resonance. This way
we extend the work of Goeleven-Motreanu-Panagiotopoulos to the resonant
case (in fact at the end of , the resonant case was mentioned as an open prob-
lem) and also complete the other work of Goeleven-Motreanu-Panagiotopoulos
, which deals with resonant hemivariational inequalities, but does not ad-
dress the question of multiple solutions. Hemivariational inequalities are a new
type of variational inequalities, where the convex subdifferential is replaced by
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the subdifferential in the sense of Clarke of a locally Lipschitz function. Such
inequalities are motivated by various problems in mechanics, where the lack of
convexity does not permit the use of the convex superpotential of Moreau .
Concrete applications to problems of theoretical mechanics and engineering can
be found in the book of Panagiotopoulos and Naniewicz-Panagiotopoulos
[20]. Also the problems considered here incorporate the case of elliptic boundary
value problems with discontinuous right hand side, which have been studied using
different methods, by several researchers. We refer to the works of Ambrosetti-
Badiale [2], Ambrosetti-Tuner [3], Chang [9], Massabo [18], Stuart [23] and the
references therein.

Our approach is variational and is based on the critical point theory for
nonsmooth locally Lipschitz functionals due to Chang [9]. For the convenience
of the reader in the next section we recall some definitions and facts from the
theory and also from the relevant parts of nonsmooth analysis.

2. Preliminaries

The nonsmooth critical point theory developed by Chang [9] is based on the
subdifferential theory for locally Lipschitz functionals due to Clarke [10]. Let
X be a Banach space and X* its topological dual. A function f : X +— R is
said to be locally Lipschitz, if for every z € X we can find a neighbourhood
U of = and a constant ky > 0, such that |f(y) — f(2)| < kuly — z| for every
y,z € U. It is well-known from convex analysis that a proper, convex and lower
semicontinuous function g : X — R = R U {+oo} is locally Lipschitz in the
interior of its effective domain domg = {z € X : g(z) < +o0}. In analogy with
the directional derivative of a convex function, for a locally Lipschitz function
f : X — R, we can define the generalized directional derivative of f at x in the
- direction h by

fO(z; h) ¥ Yim sup f=+ t’;) — /(=) .

T —x

t\. 0

It is easy to check that the function X > h +— f°(z;h) € R is sublinear and
continuous (in fact | f°(z; k)| < |h|, hence f°(z;-) is Lipschitz). So, by a corollary
to the Hahn-Banach theorem, f°(z;-) is the support function of a nonempty,
closed, convex and bounded (hence w*-compact) subset of X*, defined by

of(x) & {z* € X*: (z*,h) < f°(z,h) for all h € X},

(see Clarke [10], Proposition 2.1.2, p.27). The set O0f(z) is known as the sub-
differential of f at z. If f : X —— R is convex (so locally Lipschitz as well),
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then this subdifferential coincides with the subdifferential in the sense of convex
analysis and we have f%(z;-) = f'(z;-), where f'(z; -) denotes the directional
derivative of f at z. If f is strictly differentiable at z (in particular if f is con-
tinuously Gateaux differentiable at z), then 8f(z) = {f(} Iff,g: X —R
are locally Lipschitz functions, then for all z € X and all o € R, we have
O(f + 9)(z) C df(z) + dg(x) and d(af)(z) = adf(z). Finally, if f has a local
extremum at z € X, then 0 € 8f(z).

Now let f: X — R be a locally Lipschitz function on a Banach space
X. Extending the notion of a critical point theory for a smooth function to the
present nonsmooth setting, we say that z € X is a critical point of fif0 e df(x).
We say that f satisfies the “nonsmooth Palais-Smale condition” (nonsmooth
(PS)-condition), if for any sequence {Zp}n>1 € X such that |f(z,)] < M for

all n > 1 and m(z,) d inf{|z*|. : =* € 8f(zn)} — 0 as n - +o0, we can
extract a strongly converget subsequence. Since for f € C}(X), we have that
0f(z) = {f'(z)} for all z € X, so we see that when f is smooth, we recover
the classical (PS)-condition (see e.g. Ambrosetti [1] or Rabinowitz [22]). Using
this extension of the classical (PS)-condition, Chang was able to obtain a
deformation theorem, which led to variational minimax principles. As it was
done in the smooth case by Bartolo-Benci-Fortunato [6] (Theorem 1.3), we can
show using their proof (with minor modifications which involve Lemmas 3.1
up to 3.4 of Chang [9], instead of the corresponding smooth auxiliary results
employed by Bartolo-Benci-Fortunato [6]), that we can still have the deformation
theorem of Chang [9] (Theorem 3.1), under the following weaker compactness
condition: “From any sequence {zn}n>1 € X such that |R(z,)| < M for all
n 2 1 and (1+ |z,|)m(z,) — 0 as n — +o0o, we can extract a strongly
convergent subsequence”. We call this condition, the “nonsmooth C-condition”
(“C” standing for Cerami [8], who introduced it). Evidently the nonsmooth
(PS)-condition implies the nonsmooth C-condition.

The following theorem is due to Chang [9] and is a nonsmooth extension of
the well-known “mountain pass theorem” due to Ambrosetti-Rabinowitz [4].

- THEOREM 1. If X is a reflexive Banach space, R : X —— R is a locally
Lipschitz functional which satisfies the nonsmooth C-condition and for some r >
0 and y € X with |y| > r we have

max{R(0), R(y)} < "iﬁi R(z) = o,

then R has a nontrivial critical point z* € X with critical value c = R(z*) > a,
which is characterized by the Jollowing minimaz principle

= inf
c inf max R(~(7)),
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where T £ {y € €([0,1],X) : 7(0) =0, v(1) = y}-

A slightly more general version of Theorem 1 will be needed in section 4. For
this we need the following variation of the nonsmooth (PS)-condition. We say
that R satisfies the nonsmooth (PS)-condition at level ¢ € R, if every sequence
{zn}n>1 C X such that R(zn) — c and m(z,) — 0 as n — 400, has a
convergent subsequence. If this condition holds at every level ¢ € R, then we
recover the nonsmooth (PS)-condition introduced earlier.

THEOREM 2. If X is a reflezive Banach space, R: X — R is a locally
Lipschitz functional, there ezist v >0 and y € X with |y| > r such that

max{R(0), RW)} < inf R()

and

& .
-2 inf
¢= inf max R(v(7)),

where T & {y €c([0,1],X): v(0) =0, 4(1) = y} and R satisfies the nonsmooth
(PS)-condition at level c,
then

c¢> inf R(x)

l=l="
and there exists z* € X such that 0 € OR(z*) and R(z*) =c.

The next result on the existence of multiple critical points in the presence of
some kind of splitting, was first proved by Szulkin (see [24], Theorem 4.4) for
functions R = ®+1), where ® € C}(X) and ¢ : X +— R = RU{+oo} is proper,
convex and lower semicontinuous. By modifying the proof of Szulkin and using
the deformation theorem of Chang [9], Goeleven-Motreanu-Panagiotopoulos ex-
tended the result of Szulkin to the case of a locally Lipschitz functionals R (see
[14], Theorem 2.1). So we have the following theorem on the existence of multiple
nontrivial critical points.

THEOREM 3. If X is a reflexive Banach space and R: X — R is an even,
locally Lipschitz functional satisfying the nonsmooth C-condition and also
(i) R(0)=0;
(ii) there ezists a subspace Y C X of finite codimension and numbers 3,7 > 0
such that inf {R(z) : = € Y N8B.(0)} = B where B, = {zeX: |z| <r}
and 8B, = {r e X : |z|=r};
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(iii) there is a finite dimensional subspace V of X with dimV > codimY such
that R(y) — —o0, as |y| — +oo, fory eV,
then R has at least dim V — codimY pairs of nontrivial critical points.

Finally let us recall the Ekeland variational principle (compare De Figueiredo

[11], Hu-Papageorgiou [16], p.519 or Clarke [10], Chapter 7.5).

THEOREM 4. If (Y,d) is a complete metric space and R : Y — R = RU{+o0}
s lower semicontinuous and bounded from below,
then for any € > 0 there exists y. € Y such that

{ R(y.) < ;2{; R(y) +¢,

R(y.) < R(y)+ed(y,ve) VyeY, y# ..

Using the eigenfunction expansion theory for self-adjoint compact operators,
we know that (—A, H}(Z)) has a sequence of eigenvalues {Ax}r>1 such that
0 <A <A< A3 < ..., A\t — 400 as k — +oo and the corresponding
eigenfunctions {wy }x>1 form an ortonormal basis of L2(Z). In what follows, we

will denote Vj, & span{w;, ws,... ,wx} for k > 1.

3. Resonant problems at )\;

Let Z C RN (N > 2) be a bounded domain with a Cl-boundary I'. In this
section we study the following resonant at A\; hemivariational inequality:

(RHI}) —Az(z) — \ez(2) € 0j(2,2(2)) ae. on Z,
* zlr = 0.
Our hypotheses on the function j are the following:

H(j)1 j: Z xR+ R is an even locally Lipschitz integrand (which means that
foral( € R: Z > 2z +— j(z,{) € R is measurable and for almost all
2€Z: R>(+— j(z,¢) € R is even and locally Lipschitz), such that:

(i) for almost all z € Z, all ( € R and all v(2,¢) € 8j(z,¢), we have
lv(z,{)| < a1(z) + e1/¢| with a; € L*(Z) and ¢; > 0;
(i) 5(0) € L=(2);

(i) Ilcllm Elf —2‘7—(;2’—0 > 0 uniformly for almost all z € Z;
— 100
9
(iv) limsup _3%2,_(_) < —Ax uniformly for almost all z € Z;
¢—0

’U(Z, C)C "' 2j(za C)

(v) there exists 0 < pu < 2 such that limsup < 0 uni-
formly for almost all z € Z and all v(z,{) € 9j(z,(), with v(-,{) €

12(2).
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Now we can prove the following multiplicity result for (RH I}).

THEOREM 5. If hypotheses H(j), hold and k > 1,
then problem (RHI}) has at least k-pairs {£z;}*_, of nontrivial solutions.

Proof. Let Ry, : H3(Z) — R be the energy function defined by

Ru() & 31Vol - Flel} - [ je0(2) d

From theorem 2.7.5, p.83 of Clarke [10], we know that Ry is a locally Lipschitz
functional. \

Claim #1 R satisfies C-condition.

Let {zn}n>1 € H}(Z) be a sequence such that |Ry(z,)| < M; for n > 1 and
1+ |znl)m(z,) — 0 as n — +o0o. We have to produce a strongly convergent
subsequence. To this end let z}, € ORk(z,), for n > 1, be such that m(z,) =
|z} |« Its existence follows from the fact that OR(z,,) is weakly compact and the
norm functional is weakly lower semicontinuous (so we can apply the theorem of
Weierstrass and obtain such z},). Let A € L(H}(Z), H~1(Z)) be the self-adjoint,
monotone operator defined by

(Az,y) = / (Vz,Vy)rny dz  for all z,y € H}(Z).
z

Here by (-,-) we denote the duality brackets for the pair (H§(Z), H-1(Z)). For
every n > 1, we have z}, = Az, — A\pz, — u;,, with u}, € 0y(z,), where ¢ :
H}(Z) — R is defined by 9(z) & [z 3(z,2(2)) dz. It is well known (see e.g.
Clarke Theorem 2.7.3, p.80 or Aubin-Clarke [5] Theorem 2) that u;(z) €
0j(z,7n(2)) for almost all z € Z and that u}, € L%(Z) (see e.g. Chang [9],
Theorem 2.2). From the choice of the sequence {z,}n>1, we have —2Ry(z,) <
2M;, for n > 1, and so

~1Venlg + Melonl} + 2 [ j(z,2()) dz < 20, (1)
Because (1 + |z, ))|zkl« = (1 + |zn|)m(zn) — 0 as n — 400, so also
(x:nxﬂ) —0 asn — +°°’ (2)

and in particular the sequence {(z},, n) }n>1 is bounded. This implies that there
exists My > 0, such that

(A, Tn) — MelznlZ - /Z ul(2)zn(2) dz < My,



RESONANT HEMIVARIATIONAL INEQUALITIES 103

and so
1920l ~ Meleal} ~ [ un(z)en(z) dz < Mo 3)
Adding (1) and (3), we obtain
[, @i,2n(2)) — v (Dan(2)) dz < 201 + 24 ()

By virtue of hypothesis H(j); (v), we know that there exists c; > 0, such that
nmsup v(z, C)C - 2j(2, C)
I¢|—+o0 |¢[#

z € Z and all v(z,¢) € 8j(z,(¢), with v(-,{) € L3(Z). So we can find M3 =
M3(cz) > 0 such that for almost all z € Z, all ¢ such that |{| > M3 and all
v(z,¢) € 8j(z,(), we have

0(2,0¢ ~ 25(2,0) _ _
1B =

< —2¢y (with 0 < p < 2) uniformly for almost all

c <0,

and so

v(2,¢)¢ = 24(2,¢) £ —e2[¢]*.

On the other hand, from the Lebourg mean value theorem (see e.g. Clarke [10],
Theorem 2.3.7, p.41), for almost all z € Z and all { € R, we have

17(2,¢) — j(2,0)] < |v1(2,)II¢],
for some v; € 8j(z,&) with £ =t(, 0 <t < 1, and so using H(j); (i), we get
13(2, Q1 < 15(2,0)| + a1(2) [¢| + e [¢ 2. (5)
Then, for almost all z € Z and all ¢ such that || < M3, we have

l5(2, O < ess

where ¢3 £ |j(, 0)|eo(z) + Malas|Lo=(z) + c1 M3, and again from H(j); (i), we
have

|'U(Z, C)CI < ey,

where ¢4 £ Mjlay|Leo(z) + c1 M2 (see hypotheses H(j)1 (i) and H(j): (ii)).
Therefore, it follows that for almost all z € Z, all { € R and all v(z, () € 835(2,¢),
we have

v(z, Q)¢ ~ 25(2,¢) < —c2[¢|* + e,
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with c5 & c4 + 2c3 + coM}'. Using this inequality in (4), we obtain
[ calon@)l dz — cxf2] < 201 + M,
z

so, for all n > 1, we also have

|zalp < ce, (6)
’ 1
with c¢g : 4 2My +A;I2 +65|Z|) F. Let us choose ¢ such that 2 < ¢ < min
2
N
{2*,2-—#}, where
2N
+00 if N=2.

From (5) it follows, that for almost all z € Z and all ¢ € R, we have

J(z,¢) < er + cs(C9, (7)

with ¢7 £ (-, 0) lzeo(z) + la1lzeo(zy + c1 and cs £ oy lLeo(z) + c1- Let

& 2@-W iy,
CER NG
-2 #N=2

Using the interpolation inequality (see e.g. Brezis [7], Remarque 2, p.57, and
1
note that 0 < 9 < 1 is chosen such that — is the “convex combination” of M

1 1 - '
5o namely p = 1—“—0 + ;l*), inequality (6) and the Sobolev embedding
theorem, for n > 1, we have

and

Izalg < lzalp "’ 12al3 < g P lznl3- < colanl?, (8)
with some cg > 0. Then, as for all n > 1 we have Rx(z,) < M, so using also
(7) and (8), we have that

1 Ak .
51VanlE < Flonl} + [ i(n2n(e) dz+ My

Ak

< Flzal + 71 2] + cslznld + My

2
< M
- 2

9-2
12177 |znl} + cslznll + 7| Z| + My

< cwolznl + c11 < crocden|® + ca1,
q
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A - A

inequality, we obtain

IZI%2 +c7|Z|+ M;. Using the Poincaré

1

5IVzal3 < c12|VEn|3? + 11, 9
with some c;5 > 0 depending on A;. Let us calculate ¥q. In case N > 2, from
the choice of ¢, we have 2u + 2N > N q, so

2V (@-p(N=2) 2N (q-m(N-2) _,

,0q=2* q— K —
2*—p N-2 2N+2u—uN " N-2 Ng— Ny

IncaseN=2,weha#e2*=+ooandas,u<2<q,so
19q=(1—-§)q=q—-u<2.

Thus, we always have ¥g < 2. Therefore from (9), we infer that {r,}n>; C
H}(Z) is bounded. By passing to a subsequence if necessary and using compact-
ness of the embedding H}(Z) C L2(Z), we may assume that

T, — = weakly in H}(Z),
zn, — z in L%(2),

ZTn(2) — z(2) a.eon Z as n — +oo,

and |r,(2)| < h(z) a.e. on Z for all n > 1 with h € L?(Z) (see e.g. Brezis 71,
Theorem IV.9, p.58). Then we have Axz,, — Az in L?(Z). Also u € dy(z,),
for n > 1, and from Theorem 2.2 of Chang [9], we know that dy(z,) C L2(2).
Moreover, by virtue of hypothesis H (5)1 (1), we have that {uX}.>1 C L%(Z) is
bounded. Then, if by (-,-), we denote the inner product in L?(Z), we have

(Il::‘, Tn — x) = (Aznyxn - SL‘) - Al¢:(-7:'l'l.’ Tn — $)2 - (U;,(Bn - .’L‘)g
so, using also (2), we get

limsup(Az,,z, — z) < 0.
n—-+400

From the monotonicity of A € L(H}(Z), H~1(Z)), we have
(AZp,zn) — (Az,z) asn — 400,
S0

IVZal2 — |Vz],  asn— +oo.
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But we also have Vz,, — Vz, weakly in L2(Z,R") as n — +oco0. Thus, from
Kadeck-Klee property, we infer that Vz, — Vz in L2(Z,R") as n — +00. So
finally z,, — z in H}(Z) as n — +oo. This proves Claim #1.

Recall that Vi £ span{w;}¥_,, where {w;};>1 are the eigenfunctions corre-
sponding to the eigenvalues {)\;}i>0 of (—A, H}(Z)). So dim Vj, = k.

Claim #2 Ri(r) — —o0 as ||z|| — +o0 and z € V.
From hypothesis H(j); (iii) it follows that there exists c;3 > 0, such that

2j(z,
lim inf
I¢l=+00 (2

such that, for almost all z € Z and all ¢ such that || > M,, we have

> 4c;3, uniformly for almost all z € Z. So we can find My > 0

3(2,¢) > e13¢>.

On the other hand, from (5), we see that for almost all z € Z and all ¢ such that
|| < My, we have

3(z,¢) > —ci4,

with c14 & 15(-,0) |z (z) + MalailLe(z) + c1MZ. So for almost all z € Z and
all ¢ € R, we can write that

3(2,€) = e13/¢? — cis, (10)

with c15 L ¢14 + c13M2. For z € Vi, we have that |Vz|2 < M|z (see e.g.
Kesavan [17], Theorem 3.6.2, p.149). So using also [10), for z € V%, we have

Ak

1 .
Ri(@) = 519alf — il - [ 5(2.2(2) dz < —exalely + exs| 2]

Thus finally Rx(z) — —o0 as |z| — +o0o for z € Vi (recall that Vi is finite
dimensional, so all norms of V) are equivalent). This proves Claim #2.

Claim #38 There exists r > 0 such that inf{Rx(z) : =z € 8B,(0)} > 0.
By virtue of hypothesis H(j); (iv), we can find § > 0 such that for almost all

z € Z and all || < 8, we have j(z,() < (—)\k + M C . On the other hand,
form (5) we see that for almost all z € Z and all |{| > 6, we have

2
3(2,¢) < c16lC]”
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. . 1 -
with c16 = { [5(,0)lz(z) + Zlailree(z) + (larlL=(z) +01)52) 67" and 2 <
n < 2*. Thus finally for almost all z € Z and all ¢ € R, we have
) A 2
_](Z, C) < <_Ak + _21'> % + C]7IC'",
. A 6277 . 2 2
with ¢17 = ¢16 + [ A& — 3 ) 5 Using the fact that |Vz|3 > A;|z|3 for

all z € H}(Z) (see e.g. Kesavan [17], Theorem 3.6.2, p.149) and the Sobolev
embedding theorem, for all z € H}(Z), we have

Ru(@) = 519l - F1alf - [ iGs,2(2) ds

1 Ak Ak A
> 51Vel} - ol + (5 - ) lolf - curlaly

1 1
> ~|Vz|3 - errlzlp > ZIIV:CII%’ — curfz|”.
Since |Vz|; is an equivalent norm on H}(Z), we see that for all z € HY(Z), we
have

Ri(2) > ciglzl|? — crzlz|”
with some c13 > 0. Since 2 < 7, from the last inequality, we see that choosing

c1g\ "2 : : : .

O<r< o , we will have inf{Rx(z) : = € 8B,(0)} > 0. This proves
17

Claim #3.

Now since Ry is even and because of Claims #1, #2 and #3, we can apply
Theorem 3, with V = W, (dimVy = k) and Y = H}(Z) (codimY = 0) and
deduce that Ry has k pairs {£z;}* , of nontrivial critical points. It is easy
to see that these are solutions of (RHI;). So problem (RHI:) has k pairs of
nontrivial solutions. Q.E.D.

We can have another such a multiplicity result, under a new set of hypotheses
that involve a Landesman-Lazer type condition (see hypothesis H(j), (iv)). Our
new set of hypotheses on the integrand j is the following

H(j)2 j: Z x R+ R is an even locally Lipschitz integrand (see H(j)), such
that:

(i) for almost all z € Z, all ¢ € R and all v(2,¢) € 8j(z,¢), we have
[v(z,¢)| < a(z) with a € L®(2);
(ii) j(-,0) € L* and 9j(z,0) = {0} for almost all z € Z;
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(iii) there exist v_,v; : Z — R measurable functions, such that for al-
most all z € Z, we have v(z,() — v_(z) as { — —oo and v(z,() —
v4(2) as ¢ — 400, uniformly for all v(z,¢) € 8j(2,¢) with v(-,¢) €
L*(2);

(iv) / (v—(2)ug (2) — v4(2)uf (2)) dz # 0 for all eigenfunctions uy cor-

z
respondipg to the eigenvalue Ag;
2j(2,6)
2

(v) limsup < —\k uniformly for almost all z € Z.
¢—0

THEOREM 6. If hypotheses H(j)2 hold and k > 2,
then problem (RHI}) has at least k — 1 pairs {:i:a:i}fz_ll of nontrivial solutions.

Proof. As before let Ry : Hj(Z) — R Dbe the energy functional deﬁned.by

A
Ri(@) £ 219zl ~ ZE ol - ¥(2),

where v : H)(Z) o z —> /j(z,w(z)) dz € R. We know that Ry is locally
z
Lipschitz.

Claim #1 Ry, satisfies the nonsmooth (PS)-condition.

Let {z,}n>1 € H3(Z) be such that |Ri(z,)] < M; for all n > 1 and let
m(zn) — 0 as n — +oo. We will show that {Z,}.>1 € Hj(Z) is bounded.
Suppose this is not true. Then, by passing to a subsequencexif necessary, we may

n

assume that |z,| — +o00 as n — +oo. Let us set y, = Toud for n > 1. Then
n

|lyn| = 1 and so we may assume that
yn — y weakly in Hy(Z),
yn — y in L3(2),

yn(2) — y(z) a.eon Z as n — o0,

and |yn(z)] < h(2) a.e. on Z with h € L?(Z). We know that we can find
z}¥ € ORk(z,) such that |z}, |« = m(z,), for n > 1, and

* *
z, = ATy — ApTn — Uy,

where A € £ (H&(Z),H"I(Z)) is defined by (Az,y) = / (Vz,Vy)rw~ dz for all
z
z,y € H}(Z) and u}, € 8vy(z,). Dividing the last equality by ||, we obtain

* *

U xT
AYp — AklYn — —= = —=.. 11
Ly el P (1)
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Since u;, € 0Y¥(z,), we have u’(z) € 8j(z,z,(2)) for almost all z € Z (see
Clarke [10], Theorem 2.7.5, p.83) and u}, € L?(Z) (see Chang [9], Theorem 2.2).
From hypothesis H(j)2 (i), we get |uy|2 < |a]2, so the sequence {u};},>1 is also
bounded in H~1(Z). Also from the choice of the sequence {Z,}n>1, we have
that z;; — 0in H~1(Z) as n — +o00. Hence, by passing to the limit in [(11), as
n — 400, we obtain

Ay = )\kyv
and so

{ —-Az(z) — Mey(2) =0 ?‘-e' on Z (12)

ylr = 0.

Now, we will show that y # 0. Suppose this is not true. Then, using the Poincaré
inequality, we have

Ry(x, 1 A (2, Zn (2
S = 31l - Bl - [ 1820 g,

ENCE lzn|?
Ak 3(2,Zn(2))
Z c n 2_= n 2 _/ —_— dz
il = S lalf — [ T2
_ ey g2 3(2,2n(2))
=c 2 "yn"2 L "x'n, "2 dZ,
Ri(z,)

with some ¢; > 0. Note that — 0 as n — +o00. Also, as before, via

|zn|?
the Lebourg mean value theorem and using hypothesis H(j)2 (i), we can check

(2.2

that / '7(7“_”"(22)) dz — 0 as n — +oo0. But we also have |y,|3 — [y|2 =0
Z n

as n — +00. So, passing to the limit in last inequality, we obtain ¢; < 0 and we

reach a contradiction to the fact that ¢; > 0. Therefore y # 0 and this combined

with (12) implies that y is an eigenfunction corresponding to the eigenvalue .
We have

Zn, —> +ooa.e. on {y > 0} and

z, — —ooa.e. on {y < 0}.
From the choice of fhe sequence {T,},>1, for n > 1, we have
IRk(mn)l <M,
and, by passing to a subsequence if necessary, we have

(27, )| < enlul,
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for all u € H}(Z) with &, \, 0. Putting u = z, € H}(Z) in the last two
inequalities we have

~2My < [V} = Melonl} ~ 2 [ 5z,20(2)) dz < 204

—enlenl < —|Vzal2 + Melzal2 + /Z w(2)2n(2) dz < enleal.
Adding the last two inequalities, we obtain
_OM; — ezl < / (6% (2)20(2) — 2§(2, Tn(2))) dz < 2M; + Enlnl.
Z

Dividing by |z,|, we have

2 < [ (un@ata) - T < PR e (9)

lznl |zl

By virtue of hypothesis H(j)2 (iii) and (i), we have

up(2yn(z) — v4(2)y(2) a.e. on {y > 0},
un(2)yn(z) — v-(2)y(2) a.e. on {y < 0},
ur(2)yn(z) — O a.e. on {y = 0}.

Next, let N be the Lebesgue-null subset of Z; & {y # 0}, outside of which
we have z,, — +oo and u} — v4 as n — +o0o. Fix z € Z; \ N and assume
Tn(2) — 400, uk(z) — v4+(2) as n — +oo (the analysis of the other case is
similar). For a given 0 < £ < 1, via the Lebourg mean value theorem, we have

J(z,2q(2)) = J(z,ezn(2)) + vn(2)(1 — €)Tn(2),

where v,,(2) € 8j(2, w,(2)) and Wy, (2) = (1 —tn)Zn(2) +trezn(2), for 0 <t, <1
and n > 1. Note that for n > 1 large enough, we have z,(2) > 0 and so
Wn(2) = Tn(2) — ta(1 — €)zn(2) = zp(2) — (1 — €)zn(2) = €xn(z). Therefore
wn (z) — 400 as n — +o0 and so, by virtue of hypothesis H(j); (iii), we have
vn(2) — v4(2) as n — +o00. Let ng = no(e, z) > 1 be such that, for n > ng, we
have z,(z) > 0 and |v,(2) — v+(2)| < . So for n > ng, we have

2j(2,2a(2)) _ 2(2,62a(2)) | 20n(2)(1 — €)2n(2)
Tn(2) Tn(2) Zn(2) '
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From the Lebourg mean value theorem, we also get |j(2, ez, (2))| < cz+c3|zn(2)]
for some ¢, c3 >.0 (see hypotheses H(j)s (i) and (ii)). Since for n > ng we have
—€+v4(2) < vn(2) <e+vy(2) and z,(2) > 0, so we can write

—2c3 — 2c3ex,(2) N 2(—e+v4(2))(1 — €)zn(z) < 2§(z,zn(2))

Zn(2) Zn(2) T za(2)
< 2c3 + 2c36x,0(2) | 2(e +v4(2))(1 — &)z (2)
+ .
- Zn(2) Zn(2)

Since z,(z) — 400 asn — +o0o and 0 < € < 1 was arbitrary, we infer that

2j(z, zn(2))

() — 2v,(2) a.e. on {y > 0}.

As we already mentioned, in a similar way we can show that

2§ (2, 2n(2))

z.(2) — 2v_(2) a.e. on {y <0}.

Finally for almost all 2z € {y = 0} we have

‘2j(z, Zn(2)) 2¢o + c3lzn(2)]

|zl

— 0, asn— +oo.

|zal

Therefore, by passing to the limit in (13), we obtain

[ 4 @xa () +o-@xpean @)
=204 (2)X{y>0} (2) — 20— (2)X{y<0} (2)] ¥(2) dz = 0
SO
/Z (04 ()X (g0} (2) + v (D) xgp<0) (2)) ¥(2) dz = 0
and

| @@ + - (@) dz =0,

So we get a contradiction to hypothesis H(j); (iv). Thus {z,}n>1 is bounded
in H}(Z) and so we may assume that z, — z weakly in H}(Z) as n — +o0.
Using the Kadec-Klee property and proceeding as in the proof of Theorem 5 (see
Claim #1), we can have that z,, —s z in H}(Z). This proves Claim #1.

Claim #2 Ry (z) — —oo0 as |z| — +oo and = € Vi_;.
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For every z € Vi_1, we know that |[Vz|2 < A\gk—1]z|2 and so we have

1 A .
Ru(z) = 5IVal} - el - [ i(e,2() d

1 A
<3 (-2 )nv:cu§+c4uv:cuz+c5,
k—1

for some c4,c5 > 0 (see hypothesis H(j)2 (i)). )‘
k—

that Rx(z) — —oo as |z| — +o0o for x € Vi_;. This proves the Claim #2.

. Claim #38 There exists r > 0 such that inf{Rx(z) : =z € B.(0)} > 0.
This follows from hypoth&sls H(j)2 (v) as in the proof of Theorem 4 (see
Claim #3).

Since Ry is even, claims #1, #2 and #3 permit the use of with
V=V (dlmV k—1) and Y = H}(Z) (codimY = 0), which gives us k — 1
pairs {i:z:z of nontrivial critical points of R;. We can easily check that these
functions solve (RHI). Q.E.D.

4. Resonant problems at \;

In this section we consider semilinear hemivariational inequalities at reso-
nance at A; > 0. So we deal with the following problem

(RHT) { —Az(z) — Mz(2) € 8j(2,z(2)) a.e. on Z,
Z‘p = 0.
We will show that problem (RHI,) has at least three nontrivial solutions, when
we assume that the potential j(z,{) has a finite limit for almost all z € Z
as { —» +o00o. Such problems were called by Bartolo-Benci-Fortunato “strongly
resonant” (see [6]). Besides Bartolo-Benci-Fortunato, such “smooth” strongly
resonant problems were also studied by Thews and Ward [26]. In all these
papers we have existence but no multiplicity results.
Our hypotheses on j are the following

H(j)s j: Z xR+~ R is a locally Lipschitz integrand, such that:
(i) for almost all z € Z, all ( € R and all 'u(z ¢) € 9j(z,¢), we have
[v(z,¢)| < a(z) with a € L*(Z);
(i) 3,0) € L2(2) and [ j(2,0) dz 2 0;
z
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(iii) j(2,{) — j+(2) as ¢ — oo uniformly for almost all z € Z, j+ €
L*(Z), | j+(z) dz > 0 and v(z,{) — 0 as |¢| — 400, for almost
allz e Z :nd all v(z,¢) € 9j(2,¢), with v(-,¢) € L?(2);

(iv) there exist 9_ < 0 < ¥, such that / J(z,91w;(2)) dz > / Jj+(2) dz
(here w; is the first eigenfunction corfesponding to the first gigenvalue
A1 > 0; recall wy(z) > 0 for all z € Z), and there exists ¥ # 0, such
that /Zj(z,ﬂwl(z)) dz < 0;

Y
(v) there exists u > A; such that limsup 2% (2,0)

5 < —p uniformly for
¢—0 C

almost all z € Z;
(vi) for almost all z € Z and all ¢ € R, we have 25(z,¢) < (A2 — A1)¢2

THEOREM 7. If hypotheses H(j)s hold,
then problem (RHI,) has at least three nontrivial solutions.

Proof. We introduce the energy functional R; : H}(Z) — R defined by

Ra(@) = 31Val — 2ol ~ [ 5(2,2() d.

Claim #1 R; is bounded below.

By virtue of hypothesis H(j)3 (iii), we can find M; > 0 such that for almost
all z € Z, we have

7(2,¢) — j—(2)| < 1for all ¢ < —M; and

7(2,¢) = j4(2)| < 1for all ¢ > M.
Also from hypotheses H(j)3 (i) and (ii) and the Lebourg mean value theorem, for
almost all z € Z and all ¢ such that [¢| < M, we get that |7(2,¢)| < a1(2), where

a1 € L*(Z), namely a;(z) = Mia(2) + |(:,0)|Loo(z). Then for all z € H}(2),
we have ‘

1 A ,
Ri@) = gIVali - Fhel~ [ (e,a(e) ds

<M1}
RO N P
{z<-M} {z=>M1}
2 —laaly = lj+l = I3 — 2| 2]
(recall |Vz|3 > )\ |z|2 for all z € H3(Z)). This proves Claim #1.

Next consider the following splitting for H}(Z). Let H}(Z) = Ve, @ Yo,
with V,,, = span{w;} and Y,,, = V..
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Claim #2 Ri(v) >0 for all v € Y,,.
Let v € Y,,,. Using hypothesis H(j)3 (vi), we obtain

1 A . :
Bi(w) = Z|Vul} - —luvn% - /Z i(2,0(2)) dz
1 2
> 21Vol} — 2ol - 50 - Aol
2

1 A1
> 21Vol ~ 3210l - 21Vl + 2ol = o,

(recall that |[Vv|2 > Az||v|3 for all v € Y,,, ), which proves the Claim #2. »

Claim #38 R, satisfies the nonsmooth (PS)-condition at level ¢ # — / Jj+(2) dz.
‘ z
Let {z,}n>1 € H}(Z) be a sequence such that R;(z,) — c with ¢ #
— [ j+(2) dz and m(z,) — 0 as n — +oo. We will show that {r,}n>; is
z

bounded in H}(Z). Suppose that it is not true. Then, passing to a subsequence
if necessary, we may assume that |z,| — +o00asn — +oc0. Let us set y,, = Wgﬁ
for n > 1. By passing to a subsequence if necessary, we may assume that
yn — y  weakly in H}(Z),
yn —y  in L*(2),
yn(2) — y(2) a.eon Z as n — +oo,

and |yn(2)| < h(z) a.e. on Z with h € L2(Z). From the choice of the sequence
{zn}n>1, we know that there exists M, > 0, such that

|Ra(zn)| < Ms,
SO
A1 .
M < 2Vl - Dol - [ 3(a2n(a)) ds < M,
and so ;
M, A1 2 Jj(z,zn(2)) M,
= Vyn ynl _f —_——dz < —. (14
~foge < glVunlE - Sl 1zl ENE )

Using hypothesis H(j)3 (i) and the Lebourg mean value theorem, it follows that

/ J(Z",xxnuzz dz — 0 as n — +o00. Passing to the limit in (14) as n — +o0,
Z n

we obtain

lim [Vyal3 = Ailyl3, o (@15)

n—
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so from the weak lower semicontinuity of the norm functional, we get

2 < H ; 2 —_ 2-
IVy13 < liminf [Vyal3 = M yl3

But from the Rayleigh quotient, we know that |Vy|2 > A;|y|2, so finally, we
have that

IVyl3 = Myl (16)

Moreover, from [15) and (16), we get that |Vy,[, — IVyll2, so, using Kadec-
Klee property, we also have y, — y in H}(Z) as n — +00, and so y # 0. Thus,
from (16), we deduce that y = +w,. Without any loss of generality we may
assume that y = w; (the analysis is similar if y = —w,). Since w;(z) > 0 for all
z € Z, we have that z,(z) — +oo, for all z € Z, as n — +00. For n > 1, let
T, € OR,(z,) be such that m(z,) = |z*|.. We know that z;, = ATp—MZ,—u),

al
with A € L(Hj(Z), H™'(Z)) being defined by (Az,y) = / (Vz(2), Vy(2)) g dz
forz,y € H}(Z) and u? € 0vY(zr), where in this case 9 : H}(Z) — IR is defined
by ¥ (z) = / J(z,z(z)) dz. So u}(z) € 8j(z,zn(2)) a.e. on Z. In particular we
have that z

{zn, )| < enlv] Vv € HY(Z) with e, \ 0,
S0

< énlv|

l(Aa:,,,v) — A1 (zn,v) — /Z wr (2)(2) d

forallv € H}(Z), withe,, \, 0. Let z,, = towi+v, witht, € R (i.e. t,w; € V)
and v,, € VJ- =Y.,,. Taking v = v,,, we have

IV0nl2 = Agfon2 — /Z s (2)0a(2) dz < enlvnl,

S0
A * /
1~ ) IVl — eslunllool Vonlz < €| Vval2

for some c3 > 0 and with &/, \, 0 (recall that IVv|3 > X2|v|3 for all v € Yy,,,).
Note that by virtue of hypothesis H(j)3 (iii) and the fact that Zn(2z) — 400
as n — +oo for all z € Z, Wehaveun(z) — 0 for almost all z € Z as
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n — +o00. This, together with hypothesis H(j)3 (i) and the Lebesgue dominated
convergence theorem, implies that |u)|cc — 0 as n — +00. Thus we have

(1 _ 51) [Vonls < &,
A2

with €/, \, 0 (namely £ = €}, + c3|u’|o0). So we have that v, — 0 in H}(Z)
as n — +oo. Using this convergence, we see that for a given € > 0, we can find
ng = no(e) such that for n > ng we have

A

1 )
Ri(2n) = 51Vzal3 — Shfaal} - / §(2@a(2)) dz

A A
= S2IV0 + 2 1V0nl — el -
—/j(z,mn(z)) dz

Z
A1 .

Y / §(2,2a(2)) dz

<e- / §(2,2n(2)) dz,
VA

5 lvnlz

S\

so from Fatou lemma, we have

limsup R;(z,) <& -— / j+(2) dz. 17
z

n—-+400

On the other hand, since |Vz,|3 > A1|z,|3, we have

limsup Ry (z,) > —/ Jj+(2) dz. - (18)
z

n—-+400

From [(17), and since € > 0 was arbitrary, we infer that

limsup Ry (zn) = —/ J+(2) dz,
z

n—-+4oo

which is a contradiction to our assumption. This proves that the sequence
{zn}n>1 C H}(Z) is bounded. Then, as in the proof of Theorem 5, Claim
#1, via the Kadec-Klee property, we can show that z, — z in H}(Z), which
proves Claim #3.

Claim #4 There exist ryp > 0 such that inf{R;(z) : = € 8B,.(0)} > 0 for all
re (0, 'I‘o). ’ .
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From hypothesis H(j) (v), we can find § > 0 such that for almost all z € Z
and all ¢ such that |{| < 8, we have

i 0 < 5 (452 o

(recall that 2 > )\; and so _BtM > —u). On the other hand, from the

hypothesis H(j)3 (i) and the Lebourg mean value theorem, for almost all z € Z
and all ¢ such that |¢| > §, we obtain

3(2, Ol < s + e,

with some ¢4, c5 > 0. Thus for almost all z € Z and all ¢ € R, we have

30) < 5 (25528 ) 6P +colcl,

with cg = (cq + ¢56)6~7 + % (_E';—Al) 2% and2<9<2* = N_2]_V_ Using
this we obtain that

1 A .
Ri(2) = 5192l - el - [ i(2,2() ds

1 Al 1 um+ )\1
> 1Vel = Flali+ 5 (“52) lolg - colal?
1 A
4

(S]]

u 1
IVz(3 + lzl3 — colzl3 > 31Vzl3 — celzl3.

From the Sobolev embedding theorem, we have that H}(Z) is embedded contin-
uously in L%(Z). So using the Poincaré inequality, it follows that

Ry(z) 2 crlz|? - ca]z|?,

with some c7,cg > 0 and all z € H}(Z), and so

Cg _
Ri(z) > erlaf? (1 - B’ 2) .

1

7=z
Let 79 & (c_s) . Now, for r € (0,7¢), we have

\ ¢7

inf R;(z) > 0,
l=f=r

and this proves Claim #4.
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Now, let U* & {z € H(Z) : z = +tw; +v, t >0, v € Y, }. We will
show that R; attains its infimum on both open sets Ut and U~. To this end
let my & inf{Ry(z) : = € U*}. Since R; is locally Lipschitz, we have that
my = inf{R;(z): z € F}. Let

R Ri(z) ifzeUT,
+o00 otherwise.

Evidently R; is lower semicontinuous and bounded below (see Claim #1). Thus
we can apply the Ekeland variational principle (see Theorem 4) and obtain a
sequence {Z,}n>1 C U™ such that Ry(z,) \, my as n — +oo0 and

R (zn) < BY (4) + enllzn — v,
for all y € H}(Z), y # zn, with g, \, 0. So

Rl(xn) < Rl(y) + en"xn - y"

for all y € U+, y # z,. This means that z,, € Ut minimizes the functional
y — Rl(y)—}-en |ly— 2| on U+. Since U+ is open, we have 0 € R, (.’Z:n)-l-é‘nBl,

where B] £ & {z* € HY(Z) : |z*|+ < 1} (recall that 8| - | = Bj; see e.g. Hu-
Papageorgiou [16]). Hence, we can find z}, € R (z,) such that |z |. < &, for
n > 1. If follows that m(z,) < |z} [« < en — 0. Using hypothesis H(j)3 (iv),
we obtain

my = inf Ry(z) < Ry(Pywn) = —/ Jj(z, 94w (2)) dz < -—/ j+(2) d=.
‘ zeU+ z z

Since Ry(z,) — my # — / Jj+(z) dz, so from Claim #3, we infer that, by
z

passing to a subsequence if necessary, we may assume that z,, — y; in H}(Z2)
with y, € U+. We will show that y1 € UT. Let us assume that y; € U+ = Yu,-
Then from Claim #2, we have 0 < R;(y1). On the other hand, from hypotheses
H(j)3 (iv) and (iii), we get m4 < 0. But R;(y1) = m, so we get a contradiction.
Hence y; € UY, y; # 0 and 0 € OR;(y;). Similarly we obtain yo € U™, y2 # 0
such that 0 € OR;(y2). Clearly y;1 # y2.

Finally from Claim #4, we know that we can find 0 < r < min{ro, |9|}
(compare hypothesis H(j)3 (iv)) such that inf{R;(z) : = € 8B,.(0)} > 0. From
hypothesis H(j)3 (iv), we also have that max{R;(0), R;(Yw;)} < 0. These facts
combined with Claim #3, permit the use of Theorem 2, with y = w (note that ¢ #

/ j+(2) dz, because ¢ = :Ielf‘fréllgzi] Ri(v(1)) > R1(0) =0 > —/ j+(2) dz),
which gives us y3 € H}(Z) such that 0 € dR;(y3) and

Ri(ys) =c> — /Z je(2) dz > ma,
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so clearly ys # 0 and y3 # y1, ya # 2. Finally we can easily check that y;, y2, y3
satisfy (RHI,) and so are three different, nontrivial solutions. Q.E.D.

REMARK 8. It will be interesting to have such mutliplicity result for quasilin-
ear hemivariational inequalities, like the one studied by Gasinski-Papageorgiou

12].
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