A simple proof of Sarason's result for interpolation in H^{∞}

By

Takashi Yoshino

(Received November 28,1995; Revised April 22,1996)

Abstract. In [3], D. Sarason proved the following result: Let q be a non-constant inner function, and let Q be the orthogonal projection from L^2 onto $K = H^2 \ominus T_q H^2$. If $A \in \mathcal{B}(K)$ commutes with QL_zQ , then there is a function ψ in H^{∞} such that $\|\psi\|_{\infty} = \|A\|$ and $A = QL_{\psi}Q$.

The proof is not so easy and simple. And, in this paper, I will give its simple proof by using some properties of Toeplitz and Hankel operators.

For φ in L^{∞} , the Laurent operator L_{φ} is the multiplication operator on L^2 given by $L_{\varphi}f = \varphi f$ for $f \in L^2$. And the Toeplitz operator T_{φ} is the operator on H^2 given by $T_{\varphi}f = PL_{\varphi}f$ for $f \in H^2$, where P is the orthogonal projection from L^2 onto H^2 .

The following results are well known, but, for convenience's sake we state here them without proof.

Proposition 1. T_{φ} has the following properties.

- $(1) T_z^*T_\varphi T_z = T_\varphi$
- (2) $T_{\varphi}^* = T_{\overline{\varphi}}$, where the bar denotes the complex conjugate
- $(3) ||T_{\varphi}|| = ||\varphi||_{\infty}$

Proposition 2. ([2]) $A \in \mathcal{B}(H^2)$ is a Toeplitz operator if and only if $T_z^*AT_z = A$. And, in particular, $A \in \mathcal{B}(H^2)$ is analytic Toeplitz operator (i.e., $A = T_{\varphi}$ for some $\varphi \in H^{\infty}$) if and only if $T_z A = AT_z$.

Proposition 3. ([1]) If \mathcal{M} is a non-zero invariant subspace of T_z , then there exists an isometric Toeplitz operator T_g such that $\mathcal{M} = T_g H^2$.

¹⁹⁹¹ Mathematics Subject Classification: 47B35.

For φ in L^{∞} , the Hankel operator H_{φ} is the operator on H^2 given by $H_{\varphi}f = J(I-P)L_{\varphi}f$ for $f \in H^2$, where J is the unitary operator on L^2 given by $J(z^{-n}) = z^{n-1}$, $n = 0, \pm 1, \pm 2, \cdots$.

And the following results are known.

Proposition 4. H_{φ} has the following properties.

- (1) $T_z^* H_{\varphi} = H_{\varphi} T_z$ (Hence $\mathcal{N}_{H_{\varphi}} = \{x \in H^2 : H_{\varphi} x = o\}$ is invariant under T_z and $\mathcal{N}_{H_{\varphi}} = \{o\}$ or $\mathcal{N}_{H_{\varphi}} = T_q H^2$, where q is inner)
- (2) $H_{\varphi}^* = H_{\varphi^*}$, where $\varphi^*(z) = \overline{\varphi(\overline{z})}$
- (3) $H_{\varphi} = O$ if and only if $(I P)\varphi = o$ (i.e., $\varphi \in H^{\infty}$)

Proposition 5. (Nehari) $A \in \mathcal{B}(H^2)$ is a Hankel operator if and only if $T_z^*A = AT_z$. Moreover we can choose the symbol $\varphi \in L^{\infty}$ of $A = H_{\varphi}$ such as $||A|| = ||\varphi||_{\infty}$.

Nextly, we have the following relations between Toeplitz and Hankel operators.

Theorem 1. For any $\psi \in H^{\infty}$, $H_{\varphi}T_{\psi} = H_{\varphi\psi}$.

Corollary 1. For any $\psi \in H^{\infty}$, $T_{\psi}^*H_{\varphi} = H_{\varphi}T_{\psi^*}$.

Proof.

$$T_{\psi}^* H_{\varphi} = (H_{\varphi}^* T_{\psi})^* = (H_{\varphi^*} T_{\psi})^*$$

= $H_{\varphi^* \psi}^* = H_{\varphi \psi^*} = H_{\varphi} T_{\psi^*}$ by Theorem 1.

Concerning the invariant subspaces of T_z^* , we have the following.

Theorem 2. If $\mathcal{M} \neq H^2$ is an invariant subspace of T_z^* , then there exists an inner function g such that $\mathcal{M} = [H_{\overline{g}}^*H^2]^{\sim L^2} = H^2 \ominus T_gH^2$, where $[H_{\overline{g}}^*H^2]^{\sim L^2}$ denotes the L^2 -closure of $H_{\overline{g}}^*H^2$.

Proof. Since $H^2 \ominus \mathcal{M}$ is a non-zero invariant subspace of T_z , there exists an inner function g such that $H^2 \ominus \mathcal{M} = T_g H^2$ by Proposition 3. For $f \in L^{\infty}$,

$$PL_f z^{-n} = H_{\overline{f}}^* z^{n-1}$$
 for $n \ge 1$.

Hence

$$\mathcal{M} = H^{2} \ominus T_{g}H^{2} = \vee \{PL_{z}^{n}g : n = -1, -2, \cdots\}$$

$$= \vee \{PL_{g}z^{n} : n = -1, -2, \cdots\}$$

$$= \vee \{H_{\overline{g}}^{*}z^{n} : n = 0, 1, 2, \cdots\}$$

$$= [H_{\overline{g}}^{*}H^{2}]^{\sim L^{2}}.$$

Corollary 2. If $[H_{\varphi}H^2]^{\sim L^2} \neq H^2$, then there exists an inner function g such that $[H_{\varphi}H^2]^{\sim L^2} = [H_{\overline{g}}^*H^2]^{\sim L^2} = H^2 \ominus T_gH^2$ and $\mathcal{N}_{H_{\varphi}^*} = T_gH^2$.

Proof. By Proposition 4 (1), $[H_{\varphi}H^2]^{\sim L^2}$ is invariant under T_z^* and, by Theorem 2, we have the conclusion.

Now we give a simple proof of the following Sarason's result which is our main purpose.

Theorem 3. ([3]) Let q be a non-constant inner function, and let Q be the orthogonal projection from L^2 onto $K = H^2 \ominus T_q H^2$. If $A \in \mathcal{B}(K)$ commutes with QL_zQ , then there is a function ψ in H^{∞} such that $\|\psi\|_{\infty} = \|A\|$ and $A = QL_{\psi}Q$.

Proof. By Theorem 2, $K = [H_{\overline{q}}^*H^2]^{\sim L^2}$. Since $T_z^* = (QL_zQ)^*$ on K, by Proposition 4 (1)

$$T_z^*A^*H_{\overline{q}}^* = (QL_zQ)^*A^*H_{\overline{q}}^* = A^*(QL_zQ)^*H_{\overline{q}}^* = A^*T_z^*H_{\overline{q}}^* = A^*H_{\overline{q}}^*T_z.$$

Therefore by Proposition 5, $A^*H_{\overline{q}}^*$ is a Hankel operator and

$$A^*H_{\overline{q}}^*=H_{\varphi}$$

for some $\varphi \in L^{\infty}$ such as $\|H_{\varphi}\| = \|\varphi\|_{\infty}$. Let

$$\psi^* = \varphi q^*$$
.

Then by Proposition 4 (2) and Theorem 1,

$$H_{\psi^*} = H_{\varphi} T_{q^*} = A^* H_{\overline{q}}^* T_{q^*} = A^* H_{\overline{q^*}q^*}.$$

Since q is inner, $\overline{q^*}q^*=1$. Since $H_1=O$, $H_{\psi^*}=O$. Then by Proposition 4 (3), $\psi^*\in H^{\infty}$, hence $\psi\in H^{\infty}$. Then by Theorem 1 and Corollary 1, we have

$$A^*H_{\overline{q}}^* = H_{\varphi} = H_{\overline{q}^*\psi^*} = H_{\overline{q}}^*T_{\psi^*} = T_{\psi}^*H_{\overline{q}}^*$$

and $A^* = QT_{\psi}^*Q$ and hence $A = QL_{\psi}Q$. And then $||A|| \leq ||T_{\psi}|| = ||\psi||_{\infty}$ and, conversely,

$$\|\psi\|_{\infty} = \|\varphi\|_{\infty} = \|H_{\varphi}\| = \|A^*H_{\overline{q}}^{-*}\| \le \|A^*\| \ \|q\|_{\infty} = \|A\|.$$

Acknowledgement. The author would like to express his gratitude to the referee for some helpful comments and suggestions.

References

- [1] Beurling, A., On two problems concerning linear transformations in Hilbert space, *Acta Math.*, **81**(1949), 239-255.
- [2] Brown, A. and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213(1964), 89-102.
- [3] Sarason, D., Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc.,127(1967), 179-203.

Mathematical Institute, Tôhoku University Sendai 980-77, Japan