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Periodic solutions for evolution equations in Hilbert spaces
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Abstract. We consider the existence of periodic solutions of the problem g(t,u) €
u' + Au, where A is a maximal monotone operator defied in a Hilbert space and g :
R x H — H is a Caratheodory function periodic with respect to the first variable.

1. Introduction

In this paper, H is Hilbert space with an inner product {-,-), denote by || - ||
the norm induced by (-,-). Let A : D(A) C H — 2" be a maximal monotone
operator, we consider the existence of periodic solutions for nonlinear evolution
equations of the form

g(t,u) € % + Au,t € R (1.1)

where g : R x H — H is a Caratheodory function.
If g is Lipschitz or continuous with respect to the second variable, existence of
periodic solutions for has been studied by many authors. See [3], [5], [8], [9],

[11], [13], [14]). When g is a Caratheodory function, periodic solutions for
has been studied by [12], under other assumptions on g. In this paper, we
shall give different assumptions on A and g than that of [12], [14]. Now, we state
our result.

Theorem 1 Let A: D(A) C H — 2H be a mazrimal monotone operatar. g :
R x H — H is a Caratheodory operator and g is T—periodic with respect to the
first variable. Suppose the following conditions are satisfied

1. For some X\ >0, Jy = (I + A~*A)~! is a compact operator on H;
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2. There exist My, My > 0,such that

lg(t, 0)|| < Milv|| + Mz, V(t,v) € R x H;

(z — g(t, av),v) > —%||Jav||, V(t,v) € R x D(A), z € Ay; A > 0, where
a > 0 is a constant;

Then has a T—periodic solution.

Our approach is different from that of and [14], the assumptions 1 and 2
are the same as in [12], but 3 is different from (*) of [12]. In [12], A is assumed
to be a subdifferential of a lower semicontinuous convex function, but we do not
require this condition.

2. Proof of Theorem
T

Let L2(0, T; H) be the space of functions v : [0.T] — H such that / |vl|?dt <
+00. The norm and the inner product of L2(0,T; H) are denoted l())y ll-ll7 and
< +,+ > respectively. We identify the function in L?(0,T, H) with T-periodic
functions. W'2(0, T; H) represents the spacce of functions v : [0,7] — H such
that v,v()) € L?(0,T; H), where v(1) denotes the 1st derivative in the sense of
distribution.

Let Ax = A(I — J») for A > 0, then Axx € AJxzx for x € H. It is well known
that Jy is nonexpansive and Jax = J,(Jaz+u~1Axz) for \,u > 0 and x € H(see
@ o

In this paper, a T—periodic solution u(-) of means that u € W2(0, T; H),
u(t) € D(A) for almost all ¢ > 0 and there exists v(-) € L?(0, T; H), such that
v(t) € Au(t) for almost all ¢t > 0, and
< % +o(t) — g(t,v),y >=0 for ally € W2(0,T; H) verifying y(0) = y(T).

Without loss of generality, we assume 0 € D(A) and 0 € A0. Let A :
L?(0,T;H) — L?(0,T; H) be as following
Au(-) = {v(-) € L*(0, T; H)|u(t) € D(A),v(t) € Au(t); a.e.t € [0,T]}
It’s known that A : L?(0, T; H) — L*(0, T; H) is maximal monoton (see [I]).
Let W ={v:R— H,o(t4+T) =v(t) for t€ R and v|or € W'%(0,T;H)}

endowed with the norm || - ||1,r of WH2(0, T; H), i.e. ||v]|2 1 = || %2 |I% + |lv||% for
veW,;
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Now, we define an operator 7,, : W — W* by

L Thu,v> = <<1d dv>>+<<1uv>>
e N n dt’ dt
+ <<%—g(t Jpu),v> for u,v e W. (21)

For a reflexive Banach space F, an operator T' : E — E* is said to be an
operator of (S4), if u, converges to u weakly in E and Tim (T'un, up —u) <0
imply that u,, converges to strongly in F and T'u,, has a s&gsogquence converging
weakly to Tu.(see [6])

Lemma 2.1 Forn > 1, the operator T,, defined by (2.1) is an operator of (S4).
Proof. For fixed n > 1, let (u;) C W be a sequnence such that u; — u € W
weakly in W and

1 du;
1. du; Cus] <
Aml« g dt >+ €~y U US> + < —E—g(t Jnw), ui—u>] <0

dt

Since J,, is compact and nonexpansive, so J,u; is relatively compact in L2(0, T'; H),
and further that {g(t, J,u;)} is also relatively compact in L3(0, T; H).

So lim < g(t, Jpu;),u; —u>=0.
11— OO0

. . du; . 240
Since lim « — dt Uy D= hm/ ianuz" dt =

i—o0

du; du
lim <<—,u, >S>== 11m L ujy— >=0.

i—o0 dt dt
Therefore, we have
1du; d(u; —u) 1
_ —_ U U — < 0.
11_1{{>1o[<< g Yt —Us, U — U >]<0

Hence

: du; du , T1 2
- _ = Mg — <0.
.hm[/ NG - G+ [ S -l <0

i—o00 d

So we get u; — u strongly in W.

Lemma 2.2 There exists Ry > 0, suh that
L Thu,u> + <K< v,u>>0,Vu € W, ||u||1,r = Ry and u(-) € D(A),v(-) € Au(-).

Proof. Suppose u € W, and u € D(A),v € A,.

. 1 ' T
Since € Tpu,u>+<KLv,u> = ~ / ” |2dt + = / ||U||2dt
0
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/ (= u)dt—l—/ (v —g(t, Jou), u)dt
= Ltz + [ 0= ott, I e

By the assumption 3, we have

T a [T
/ (v — g(t, Jpu), u)dt > -——/ | Jnul|dt.
0 n Jo

Since 0 € A0, so ||Jpu|| < ||u|. Therefore, we have

T a T - 'a T 2 %
f (v — g(t, Juu), u)dt > -2 f lulldt > ——(/ lul?dt)} VT
0 n Jo n Jo
a
> ~2VTulyr.

Hence < Thu,u > + < v,u>>> Lullyr(luflyr — avT). Let Ro > avT, we
get the desired result.
In the following, we denote by Ay = (A + A1)}, Ry =1 - MA\, A > 0.

Lemma 2.3 Let Ry be the same as in Lemmma 2. 2. Then for each n > 1,
there exists A§ > 0, such that

0¢ U [(Tat Ax) +(1-1)J)(0Br,), VA € (0,18) (2.2)

16[ 1
where J : W — W* is the dual mapping, Br, = {u € W, ||ulj1,r < Ro}.

Proof Suppose [(2.2) is not true. There exist A; — 0%, t; — to, u; € dBg,, With
; —uo and B4 . d¥ weakly in L2(0, T H), such that

tj(Tnt + AAJ.UJ') + (1 - tj)JUj =0 (23)

Case(i). to = 0. Since Ax;0 =0, < Ax;uj,u; >> 0, and < t;Tnuj,u; >— 0
as j — oo.

So Tim < Juj,uj >= 11m ||u,|| 1,7 < 0. Therefore, we have u; — 0 € 0 Bg,,

i—00
a contradiction.

Case(ii). to # 0. Times by A, u;, we get

T
t; K Tnuj,A,\ju,- > +tj/ “.AAJ. Uj||2dt + (1 -t;) € Ju,, .A,\J-'U,j >=0
(0]
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1du; dAxu;

1
and < Tnuj, Ay u; > = K =—=2 — — >+ < ~u Ay u; >

du;
+ < th — g(t, Jnuz), Ax,u; > .

‘The monotonicity of A, implies that

du,- d.AA.Uj
g D20 Ludyu>20.

So we have

? (2.4)
By the assumption 2, we know (A, u;) is bounded in L?(0, T; H).

T
1-t¢; du;
/ ||.A>‘juj||2dt < - 7 I ¢ Ju;, .A,\J.'U,j > - —d—tl —g(t, Jpu;), .ijuj >.
0

Without loss of generality, we may assume Ax;u; — fo weakly in L?*(0,T; H),
Thuj — f1,Ju; — fo weakly in W* (otherwise, taking a subsequence).

By (2.3), we have
to(fi+ fo)+(1—=to)fo=0. (2.5)
Again, by [(2.3), we get

L Thuj, uj —uo > + K€ Ay uj,u5 —uo > + K y jJu,-,uj —uo >=0.

Since T, J are operators of (S, ),

so lim « A,\juj,u,- —ug ><0 ie Jirgo & AAjuj,u,- ><KL fo,uo > .
j—oo j—
(2.6)

By the monotonicity of A, we have

< z—-Ay\ujv— Ryu; >>0 , v € D(A),z € Ay,
K z—Ayu5,0 —uj + AjANu; >20 , vED(A),z € Av;
Letting j — oo, we get
< fo,uo >>Zj1_i_)_m°°<<A,\,-uj,uO >>L —2,v — Uy > + <L fo,v>>, v € D(A), z € Ay;
ie. K fo—uo>>,veD(A),z€A,.
The maximality of A implies that

uo € D(A),and fo € A,. (2.7)
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Now, we have A, uo — A%uq strongly in L?(0, T; H) (see[10], Th23.3).
Since < Ax;uj — Ax;uo,u; —uo > 0, so it follows from (2.3), we get

~liI£lo L tjThuj + (1- tj)JUj,'U,j —uo ><0.

J—-‘)

Both T;, and J are operators of (S). So u; — ug strongly in W, and
Tn'u._,- —_ F]_ = TnUQ,JUj - J’Uo = fz.

The maximal monotonicity of A also implies that Ajy,u; — fo € Auo.

In view of (2.5), we get
0 € to(Tn + A)uo + (1 — t,) Juo, uo € Bg, N D(A).

It is a contradiction to Lemma 2. 2. We complete the proof.

Lemma 2.4 Foreachn > 1, there exists an integer P, > n, and up € W, ||up|1,7 <
Ry, such that

Thun, + .AP;un = 0,where Ry is the same as in lemma 2. 3.
Proof. By lemma 2.3 and [6], we have
deg(T,, + Ax, Br,,0) = deg(J, Br,,0) =1, VA€ (0,)7).

So (T, + Ax)u = 0 has a solution in Bg, for each A € (0,\}). Taking an
integer P, > n, such that ﬁl: < AG, then there is a u, € Bg,,such that

Touyn + .Apg_un =0.

'This ends the proof.
Proof of Theorem. By the above Lemmas, for each n > 1, there exists an
integer P, > n, up, € W, ||up||1,7 < Ro, such that

Thuy, + Aplxun =0. (2.8)

We multiply by A1 u, amd integrate over [0, T7], then we get

L Un T 1
)dt+/o (~tn, A g un)dt

T du, T 2
+ [ (G - ot T Ag )it + [ (1A g unldt =0

dA § un
By the monotonicity of Ar‘:’ we have (‘%"gk, —jl;——) >0, and (up, A A Up) 2

0.
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So we get

T T d'u,n
/ ”-A-Pl—unllzdt < / (9(t, Jnun) — E‘aApl—un>dt' (2.9)
0 b 0 n

Since ||up||1,7 < Ro, and the assumption 2 implies that

T
sup ] A 1 a2t < +oo. 2.10)
n>1J0 n
Now, we prove
sup/ | AL us|%dt < +o00. (2.11)
n>1Jo "

By the monotonicity of A, we have
CAsun —Apup, Riun — Ry un >20,

1
<K A'L‘Un — A]};Un,un - ;A_};un - RPI:Un >2>0,

. 1 1

Le. < Arun — Apxzun, —E.A%un + P_n'APl:u" >>0.

1 1 1

; <K A_kun, .A_'L!.’Uﬁnun ><L (P_n, + '7;) < A%, A'plzu" >
1

_P_n < .AI_:%un,AI_Dl;_Un >.

T n T n T 0
SO/O M s un2dt < (1+17n)/0 (A tin, Ay )t - P_n/o 4 . unlPdt.

Since n < P, and by (2.10), we get

T
sup / 1AL un |2t < +c0.
1Jo b

n2>
So holds.
T
Since ||up||1,7 < Ro, m > 1, so / ||%Lt'i||2dt < RZ, then it follows that
0
T d(Jnun)
[ 1% e < R n 2 1 (2.12)
AL
By [2.12), we get
sup{|| Jnun(t)|| : n > 1,0<t < T} < 00 (2.13)

Let us remark that A1 u,(t) = Aju,(t), t € [0,T], (2.11) becomes that

i |
/ | Antun (8)[2dt < +o00 (2.14)
0
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We show that {J,u,} is relatively compact in L2(0,T; H). Let ¢ > 0. By (
2.12) and [(2-13), using the same argument of [12], there exists an integer mg > 0
such that oT

€
| Jnun(t) — Jnun(s)”2 < G_T:V'n >1,|t—-s|< m_o (2.15)

On the other hand, there exists D > 0 such that
inf{||Apun(T)|| : t <7<t 4+ 1} <DVn>1,0<t< (1- i)T,

We now choose {t,,, : 1 < n;1 < m < mo} C [0,T] such that @7;;12 <
tmn < 2L and || Aptn(tma)ll < D, Vn 21, 1< m < mo.
For fixed n; > 1, we have

Jp(Un(tmn)) = Jny (Jntn(tmn) + 7 Agtn (tm,n)). Vo > 1.

By the assumption 1, we know {J,un(tm )} is relatively compact.

Without loss of generality, we may assume {Jpupn(tm )} is a convergent se-
quence for all 1 < m < my, (otherwise, taking a subsequence).

Again, by [2.15), one can easily see {Jpun} is convergent in L2(0, T'; H).

Let J,u, — u strongly in L2(0,T; H). (2.16)
Since Apu, = n(u, — Jpun), by [(2.14), (2.16), we know
un, — v strongly in L2(0,T; H). (2.17)
Since Apx;un = Pp(un — Rﬁ;un), by [(2.10), [2.17), we know
Ry u, —u stronglyin L*(0,T; H). (2.18)
In view of (2.10), we may assume
Agun — z weakly iﬁ L%(0,T; H). (2.19)

By [(2.18), [(2.19) and the maximl monotonicity of A, we know 2z € Au i.e.
z(t) € Au(t), a.e. t € [0,1].

Since
L Thtn,v> + K .Ap1_un, v>=0,YveW; (2.20)
and ||up |1,z < Ro, %= — 0 strongly in L?(0, T’ H).
Letting n — oo in [(2.20), by (2.16),(2.17),(2.19), we get
d
& e —-g(t,u),v >+ <K 2z,v>=0,Yv e W.

dt
So u is a T—perodic solution of [1.1). We complete the proof.
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3. Examples
In this section, we give some exsamples that satisfy our condition 3.
Example 1 Let A: R! — 2R be as following

r+1, x>0
Az =4 [0,1], z=0;
T z < 0.

Through a direct simple calculdtz'on, we get

Az—1 1.
Am+1 ’ >3
T = 0, z € [0, %],
Az
PR r<0

Let g(t,z) : R x R* — R! be as following

g(t,z) = |sint|z + |cosz|, (t,z)€ R' x R'.

Then
r2(1 - A+1|51nt|)+(>‘+1—|cos )z, z> 3
2 1.
(z—g(t, Jraz),z) = T z €0, x}; Vz € Azx;
0, r=0;
(1- A+1|smt|)x —:t:|cos/\+1 , z <0.

So we have (z — g(t, Jaz),x) > 0> —%|Jaz|, a > 0 is any constant.

Example 2 Let 2 C RN be a bounded domain with a smooth boundaary OSQ.
Au = —Au, D(A) = {u € H}(Q) : Au € L*(Q)}; g(t,u) : R x L?(Q) — L*()
is defined as following g(t,u) = \u — m";[rg|sin t|, (t,u) € R! x L?(Q); where
A1 is the first eignvalue of —A under the Dirichlet boundary condition, || - || is the
L?-norm.

It’s obvious that

_l®
T+ [fufl?

For any a > 0, Cy, > 0, we can not prove

(Au — g(t,u),u) > T |sint|, ue€ D(A).

(Au—g(t,u),u) 2 af|u|? -
So A and g do not satisfy the third condition in [12], but we have

(J>«3>

— - 2 -_—
(Au — g(t, Jau), u) = ||Vu||* — M(Jau,u) + ———— T+ [Tna ”

s|sint|, u € D(A);
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and 0 < (Jhu, u) < |ul?

So (Au — g(t, Ju),u) > ﬁ_ﬁ%]smt] > —%||Jau|| for arbitrary constant
a>0.

Remark 1 In[12], condition (3) was replaced by (x) : (z—g(t,v),v) > aljv||*> -b,
Vv € D(A), z € Av; where a,b are positive constants;
For appropriately large v in D(A), we have

al|v)? -b>c>0
For v € D(A), we have Jxv — v as A — +00. So if (x) holds, then for
appropriately large v in D(A) and sufficcently large A, 3 holds.
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