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Abstract. In this paper, we study matricially Riesz normed spaces, approxi-
mate matrix order unit spaces, matrix order unit spaces and matrix base normed
spaces and develop the duality theory for these spaces generalising the duality ‘
theory of Davies, Edwards, Ellis and Ng for (real) ordered Banach spaces.

Introduction

Davies [4], Edwards [5], Ellis [6] and N g [10] have successfully developed a
duality theofy for (real) ordered Banach spaces, where they studied: order unit
normed spaces, base normed spaces, approximate order unit normed spaces and
more generally Riesz normed spaces and proved that the dual of an order unit
normed space is a base normed space; the dual of a base normed space is an
order unit normed space; the dual of an approximate order unit normed space
is a based normed space and finally the dual of a Riesz normed space is again a
Riesz normed space.

We introduced matrix ordered version of abovementioned spaces viz, ma-
tricially Riesz normed spaces (mRn spaces), approximate matrix order spaces
(amou spaces), matrix order unit spaces (mou spaces) and matrix base normed
spaces (mbn spaces) in [8] and @] In this paper, we generalise the duality theory
of (real) ordered Banach spaces to these spaces in the matrix ordered context.
We prove that the matrix dual of an mRn space is again an mRn space; that of
an amou space is an mbn space; that of an mbn space is an mou space. Further
more, we show that the reverse process also holds for dual spaces in which the
cones, defining the matrix order, are norm closed. We call this structure “the
A-B-O structure”.

Section I. (Prerequisite)

1.1. Given a complex vector space V, the space M, (V), of n x n matrices
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2 A. K. KARN AND R. VASUDEVAN

with entries from V, is a complex vector space in the entry-wise operations. For
[@ij] € M, [Vij] € Mp(V) and [B;;] € My m, we define

[a,-j][v,-j][ﬂ.;,-] = Z aikvklﬂlj € M (V).

k,l=1

For v € M,(V) and w € M,,(V), we write,

v O
A matrix norm on V is a sequence {|| - ||}, where || - ||, is a norm on M, (V),

for all n € N. A matricially normed space (mn space) is a complex vector
space V, together with a matrix norm {|| - ||»}, which satisfies the following
properties:

L [[veol ... =[], for all ve Mn(V), 0 € Mn(V),
IL ||lews||,, < |le|l||lv]l,.||8]], for all a,8 € Mp, and v € Mn(V).

Now consider the following LP-conditions:
L7 : v w|y, ., =[] + [|wll7, 1 < p <o),
L= :|vewl|,,,, =max{|v|,,|w],}; forall v € Ma(V), w € Mn(V),n,m €
N.

An LP-mn space (1 < p < o0) is an mn space (V, {|| - |ln}) which satisfies
the LP-condition [13].

1.2. Given a *-vector space V, M, (V) become a x-vector, if we define
[vi;]* = [v}], for all [v;;] € Mu(V). In this case Mp(V)sa = {u e M, (V)
u = u*} is a real vector space for all n € N.

A matrix ordered space is a x-vector space V together with a cone M,,(V)*
in M,(V)4qa for every n € N and with the following property: If v € M,(V)*
and v € My, ;,, then v*vy = M, (V)*. We shall denote it by (V, {Mn(V)*}) [4].

1.8. Given a complex vector space V and a dual pair (V,V?), we define,
n

for each n € N, and [v;;] € Ma(V), [fij) € Ma(V9), ([vij), [fis]) = D (vij, fi)
Li

[3]. Then (M,(V), Mn(V?)) is a dual pair for every n € N. We shall call this

duality to be the matrix duality of (V V9).

In particular, if (V, {|| - |»}) is an mn space and if (V’, || - ||) is the Banach
dual of (V,| - ||1), then giving M, (V') the dual norm || - ||7, of (Mn,(V),|| - |In)
for all n € N we get that (V’, {||-||,}) is also an mn space [13]. If, in addition,
(Vi {ll - ln}) satisfies LP-condition (1 < p < co) then (V’, {|| - |I,}) satisfies L9-
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condition (% + —é— = 1) [13]. (V',{ll - lI}) will be called the matrix Banach

dual of (V, {||- |ln})-

1.4. Let us say, for a x-vector space V and a dual pair (V,V9), that V¢ is
self adjoint if f* € V¢ whenever f € V¢ [ f*(w) = Tv*)-] Now assume that
(V,{M,(V)*}) is a matrix ordered space then (V4, {M,(V%)*}) is also a matrix
ordered space in the matrix duality, if we define for allm € N, M,,(V®)* = {f €
M,(V% e : f(v) >0 for all v € M, (V)*}. (V4,{M,(V3*}) will be called a
matrix ordered dual of (V, {M,(V)*}) [3].

In particular, the algebraic matrix dual of a matrix ordered space is a matrix
ordered space.

1.5. Let (V, {||-[ln}) be a norm complete mn space and assume that (V, ||-||1)
has a predual (Vi, ||-||«). Since (V;||-||1) is also the Banach dual of the completion
of (Vi, ||-]|«), we may assume, if necessary, that (V,, ||-||«) is a Banach space. Now
identifying V, in V', we have || ||, = || - ||{|v.. Thus V, together with the matrix
norm {||-||+,» } becomes a (norm complete) mn space where ||+ ||«,n = || |I%| .. (v.)-
(V,{ll - ll+,n}) will be called a matrix (Banach) predual of (V,{|| - |l»}). In
this case, (V, {||-|l»}) is called a matrix dual Banach space. In these notions,
we conclude that if (V,{|| - ||l»}) is a matrix dual LP-matricially Banach space,
(1 £ p £ o). Then its matrix predual is an LI-(norm complete) mn space

(% + % = 1). Next assume that (V,{|| - |lm}) is a matrix dual Banach space -

with a matrix predual (Vi, {|| - [l«,n}), that {M,(V)*} is a matrix order on V
and that x is an isometry on (M, (V),|| - ||») for every n € N. Further, assume
that V. is a self adjoint subspace when identified in V’. Then V, is a matrix
ordered space if we define M,,(V,)* = M, (V)T N M, (V,)ss for allmn € N. Also
then ||f*”*,n = ||f||*’11 for all f € M,(V,) and n € N. The triple (Vi, {|| - ls,n }-
{Mn(V,.)+}) will be called a matrix ordered Banach predual (or simply a
matrix Banach predual, if there is no confusion) of (V, {|| - [|ln}, {Ma(V)*}).
Note that M,,(V,)* is norm closed (or equivalently, weakly closed) and that its
dual cone in M, (V),, is M, (V)* for all n € N.

1.6. In a matrix ordered space (V, {M,(V)*}) we define the following no-
tions.
(a) VT is called proper if V* N (=V1) = {0}.
(b) VT is called generating if for any v € V there are u;,us € V* such that

uy v +
[v.. uZ]GMz(V) .
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Remarks. (i) If V't is proper or generating, then so is M,(V)*, for all
n € N [8].

(if) If V* is generating, we say that (V,{M,(V)*}) is a positively gener-
ated matrix ordered space.

1.7. Let V be positively generated. A seminorm ||| on V is called a Riesz
seminorm, if for each v € V

VI = int {max(lfu . fual}  wn,02 € v [ 352 | € Mo},

It follows that

"V“ = inf{||u1||l/2”u2”1/2 tu,up € VY, [:: :2] € Mz(V)}.

In fact, if Iiui Y ] € Mz(V)+, then [/\lil _1: :| € My(V)* forall A > 0 so
vt ug v* AT up
that
i ' - / /
inf {max{| M ], A uall }} = flua |2 lua]| 2.
Moreover,

/ / 1
a1l < 5 (| + Jluzll) < max{llulll, lluzll}-

Thus, we have,

. 1 . U1 v
& =mf{§(||ul|| Flluaf]) urue e v [0 0 ] € Mz(w}_

Next, it follows that for v = v*,
lo]| = iné{ Jul| :w € V* and ut v e v*+}.
In general, [[o*]| = [[o] and [Jus| < uz]| whenever 0 < us < ua.
1.8. Let AC V and put
S(A) = {v ev: [‘;1 ;’2] € My(V)* for some uy,up € A+}.
-If AT # ¢, then S(A) is circled and self-adjoint. If, in addition, A is convex,

then S(A) is also convex. We say, A is solid, if A = S(A). In this terminology,
we have the following characterization of Riesz seminorms.




MATRIX DUALITY FOR MATRIX ORDERED SPACES 5

1.9. Lemma. Let (V,{M,(V)*}) be a matriz ordered space and || - || a
seminorm on V. Then V% is generating and || - || is a Riesz seminorm if and
only if the open unit ball of (V,|| - ||) is solid [8].

1.10. An (L?-) matricially Riesz normed space ((L?-) mRn space)
(1 £ p < 00) is an (LP-) mn space (V,{|| - [|n}) together with a matrix order
{M,.(V)*} such that (V,{M,(V)*}) is positively generated and {|| - [|.} is a
matrix Riesz norm on V.

1.11. Now we consider some special types of Riesz norms. Let (V, {M,(V)*})
be a matrix ordered space. An increasing net {ej}xep in Vf is called an ap-

proximate order unit for V if given v € V there are A € D and a > 0 such

that [a‘? v ] € My(V)*.
. v ae),

For each v € V, we define

Iv||* = inf{a >0: [a‘i’\ v ] € My(V)™ for some \ € D}.
v QaeE)

Then || ||* is a Riesz semi norm on V [8]. It is called the approximate order unit

semi norm on V determined by {ex}. In the following lemma we characterized

approximate order unit norms among Riesz norms.

1.12. Lemma. Let(V,{M,(V)*}) be a matriz ordered space and suppose
Il - || be a Riesz norm on V. Then || - || is an approrimate order unit norm on
V if and only if the positive part of Ut the open unit ball of (V,||-||) is directed
upwards. In this case U' is an approzimate order for V [8].

An approximate matrix order unit space (amou space) is an L®-mRn space
(ViA{ll lIln}, {Ma(V)*}) in which || ||» is an approximate order unit norm on
M, (V) for everym € N.

1.13. Let (V,{M,(V)*}) be a matrix ordered space. An element e € V+
is called an order unit for V if for every v € V there is @ > 0 such that

Qe) v +
[v,. ae]GMz(V)-

Thus an order unit is a special kind of approximate order unit, so all the
properties of approximate order units also hold for order units. For v € V,

”v”o = inf{a >0: [zf :e] € Mz(V)+}

defines a Riesz semi norm on V called the order unit semi norm on V deter-
mined by e. We have the following charactrization for an order unit norm.
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1.14. Lemma. Let(V,{M,(V)*}) be a matriz ordered space and suppose
|| - || s a Riesz norm on V. Then || - || is an order unit norm on V if and only
if the positive part of the open unit ball of (V,|| - ||) is dominated by a positive
element e € V¥ with ||e|| <1 [9].

1.15. A matrix order unit space (mou space) is an L*°-mRn space
Vo {ll lIn}, {Mn(V)*}) in which || || is an order unit norms on M, (V) for all
ne N.

Remark. For the sake of characterization, our definition of an mou space
looks different from that of an mou space given by Choi and Effros in [3]. How-
ever, in a subsequent paper we show that the two defintions are equivalent in a
certain sense.

1.16. Now we discuss another type of mRn space. Let (V,{M,(V)*}) be
a matrix ordered space. A convex subset B of V*\{0} is called a base for V+
if B has the following property: if u € V*\{0} then there are unique b € B
and a > 0 such that u = ab. Uniqueness of a and convexity of B determines a
strictly positive linear functional f on V (a linear functional on V will be called
strictly positive if f* = f, and f(V*+\{0}) = (0,00).)

It follows from that the family of bases of VV* and the set of strictly
positive linear functionals are in a correspondence, which is one to one if V is
positively generated.

1.17. Let V be positively generated and assume that B is a base for V*.
Let f be the corresponding strictly positive linear functional on V. For v € V|,
define

||v||b =inf{a >0:v € aS(B)}
ab v

=inf{a>0:[ .
v* ac

] € My(V)* for some b,c € B}

(751 v

= int{max{f(ur), f(ua)} s ur,a € V[ 2 ] e dav))

Then || - ||® is a Riesz seminorm on V called the base seminorm on V determined

by the base B. Also for u € V*, we have “u“b = f(u). In fact, [Z Z] €
My(V)* implies that ||'u||b < f(u). If ||lu|| £ f(u), we can find uy,up € V+
with [1;1 “le M3(V)™* such that Hu”b < max{f(u1), f(u2)} < f(u). Now
up +ug — 2u € V¥t so that 2f(u) < f(uy) + f(uz) < 2max{f(u1), f(u2)}, a
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contradiction. Thus “u”b = f(u). In particular, we have that || - ||* is additive

on V* and “u”b # 0 if u € V*\{0}. These properties of base seminorms
characterize them among Riesz seminorms.

1.18. Lemma. Let (V, {Mn(V)+ }) be a positively generated matriz or-
dered space and suppose that || -|| is a Riesz seminorm on V. Then ||-|| is a base
seminorm if and only if || - || 7s additive on V* and ||u|| # 0 if u € V*+\{0}.

1.19. A matricially base normed space (mbn space) is an L!-mRn
space (V, {||*|ln}, {Mn(V)*}) in which || - ||, is a base norm on M, (V) for every
ne N [9].

We also require the following result .

1.20. Proposition. Let (V,{M,(V)*}) be a positively generated matric
ordered space and suppose that || - || is a base norm on V. Let B be the corre-
sponding base of V*. If U and ¥ denote the open and the closed unit balls of
(Vi - II), respectively, then

Usa Cco(BU—B) C Zg,.
In particular, if B is closed, then
co(BU —B) = X,,.

Proof. Let v € Uy, then thereis b € Bsuchthat b+v e V. Ifv =u
or v = —u, then v € co(BU —B). Assume, therefore, that v # u, v'# —u.
Put b; = ||u + v||_1(u + v), by = ||u + v”_l(u — v). then b;,bo € B. Also
||u + v” + ||u - v|| = ||2u|| = 2, so that

1 1
V= §||u +vl|by - §“u —v||b2 € co(BU —B).
Next, let by,b2 € B, a € [0,1]. Then
”ab1 —(1 —a)b2“ <a+(1l—-a)=1

so that ab; — (1 — a)by € T,,. Hence, Uy, C co(BU—-B) C Z,,. W

Section II.

2.1. Let (V,V7) be a real ordered vector space (i.e. a real vector space V/,
together with a cone V). :
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‘(a)l A functional p : V — R is called a sublinear functional, if p(v + w) <
p(v) + p(w), and p(av) = ap(v), whenever v,w € V, a > 0.
(b) A functional q: V — R is called superlinear if —q is sublinear.

The following theorem is obtained from [7].

2.2. Theorem. Let (V,V*) be a real ordered vector space and let U be a
convez, absorbent subset of V. Suppose that f is a (real) linear functional on V
such that for some a > 0, sup{f(z) :utz € V*} < a forallu € U*. Then

there exists g € V* such that —g < f < g and sup g(z) < a.
zelU

2.3. Lemma. Let (V,{M,(V)*}) be a matric ordered space and let A be
a solid, convez, absorbent subset of V. Then A° is solid and convez.

Proof. Clearly, A° is self-adjoint, circled and convex. We show that A° is
solid. ’ |
~Let f € S(A®). Then there exist g1, g2 € (A°)* such that

?1 ;] € Mpy(V*)*. If v € A = S(A), there are u;,us € At such that'
| 2 _

Uy v

I ] € M,(V)*. Choose 6 € [0,2n] such that |f(v)| = —e* f(v). Then
| 2 \

*

u;
e—iO,U*

e*%] € My(V)* , so that
U2

. i :
° S<[J€i gj;] ’ [e}:ol”* eu2”]> = g1(w1) + g2(u2) — 2|f(v)|.

Thus 2|f(v)| < g1(u1) + g2(u2) <2 and f € A°. |
Conversely, let f € A%, If f = 0, then f € S(A%). Assume that f # 0. Let
sup |f(v)| = a < 1. Consider the real ordered vector space (Ma(V)sq, Ma(V)T)
vEA
(75} v .
and put U = {[v* " ] tuy, U € Aga,v € A}. Then U is a convex, absorbent
2

subset of M3(V),a such that S(U)se C U. Put f = [ 0 f] € My(V*)sa,

0
so that sup f(u) = 2a. Applying 2.2, there exists § € My(V*),, such that
uelU
- = _ _ a1 h g1 hif]
—-9<f<gandsupg(u) <2a. Letg= |, . Then | , . €
§=/=3 uegg( ) g [h 92] [h = Y

M,(V*)* so that

o fl_1] @ h+f] 1 0 —h4+f .
[f* 92]—2[h*+f* 92 ]+2[_h*+f* _g2. :IEMZ(V) .
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Uy

*

Given v € A, there are uj,up € A1 such that [ ; ] € My(V)*. Thus, as
2

above, we have

2| f(v)| < g1(u1) + ga(u2)
< sup gi(u1) + sup 92(’“2)+25Up|h(v)|

ulGAaa u2€Aaa
= sup g(u) < 2a.
uelU

Since sup f(v) = 2a, we conclude that h = 0, and that
vEA

sup lgr(v)| = sup gk(u) = sup gr(u) = ax (say)

u€A,, u€A

. a f N .Y f :

k = 1,2 with a;j+az = 2a. Now | 7, € Ma(V*)* im hes[ . v ]E
1 2 [f gz] 2(V*) p f A 1g2

M,(V*)* for all A > 0. We may calculate, as above, that 2a < Aoy + A~ lag for

all A > 0. Thusal+az—-2cz<2a1/2 1/2<a1+azandal—a2—a<1

Hence g1, g2 € (A%t so that f € S(A?). Therefore, A is solid. Il

2.4. Theorem. Let (V,{M,(V)*}) be a positively generated matriz or-
dered space and let ||-|| be a Riesz norm on V. Consider the matriz Banach dual
(V',{M,(V")*}). Then the closed unit ball of (V',|| - ||') is solid. In particular,
Il - I is a Riesz norm on V'.

Proof. Let U be the open unit ball of (V| - ||) so that U is solid, convex
and absorbent in V. Thus, by 2.3, £ = UP° is also solid, where ¥’ denotes
the closed unit ball of (V,]|| - ||'). Let U’ be the open unit ball of (V',} - ||').
We show that U’ is solid. f € U, f = 0 implies f € S(U’). Let f € U’,
0 < ”f”' = a < 1. Then a”!f € ¥'. Since ¥’ is solid, there are g;,95 €

’ -1
¥'* such that [a‘gllf* ag,f] € My(V')*. Put g; = ag},92 = agy. Then
2
91,92 € U't and [91* /
f* g
f € S(U’). Then there are g;,92 € U’t such that [f* ;] € Ma(V)*. Put
2

€ My(V)*. Thus f € S(U’). Conversely, let

— a~lgy a7lf + -
o = max{|lgs]. |2l]} < 1. Then [a_l g a_lgz] € My(V')* (assuming

a # 0) and max{”a‘lgl”',||a"192||'} = 1. Thus a~lg;,a71g; € &' and
a~lf € S(¥') =X'. Hence f € U’ and U’ is solid.

2.5. Theorem. Let (V,{M,(V*)*}) be a positively generated matriz or-
dered space, || - || a Riesz norm on V and assume that (V4,| - ||+) is a predual of
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(Vi Il -1I) such that V. is a self-adjoint subspace of V'. If || - || is a Riesz norm on
V and if V* is norm-closed, then || - ||+ is also a Riesz norm on V,.

Proof. Consider (V|| - ||') and (V',{M,(V’)*}). Then, by 2.4, ||- |’ is a
Riesz norm on V. Identifying (V,, || - |l«) in (V',]| - ||'), we have || - ||’ = || - ||» on
V.. Let U, be the open unit ball of (V,,]| - ||l«). We show that U, is solid.

Let f € S(U,). Then [;1 gf] € Ma(Vi)T € My(V')*, for some g;,g9, € UT.
2

Since || - || is a Riesz norm on V’, we have, ||f||, = ”f”' < max{”gl”', ”92”,}

= max{||gi||,,||92[|,} < 1. Thus S(U.) c U.. Conversely, let f, € U.. Put

|| fol|, = @ = 1—¢, for some ¢ > 0. We may assume that f, # 0. Consider the real

ordered vector space (Mz(Vi)ea, M2(Vi)™) with the dual (My(V)sq, Ma(V)*).

2] = llrll. +lloz]l +2] 1. Then
Il - /I3 is *-norm on Mj3(V, )., and its dual norm |- ll2 on Ma(V)sq is given by

[ 2], = el el 3

Let A be the closed unit ball of (M2(V )44, | - |l2). Then A is circled, convex

and absorbent. We show that S(A),, C A. Let [ :ji ;} } € S(A)sq- Then
2

For f € Vi, 91,92 € (Vi)sa, define

!/ ,UI

/ /
there is [u,i , ] € A% such that [u,i v’ ] + [u: v ] € My(V)*. It fol-
v g v Uz

Uy v

uj v + Wy v] G [uitw v+
lows that l:'U* ’U,'ZJEMZ(V) -InfaCtZ [v* ul T2y gy ub + uy +

1 0 ui—u v —vw 1 0
o S [mzm L2015 5] ous ol < max(lual. gl <.

Also, uy +up € V7 so that |jug|| < ||ui|| < 1, k = 1,2. Hence [Zi : J € A.
2
Next, define ¢, : My(V)* — R by

! !
q. <[:}Li ;;:I) = sup < [:}L,,l, Z,J , [j%’ fé)]>, where supremum is taken over

up v . up v ujp v +
l:v,* u’z] € M3(V),, with I:'U* Uz] + [’U’* u'2 € My(V)

/ /

v v

for every [zl :] € My(V)*+. If [zl u] € A* and [:}‘,1 . ] € Mp(V),q is
2 2 2
/ /

/ /
such that [ui v ] + [u,i U, J € My(V)*. Then [u,i U, ] € S(A)se C A.
v ub v

U2 v
Thus

<[0 ,;o}’[u,’l* U:]>=2‘Refo(v)|S2||f0“=20,

fo v Uy
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so that g, ([u: v ]) < 2a for every [ui v ] € A*. Hence g, is well
v U v U2
defined. Also,

u; v . u; v up v + >
q*<a[v* W])-aq*([v* uz]) for all [v* uz]eMz(V) and a > 0.

/

/
We show that g, is super additive. Let u: v ] , [u,i v, ] € My(V)* and
V¢ oug v u
/

/
€ > 0. Then there are [a:: y ] , [x} y’ ] € M3(V)sq such that
y T2 y I

u; v 1 Y o v , .
|:'U* Uz] + [y* 372] € MZ(V)+’ |:’Ull u/2:| + |:y,,1, 2,2] € M2(V)+,
U 0 fo T, Y
(2 s[5 5[ 2o
u’ 'U' 0 fo .’E’ y’
q*<[v,i U'z]><<[fa 0]’[1/1 1"2]>+E/2'

o[ o]+ [ B = (s S}l 23]
v* ug v uy ) TN\IR 0]y Y T2+
(s o) )+ <]
¢ 0]'[y z2] f3 0 |
wo ([ ) e (I8 %)
"\ |v* ugp| *\ v uh '

It follows that g, is a super linear functional on My(V)*. Next, we show
that g, is weak*-upper semi continuous on A*. Assume to the contrary and let

uy *

. u} o U v
and there is k > 0 such that q. B >k > q. v u for every
2 2

ut ]y tin AT ing to | °1 Y | in the weak*-topol
> w ], e a net in A* converging to | up | 10 the weak®-topology

2 PSP
X. Then, for each A\, we can find [ 3 A] € M3(V)se with [ - )‘] +
Yy ,'122 v Uy

A A A LA
[z,\l* ié] € M3(V)™* such that <[ 0 fo] , [x)}* y,\]> > k. Now, for each

Y fo 0 y Z2
z ¥ . .
A, [y’\* :1:"] € S(A)sa C A and A is weak*-compact, so that, on passing to
2
T T Y .
a subnet, we may assume that [ e A] — [ . ] (weak*) in A. Thus
Yy ‘) Yy T2

A A A
[v* u2] + [y* xz] = weak — lim ([v’\* u%] + [y’\* x%]) € My(V)
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(being a dual cone, Ma(V)* is weak*-closed). Hence, by definition,
up v 0 fo] [331 y ]>
* * Z * ) *
! ([U “2]> <[fo 0 y z2

A A
i (RS

which contradicts the initial assumption. Hence g~ must be weak*-upper semi
continuous on A*. Consider

Q= {[:: :2] € My(V)t : g, ([3: L]) 22a+e}.

Then @ is convex and weak*-closed. Also A is convex and weak*-compact
(Banach-Alaoglu Theorem) with AN Q = 0. Hence, by a geometric form of
Hahn-Banach Theorem, we can find a weak*-continuous linear functional on

M3(V)sq (i.e. an element [f* gf] € M3(V.)sa) such that
2

gi / ,ui v <2a+e, if u: Ylea
f 92 v U2 VY ug

g f u v . Uu v
<[f1 gz],[vi u2]>>2a+s, if [v}, uz]eQ.
owm ([ )2 2]}z (3 220
Lf* 9 V¢ oug vt oup

ux v +
for every [v* Uy ] € Ma(V)*.
u; v upy v ur v
S +
Clearly, g, ([v D > 0, for all [v* g } € My(V)*. If qu ([U Uz]) >

Uz

-1
ovtetsing |1 2 | =aara ([ 2 ]) [ 0],
€

we have,

and

v
Thus [U* Y € @ so that <[ , [ul v] > < 2a + €. Thefefore,
13

|
(Fal [ u)) <o

E |
. [u) v
Next, let q. = 0. Fix o € Q. Then for any n € N,
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/ J
n [ul v :l + [u,}, t, ] € Q, for g, is super additive. Thus,
ug ANRTA

/ !
(18 LJolt 2]l g])smeemm
f* 9 VT U2 v Uy

(o 0 2D+ 2o 4 5])-eara)zo

for all n € N. Thus, <[91 f ] , [ul v ]> > 0. Hence, our claim is proved.

*

* 9 vt oug
This shows that [?i gf] € My(V)*. Also, by the definition of g., we have
2
) f] [0 fo] [91 f]
. + .. € M,(V,)*. We can show, as before, that |, €
5 L]l B emon | ol
M;(V.,)*. Now, let v € V with ||'u|| < 1. Then there are u;, up € V1 with ||uk|| <
: i0, T
1, k = 1,2 such that |} ”] € My(V)*. Tt follows that [ “.of7 e
v Ua e v U9 | .
M, (V). Thus, choosing a suitable 8 € [0, 27|, we have,
a1 fo u e ]>
0< | —ie = g1(u1) + g2(u2) — 2| fo(v)|.
'<[f3‘ 92] [e 0wy 91(u1) + g2(u2) |fo(v)]
Hence
2Ifo(v)l < g1(u1) + ga(ug)
< sup gi(uy) + sup ga(up) + sup (fo(v') + fo(v'))
ul€V,, us€Viq v'ev
lluyli<1 llupfl<1 liv’lI<1
/ / / /
=sup{<[gi fo] , [u,i v ]> : [u,i v,] € A} <2a+e.
fo 92 v up vt up
Since I foll = @, we have, 2a < a; + a; < 2a + €, where a; = Sup gr(uy) =
uf€V,a
g I1<1
”gk”*’ k= 172
Note that ax # 0, k = 1,2. In fact, if a; = 0, then g; = 0 so that [j?" 50] €
0 2

M,(V,)*. Being weakly closed, M3(V,)* is Archimedean. Also My(V,)t C
M,(V")* and My(V')t is proper so that M,(V,)* is also proper, and hence
almost-Archimedean. Thus f; = 0 a contradiction. Hence a; # 0. Similarly,
az # 0. Put ¢ = ,/%%gl, g = ,/%égg. Then ||g,2“ = JJojag, k = 1,2,.
Repeating the argument, given in the proof of 2.3, we can show that
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0

(5 28] € mavy*. Tous Igfl + 681 = 208585 < o1 +00 < 204 c o
0o 92

equivalently, ||gp|l« < a+¢e/2=1-¢/2 <1,k =1,2. Hence g9, g9 € U} whence

fo € S(U.). Therefore S(U,) = U, and || - ||, is a Riesz norm on V;. B

2.6. Remark. (1) 2.5. can be regarded as the converse of 2.4. In fact, in
2.4., V't | being a dual cone, is weak*-closed and hence norm closed.
(2) In 2.5, the closed unit ball of (V, || - ||) is solid, which follows from 2.4.

2.7. Theorem. Let (V,{M,(V)*}) be a matriz ordered space and suppose
that || - || is an approzimate order unit norm on V. Consider the matriz ordered

Banach dual (V',{M,(V')*}). Then |||/’ is a base norm on V".

Proof. In light of 1.18 and 2.4, it sufficies to show that || - ||’ is additive on

V'*. To see this, let f,g € V'*. Let v e V, ||v|]| < 1. Since || - || is Riesz norm,
there are u;,u; € V1t with ”uk” < 1, k = 1,2 such that Z: v € My(V)*+.
Since || - || is an approximate order unit norm, we can find u € V', lul| <1,

such that u; < u, up < u. Then [;ﬁ Z] € My(V)*. Choose 6 € [0,2r] such
that [£0)] = —e®f(0). Then | s . "] € m0)* Non e
} [i] (f)[1 1] € M(V')* so that 0 < <[; H ’ [ u ewv]> — 2f(u) -

e—iev* u
2|f(v)].
Thus |f(v)| < f(u). Similarly, given v’ € V with ||v/|| < 1, we can find v’ € V'
with |[u'|| < 1 such that |g(v)’ < g(u’). Choose up € V1, ||lug|| < 1, such that
u < ug, v < ug. Then

@ +19()'| < f(u) + g(w') < (f +g)(uo) < |If +gll"

It follows that || f|| + [lgll < [If + gll’ < Ifl" + llgll’. Hence || - ||’ is additive on
|48 |

2.8. Theorem. Let (V,{M,(V)*}) be a positively generated matriz or-
dered space and suppose that ||-|| s a base norm on 'V and that V+ is norm-closed.
Assume that (Vi, || - ||«) is a predual of (V.|| - ||) such that V, is a self-adjoint
subspace of V'. Then || - ||. is an approrimate order unit norm on V..

Proof. By 2.5, || - ||« is a Riesz norm on V, . Hence, by 1.12, it is enough to
show that if f; + f, € V' with ||fi]l. < 1, k = 1,2, then there is f € V% with
| fll« < 1suchthat f; < f, fo < f. '
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Let a = max{”fl”*, ||f2||*} =1—¢, for some ¢ > 0. Definegq: Vt — R
given by

q(u) = sup { fi(u1) + fa(uz) 1 us,uz € V¥, us +ug = u} .

Let u € V*. If u = u; + up for some u;,up € V', then

fi(w) + fa(uz) < [[fall, luall + |1 2] [zl
< & ([fuaf| + [luall) = aljus +ue|| = afful]

Thus q(u) < a||u||, for allu € V*. Asin 2.5, we can show that g is a super linear
functional on V* and that it is weak*-upper semi-continuous on Xt, where £
is the closed unit ball of V. Consider the real ordered vector space (Viq, V1)
and put X6 = ¥ N V. Then &g, is weak* compact convex in V,, . Put
Q={ueV*t:q(u) >a+¢e/2}. Then Q is convex and weak*-closed. Hence we
can find a weak*-continuous linear functional on V,, (i.e. an element f in (V,))
such that f|Z, < a+¢/2, f|Q > a + ¢/2. Using arguments parallel to those
given in the proof of 2.5, we can show that f € (V.)*, ||f||, < a+€/2 < 1.
Also, it follows from the definition of q that f; < f, fo < f. Hence || - ||« is an
approximate order unit norm on V,. B

2.9. Theorem. Let(V, {M,,(V)+ }) be a positively generated matriz order
space and suppose that || - || is a base norm on V. Then the dual norm on V’ is
an order unit norm.

Proof. It only remains to show, from 1.14 , that there is a positive element
g in V'* with ||g||’ < 1 which dominates the positive part of the open unit ball
of V'. Let g be the strictly positive linear functional on V corresponding to the
base norm || - ||. Let v € V with |jv]| < 1, then we can find u;,uz € V*t with

||uk|| < 1, & = 1,2 such that [zi : € M,(V)*. Choose 0 € [0,27] such that
2

Uy e’v

lg(v)| = —e*®g(v). Then, [e'wv* ] € My(V)* and we have,

Uz
o<([2 °].[ . ew”]>=g'<u1+uz)—2lgcv)1.'

g g]’ e up

Thus, |g(v)| < 3g(u1 + u2) = 3|us + uz2|| < 1 and we have, ||g|| < 1. Next,
let f € V't with ||f||' < 1. Then for any u € V1, we have, f(u) < ||f|'|lull <
|lu|| = g(u), by 1.13. Thus f < g. Hence the theorem is proved. li

2.10. Remarks. In the above proof, we note that ||g||' = 1 and that g
dominates the positive part of the closed unit ball of (V/, || - |').
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2.11. Theorem. Let (V,{M,(V)*}) be a matriz ordered space and sup-
pose that || - || is an order unit norm on V such that V't is norm-closed. Assume
that (Vi, || - ||«) is a predual of (V,|| - ||) such that V, is a self ad]omt subspace of
V'. Then | - ||« is a base norm on V,.

Proof. By 2.5, |||« is a Riesz norm on V,. Since an order unit is a particular
type of an approximate order unit, it follows from 2.7, that || - ||’ is a base norm
on V'. Also, using 1.18, it sufficies to show that || - ||, is additive on (V;)*. This
is now evident, if we identify V, in V'. W

2.12. Theorem. Let (V,{Mp(V)*}) be a matriz ordered space and suppose
that || - || is an order unit norm on V. Then the dual norm || - ||’ is a base norm
on (V',{M,(V')*}) and the corresponding base is weak*-compact.

Proof. It follows, from 2.7, that [[-]" is a base norm on (V’, {M,(V")}). Let
B be the corresponding base of V'*. Then B = {f € V'* : || f||' = 1}. Note that

IfI" = f(e), if f € V'*, where e is the order unit of V corresponding to || - ||.

To see this, let v € V, ||v|| < 1. Then [ve‘ Z] € My(V)*. As before; we can’

show that |f(v)| < f(e) < ||f||’. Hence, taking supremum over v € V, |Jv|| < 1,
we have, ||f||' = f(e). Thus B = {f € V'* : ||f|' <1, f(e) = 1}. Hence B is
weak*-compact. Wl

2.13. Theorem. Let (V,{M2(V)*}) be a positively generated matriz or-

dered space and suppose that || - || is a base norm on V corresponding to the base
B and that V* is norm closed. Let (Vi,| - |l«) be a predual of (V,|| - ||) such
that V., is a self-adjoint subspace of V'. Then | - ||« is an order unit norm on

(Ve, {Mp (V) 1)), if B is weak"-compact.

Proof. It follows, from 2.5, that || - ||, is a Riesz norm on V. It sufficies to
show that there is g in V' with ||g||« < 1 such that f < g for all f € V,* with
| fll+ < 1. By 2.9, the dual norm || - ||’ on V' is an order unit norm. Let g € V'*.
be the corresponding order unit for V’. Then, ||| <1and f < gforall f € V't
with ||f||" < 1. We show that g is weak*-continuous on V. Since B is weak*-
compact it follows from 1.23, that co(BU —B) = X,,, where ¥ is the closed unit
ball of (V, || - ||) and E4a = £ N V4. Also, we have, 1B - 1B =5%,,Ug~1(0). In
fact, if v € 4, N g71(0), then v = ab; — Bb, with by,b, € B, a+ 3 = 1. Also
0=gv) = ag(bl) —Bg(bz) = a—f,sothat a = § = 3. Thusv € 1B—-1B. Now,
that 1B — 3B C Z4aNg~1(0), is trivial. Since B is weak*-compact Z,aﬂg 10)
is also weak* -compact. Hence, by Krien-Smullyan Theorem, g~ !(0) is a weak*-
closed subspace of V,,. Since V;, is weak*-closed in V, g is weak*-continuous on
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V and hence g € V;*. Now the theorem is proved. Il

2.8. Remarks. (A) Let H be a complex Hilbert space. Suppose R is

an ultra weakly closed operator system in B(H). Then R has a predual R,

consisting of ultra weakly continuous linear functional on B(H) restricted to R;

~or more precisely, R, is identified with B(H),/R* where B(H), is the space

of ultra weakly continuous linear functionals on B(H) [12]. Since R satisfies all

the conditions of the converse part of the theorem 2.5, R, is an mbn space. In
particular, B(H), is an mbn space.

(B) Now let H be an infinite dimensional complex Hilbert space, so that K(H),
the space of compact operators on H, does not contain the unit element. In
other words K(H) is a strict amou space. Now corollary 2.7 shows that K(H)
is not a dual space. More precisely, K(H) is a dual space if and only if it
contains the identity of B(H), which in turn is equivalent to the fact that H is
finite-dimensional, in which case K(H) = B(H).

(C) We generalize the situation by noting that every C*-algebra is an amou
space (c.f. [8, 2.12]). Thus if a C*-algebra is a matrix dual space it is a dual
mou space or equivalently, an ultraweakly closed self adjoint subalgebra of B(H)
or equivalently a von Neumann subalgebra of B(H) for some complex Hilbert
space H.
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