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Summary. Some asymptotic properties of the nonoscillating solutions of
operator-differential equations of arbitrary order are investigated.

1. Introduction

The goal of the present paper is by means of a single approach to in-
vestigate some asymptotic properties of the nonoscillating solutions of dif-
ferential equations with “maximd”, with distributed delay, with autoregulable
deviation, integro-differential equations, etc. To realize this single approach
an operator with certain properties is introduced, as well as appropriately chosen
operator-differential equations and inequalities. In the paper results obtained in
[2]-[8] are generalized.

2. Preliminary notes
Consider the operator-differential equation
Len-1(BLen-2OL-Leo®)x(®)] -1V T +0F (¢, (Ax)Nt)=c(t) (1)

for t=t,, where {,cR is a fixed number, n=1 is an integer, 4 is an operator
with certain properties, 6—=+1 and

c:€C™ Y ([to, ); (0, ) (=0, 1, ---, n—1)
Introduce the following notation:
(Lox)(B)=co(t)x(?)
(Lix)O)=cOULix)®Y,  1<ign,  calt):=1,

where ¢, €C" ([, ©0); (0, 0)), 0<i<n; x: [Tx, ©)>R, T xZt,.




134 H. AKCA, D.D. BAINOV AND M.B. DIMITROVA

Denote by 9, the set of all functions xC([T x, o); R) such that the func-
tions L,x (0<i<n) exist and are continuous in [T x, o).

Definition 1. The function x is said to be a solution of equation (1) if
xre9, and x satisfies equation (1) for t=max{T;, T 4.}

Definition 2. A given function u: [t,, ) — R is said to eventually enjoy
the property P if there exists a point ¢p ,=?, such that for ¢t=¢p , it enjoys the
property P.

Definition 3. The solution x of equation (1) is said to be regular if
sup{|x(t)|} >0 eventually.

Definition 4. The regular solution x of equation (1) is said to oscillate if
sup{t: x(t)=0} =oc. Otherwise, the regular solution is said to be nonoscillating.

Introduce the following conditions :

Hl. ¢, eC*([ty, ); (0, o)), 0=Zi=n.

H2. o0==1.

w dt .

H3. S 'c—t(g‘-——oo, 1<i<n-—1.

H4. c=C([t,, °): R).

H5. A: D,—C([Tax, ©); R), Tax=t,.

H6. If u, ved, and u@)<v(t) for t=t, then (Au)B)=(Av)t) for t=T 4x

H7. If u,, ue D, (p=1,2,-) and {u,}3-, is a monotone sequence and
limu,(t)=u(t) for t=t,, then I’jg}o(dup)(t)=(du)(t) for each t=t,.

Dovoo
H8. If ue9, and u is an eventually of constant sign and nonzero function,
then the function Au is also eventually of constant sign and nonzero, and they
are of the same sign.
H9. FeC([t,, «)X(R,UR.)), R,=(0, ), R_=(—o0, 0).

LEMMA 1 [8]. Let the following conditions hold:

1. Conditions H1-H3 are met.

2. x€9D,, x@®>0 for t=T (Tz=t,).

3. (L.x)t) is of constant sign in [T, o).

Then there exists an integer [ such that:

1. For (L,x)#)<0, n+! is an odd number.

2. For (L,x)®)=0, n+![ is an even number.

3. (—=I(L;x))=0 for I<n-—1, j=I, -, n—=1,t=T
4. (L;x)()>0 for (>1,1<i<[-1,t=T

LEMMA 2 [8]. Let the following conditions hold:
1. Condition H1 is satisfied.
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2. O<lirtn inf ¢;(¢)<lim sup ¢;(t)<oo, 1Zi<n—1.
00 t—so0

3. x€9,.
Then, if one of the following two conditions hold:
1. Ly,x is a bounded function in [T, o) and ltim(L,.x)(t)=O.

2. Lux is a bounded function in [T, =) and %im(Lox)(t)eR,
then ltim(L,-x)(t)zo, 1<i<n—1.

For any function yeC([T, «); R) and for any integer /[, 0</<n define
the function,

co?) St c(sy) S‘l Ca(S2) “-S-’n-z Cn-1(Sn-1) S‘n-ly(S)desn_lmdszdSI
for [=0

1 ¢ 1 31 1 81-1 1 oo ]_ 0
(goéy)(t): co?) ST (1) S'—" c(S2) ST ci(sy) Saz Cre1(S141) “.Ssn-xy(S)ds“
dsids;_,---ds.ds, for 0<i<n—1
1 St 1 Ss' 1 --~Ssn—2*—l——gh_ly(s)dsdsn_l'--

Co(t) IT €1(s1) JT €o(s2) T caoa(Sn-) T

ds,ds, for [l=n

3. Main results

Theorem 1. Let the following conditions hold:

1. Conditions H1-H9 are met.

2. There exists a function w defined in [t, ) such that wed, and
(Law)t)=c(2).

3. The function Low is bounded below in the interval [t,, o).

4. There exists a positive solution y of the inequality

I L.x))+F(t, (Ax)E)=0c(?) (2)
such that lirp inf(Loy)(t)>0.

5. F(@t, u)>0 for (t, w)s[t,, ©)XR, and F(t, u) is an increasing function
with respect to uR,.

Then there exists a positive solution x of equation (1) with the following
properties:

1. liminf(Lox)(t)>0

2. x()Zy(t) eventually.

Proof. Let y(t)>0 be a solution of inequality (2) in the interval [T,, o)
(Ty=t,) and lir{l inf(L,y)#)>0. Then (Ay)(#)>0 eventually.

Introduce the following notation:
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wo(t)zw(t) 0( ) hm 1nf(L0w)(t)

u(@)=yE)—wot)

Then 0<F(¢t, (Ay)1)< 45(Lnu)(t) teventually, i.e., the function (L,u)) is
of constant sign for t=T, Hence the function L,u is monotone in [T, o).
This fact implies the existence of

lim(Lou)(H)E R\ {—co, + oo}
But }im(L.,u)(t):lirtn inf(L,y)#)>0. Thus we obtained that u is an even-

tually positive function. Let [z, ), 7=T, be the largest interval in which the

function u is positive.
From Lemma 1 it follows that there exists an integer [ (0</<n) such that
1. n+! is an odd number for o=1.
2. n-+! is an even number for d=—1.
3. (—D"(Lu)t)=0 for I<n—1; j=I, .-+, n—1; t=7.
4. (L;aw)@®)>0 for [>1, 1<i<[—1, t=7*, %=1,
Introduce the following notation:

{t for [=0 or [=1
T=
T* for [>1
{lim(Lou)(t), =0
K= t—so0
(Lou)T), >0

From condition H1 and the fact that the function u is eventually positive
it follows that K>0. From (2) we obtain that —K <(L,w,)t) eventually, i.e.,
(K/co@®))+wo(t)>0 for t=T.

After a repeated integration of inequality (2) we obtain that

K
Y= — = X0 Fwo(t)+(@lF (-, Ay)E)
Let X be the set of all continuous functions x for t=T such that
K w0
For any function xX define the function %(¢):
x(t), t=T
()= x(T)

From the definition of %(z) it follows that
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K -
T()(;)‘+wo(t)§ IO<y@), t=T,

Define the operator S: X—FE by the formula

<Sx>(t>=c—f(% )Pl (F (-, ADNE)

where E is the set of all continuous functions in [T,, o).
The inclusion SXcX is valid since:
1. From the definition of the operator S it follows that

o Twd=ESom, =T,

2. From condition 3 of and condition H6 we obtain that
y()=(Sx)t).

Let x,, x,€X and 0<x,(t)<x,(t). From the definition of the operator S it
follows that 0<(Sx,)(?)<(Sx,)t) for t=T,, i.e., S is a monotone increasing
mapping of the set X into itself. Let {x,(!)}%=c be a montone decreasing se-

quence of elements of the set X for =7 obtained by the following recurrent
formula:

xO)=y®), =T
xa®)=(Sxn-), =T (4)
Let }ligxn(t)zx(t) for t=T. Then Liﬂ(an)(t)z(Jx)(t). From the Lebesgue
dominated convergence theorem we obtain that ?E(an)(t)=(5x)(t) for t=T.
But from (4) it follows that Liﬂ(an)(t)zx(t). Then we obtain that (Sx)(#)=

x(t), i.e., x() is the positive solution sought of equation (1) such that
lirrtl inf(Lox)($)>0, x()<y(t) eventually. [

Theorem 2. Let the following conditions hold:

1. Conditions 1 and 2 of Theorem 1 are met.

2. The function L,w is bounded above for t=t,.

3. There exists a negative solution y of the inequality

(L, x)(t)+F(t, (AxXt)=dc(t)
such that lintl_iup(Loy)(t)<0.

4. F(, u)<0, @, wye(t, «)XR.). _
F(t, u) is an increasing function with respect to ucR_.
Then there exists a negative solution x of equation (1) with the properties:
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1. lin;l sup(L,x)(#)<0.

2. x(t)=y@) eventually.
The proof of is carried out along the scheme of the proof of
Theorem 1.

(5)

Theorem 3. Let the following conditions hold:
1. Condition 1 of Theorem 2 is met.
2. There exists lim(Low)(t)eR.

3. F(, u)>0 for (t, w)elt,, <)X R (F(t, u)<0 for (t, u)s[t, ©)XR.).
Then each positive (negative) solution of equation (1) enjoys the property

gim(Lox)(t)eRU{—oo, + oo} (6)
Proof. Let x be a positive solution of equation (1) in the interval [T, o),

T =t,.
Introduce the notation:

wo<t>=w<t>——C°—l(ﬁgarg<Low><t>

u)=x@)—wo(t), =T

Then (L,u)#)=—0F(t, (Ax)t)), i.e., L,u is of constant sign in the interval
[T, o). This implies that L,u is a monotone function for t=T, i.e., there exists

lim(Lou)()eRU {—oo, +co}
But 1tim(Lou)(t)=ltim(Lox)(t), i.e., there also exists

}im(Lox)(t)eRU{——oo, + oo}
Theorem 4. Let the following conditions hold:

1. Conditions 1, 2 and 5 of Theorem 1 are satisfied.
2. There exists a positive solution y of the equation

(Lax)(®)+0F (¢, (Ax)2)=0 (7)
such that ltiIE(L“yxt)>0'
Then there exists a positive solution x of equation (1) with the properties:
1. lirE(Lox)(t)>0.
2. x()Zy(t) eventually.

Proof. Let y be a positive solution of equation (7) in the interval [T,, oo),
T,=t, and }im(Loy)(t)>O.
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Introduce the notation:

wo)=w(t)— lim(Low)(t)

1

Co(t) tveo
u(t)=y(@)+w,().

Then }irg(Lou)(t)=}iT(Lo ¥))>0.

Choose a constant ¢ such that 0<c<!£rB(Lou)(t). Let us choose T=T, so

that for t=T, (Lou)#)>c, (Low,)t)<c. Then for the function #(t)=u(t)—(c/c.(t))
we obtain that 0<#(®)<y(), t=T.
Consequently, #(#)>0 is a solution of the inequality

O(Lna)t)+F(t, (Aa)t)=dc(t)

Moreover, Eim(Loz't)(t):tlim(Lou)(t)>0. From it follows that
there exists a positive solution x of equation (1) such that }im(Lox)(t)>0, x(H=
a(t)=y(t) eventually. O

Theorem 5. Let the following conditions hold:

1. Conditions 1 and 2 of Theorem 3 and condition 4 of Theorem 2 are met.
2. There exists a negative solution y of equation (7) such that %im(Loy)(t)<0.

Then there exists a negative solution x of equation (1) with the properties:
1. %im(Lox)(t)<0.

2. x@)=y() eventually.
The proof of is carried out along the scheme of the proof of

Theorem 4.
Consider the operator-differential equation

Lt Ok o0 Led®x@®)] -+ T TV +0F (¢, (Ax)(1)=0 (8)

where c¥eC" ¥([t,, ); R,), 0<i<n—1).
Introduce the following notation:

(LEx))=c¥@®)x(t)
(L¥x)O=c¥OULE-.x)XY, =12, -, n; cX®)=1.

Theorem 6. Let the following conditions hold:
r dt o
c¥(t) ’

2. c¥®)=cit) for t=t,, 0=i<n-—1.
3. Conditions H1-H9 and condition 5 of Theorem 1 are met.

1<i<n—1.
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4. There exists a positive solution y of equation (8) such that llm(L y)(&)>0.

Then there exists a positive solution x of equation (7) with the following pro-
perties:
1. %im(Lox)(t)>0.

(9)
2. x(®)=y(t) eventually.

Proof. Let y be a solution of equation (8) in [T,, ) for T,=t, and
lxm(L ¥)(t)>0. Consequently,

(LEy)t)=—0F(t, (Ay)®), ie., (L¥y)t)=0  for 0=-—
(L¥y))<0  for d0=1, t=T,.

and

From Lemma 1 it follows that there exists an integer [, 0</<#n such that
n-/{ is an odd number for =1, n+!/ is an even number for d=—1 and

(-—D”’(L =20, t2T, I=n—1, ISj<n—1.
(L¥y))>0, t=T,, T,=2T,, [>1, 1<i<i-1.
Introduce the following notation :
{To, (=0 or [=1
K S|
{ Him(L¥y)2), =0
K={ ==
(L¥yXT), >0

Then for t=T we obtain that

Y2 *(t) +(pex (F (-, AyNXD)

But from condition 2 of [Theorem 6 it follows that
K

y=z—= X0 +(QtF (-, AyNXL)
Consider the set X of all continuous functions x in [T, ) such that K/c,(¢)

=x()<y(t) and define
x(t), t=T

x(t)= %y(t), To<t<T

for each function xeX.
Define the operator S: X—»C([to, ); R) by the formula

(Sx)t)=——5+(@eF (-, A

(t)
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It is immediately verified that

0 S(SxO= (@), t=ty, ie, St X=X

Let x,, x.X and x,()<x.(t), t=T. Then

(Sx)B)=(Sx)t), t2T.
Consider the convergent sequence {x(t)}i=,, t=T such that
xo(t)=(t)
- X (0)=(Sxr_1)@), K=1,2, -
i.e. the sequence {x;(t)}, is decreasing for t=T. If x(t)=Li££1°xn(t) then from

the Lebesgue dominated convergence theorem it follows that x(¥)=(Sx)(®), i.e.,
x(t) is a positive solution of equation (7) with the properties (9).

Theorem 7. Let the following conditions hold:
1. Conditions 1, 2 and 3 of Theorem 6 and condstion 4 of Theorem 2 are

met.
2. There exists a negative solution y of equation (8) with the properties

im(LE»)(0)<0.

Then there exists a negative solution x of equation (7) with the following
properties:
1. %im(Lox)(t)<0.

2. x(t)=y(t) eventually.
The proof of is carried out along the scheme of the proof of
(Theore Ol

Theorem 8. Let the following conditions hold:
1. Conditions H1, H2, H4-H9 and condition 5 of Theorem 1 are met.
2. There exists a positive solution y of the inequality

O(Lx)t)+F(t, (Ax)E)=0
such that %im(Loy)(t)>0.

Then there exists a positive solution x of equation (7) with the following
properties:
%im(Lox)(t)>0

0<(Lx))S(Liy)t) eventually, 0=i<l—1, =1
0<(— D)L, x))<(—1D"YL;y)t) eventually, I<i<n—1, I<n-—1,
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where [ is an integer, 0=[=n, such that n+I is odd for 6=1 and n+!l is even
for 0=-1.

is a corollary of and Lemma 1.

Theorem 9. Let the following conditions hold :
1. Conditions H1, H2, H4-H9 and condition 4 of Theorem 2 are met.
2. There exists a negative solution y of the inequality

O(Lnx)t)+F(t, (Ax)(2)=0
such that gg(Loy)(t)<O.

Then there exists a negative solution x of equation (7) with the properties:
(Liy))S(Lix)t) eventually, [>0, 0<i<[-—1.
lim(L,x)(#)<0 (11)
(=D"YLy))=S(—DHYLx)t)S0 eventually, Isn—1, I<i<n—1.
where | is an integer (0=/=<n) such that n+![ is odd for d=1 and n-+I is even
for o=—1.
is a corollary of and Lemma 1.

Theorem 10. Let the following conditions hold:
1. Conditions 1, 2 and 3 of Theorem 1 are met.
2. There extsts a positive solution y of equation (1) such that lirtn inf(L,y)(t)

>0.

Then there exists a positive solution x of equation (7) with the following
properties:
1. Eim(Lox)(t)>0.

2. x()=Zy(@) eventually. (12)

Proof. Let y be a positive solution of equation (1) in [T, o), Ty=t, such
that liin inf(L,y)(#)>0.

Introduce the folloing notation:

wot)=w(t)— lun mf(Lo £2.09)

o(t)
v(t)=y(t)—w,(?)

Then lirn(Lov)(t):-lirtn inf(Loy)t) >0. From the fact that ltim(Lov)(t)>0 it
t—>o0 —»00 -»00

follows that we can choose a constant ¢ such that 0<c<£im(Lov)(t). Choose
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T=T, so that for t=T the following inequalities be valid
(Lo)t)>c>0 and (Lw)t)=—c
If we denote 5(t)=v(t)—(c/co(t)) for t=T, then we obtain that
0<o()= (@), t=T
Then o(L,0)t)+F(t, (AD)¢t)) £ 0. Since l{rE(Loﬁ)(t) = %irl}(Lov)(t)—c>0, then

from it follows that there exists a positive solution x of equation
(7) for which ltim(Lox)(t)>0 and x(1)<o()< y(¢).

Theorem 11. Let the following conditions hold:
1. Conditions 1, 2, 3 and 4 of Theorem 2 are valid.
2. There extsts a negative solution y of equation (1) such that lirtn sup(L,y)(?)

<0.

Then there exists a negative solution x of equation (7) with the following
properties:

1. lzim(L(,x)(t)<0.

2. x(t)=y(t) eventually.

The proof of Theorem 11 is carried out along the scheme of the proof of
Theorem 10.

4. Some particular realizations of the operator 4
1. Let (Jx)(t):sml% x(s), where M@)=[p(t), ¢t)] is a compact subset of
€ )
the interval [t,, %), t=t, and limp(t)=co, p®)=q() for t=t,, p, g€ C([to, ) ; R).

We shall prove that for the so defined operator conditions H5-H8 are satisfied.
In fact, if 0<x(t)<y(t) for t=t, then it is immediately verified that 0<
(Ax)t)= max x(s)= max y(s)=(Ay)®) and x(t)(Ax))>0 for t=t,.
s& ) < )

Let x, x,&C([t,, ©); R), k=0, 1, .-+, x,(t)<x() or x,(t)=x() and lkimx,,(t)

=x(t).
We shall prove that lim[ max x.(s)]= max x(s).
eM(t) sEM (L)

ko0 8

To this end we shall use the inequality

max x(s)— max y(s)< max [x(s)—y(s)] (cf. [9]).
M (L) seM(t) : seM(t)

From the fact that xk(t):—>x(t) for t=t, it follows that for each &>0

there exists k,>0 such that if 2=k, then |x,(t)—x(#)|<e for t=t.
Then
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max x.(s)— max x(s), x,(t)=x@)
max xk(S)— sglg‘()f)x(s)‘ —J €M) sSM(t)

sEH ) max x(s)— max x,(s), x,)<x@)
seM () S-M(t)

{ max [x,(s)—x(s)]<¢
seM(t)

max [x(s)—xx(s)]<e
sSM(t)
If x€9,, then Ax&C([T 4z, «); R) (cf. [1]).
Example 1. Consider the differential equation
(t"x’(t))’-}-lt" max x(s)=—t"2, =1 (13)
2 Seft-1.¢t]
and the differential inequality
)Y + S max x(s)<—t-2, t=1 (14)
2 sct—-1,¢t]

Here (Jx)(t):ser[rtlgicu x(s). The functions c¢,(t)=1, ¢,(t)=t"', F{, u)=1/2)ut®

satisfy the conditions of and y(t)=4t>0 is a solution of (14). Then
there exists a positive solution x of equation with the properties (3).
For instance, x(¢)=2¢ is such a solution.

Example 2. Consider the differential equation

)+t max x(s)=t-?, t=1 (15)
2 s&[t, t+1]
and the differential inequality
(t“x’(t))’-{—-l—t"3 max x(s)=t"%, t=1 (16)
2 selt, t+1]

Here (Ax)(t)= 8Ercrtlf':tt)iux(s). The functions c(t)=1, c,(t)=t"?, F(t, u)=1/2)¢t*u

and c()=t"2, w(t)=—t for t=1 satisfy the conditions of and y(t)=
—4¢<0 is a solution of (16). Then there exists a negative solution x of equation
with the properties (5). For instance, x(t)=—2t is such a solution.

Example 3. Consider the differential equation

[e“[e'“[e"‘[e‘x(t)]’]’]']’——zle‘“‘ergglxnx(S)=0, t=1 17)
and the differential inequality
[e~*[e *[e~*[e'x ()] )]} —4e™* selnuajfux(S)éO, t=1 (18)

Here (Ax)t)= aEtggzc'”x(s). The functions co(t)=e’, c,(t)=cs(t)=e"t, cy(t)=e"%,

F(t, u)=e *u and M(t)=[t—1, t] satisfy the conditions of and y(t)
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=e*" is a solution of such that lime'e**=co. Then there exists a positive

t o0

solution x of equation with the properties (10). For instance, x(t)=e’ is
such a solution.

Example 4. Consider the differential equation

Le i[e®[e~*[e’, x(1)]'] ) ) —4e™* max x(s)=0, t=1 (19)

st t+1]

and the differential inequality

Le~t[e*[e*[e’, x(t)]’]’]’]’—4e"3‘ser[rtlax x(s)=0, t=1 (20)

s t+1]
Here (Jx)(t)zser[rtla})fu x(s). The functions c,(t)=et, c,(t)=e"t, c.(t)=e ™%, c4(t)=

et F(t, u)=4e *u satisfy the conditions of [Theorem 9. Moreover, y(t)=—e*
is a solution of inequality such that lim(L,y)t)<0. Then there exists a
t w00

negative solution x of equation with the properties [1I). For instance,
x(t)=—e' is a solution of equation for which %im(Lox)(t)————OO.

For n=4 and 6=—1 we obtain that /=2. Then it is immediately verified
that

(LOSLB<0,  i=0,1.
(D (LOS(—DHLO<0, =2, 3; 2]

Examlpe 5. Consider the differential equations

et 'x’(1)]) ) —3t™° max x(s)=—3t"%, t=2 (21)
selt—-1,t]

et tx’(t)) ) —3t® I['Itlaxux(s)zo, t=2 (22)
sert-1,

Here (Ax)(t)= erggll'c”x(s). The functions ¢ (t)=1, ¢,{t)=c,(t)=t"", F(t, u)=3t""u,

c®)=3t"%, w(t)=(3/4)[t? Int—(t?/2)] satisfy the conditions of [Theorem 10. More-
oveer, y(t)=t*>0 is a solution of equation such that itralt; y()=4>0. Then

there exists a solution x of equation with the properties (12). For instance,
x(t)=t is a solution of equation for which %im(Lox)(t):-—oo and x(t)=t<t?=

y(t) for t=2.
2. Let (Ax)(t)=x(g(®), where geC(lty, «); R), limg(t)=co.

It is immediately verified that for the operator considered conditions H5-H8
are met.

Example 6. Consider the differential equation

e e tx’ (1)) ) +2e ' x(2t)=2e7%, t=2 (23)
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and the differential inequality
Le e 'x'(t)]) ] +2e **x(2t)<2e72, t=2 (24)

Here (Ax)(1)=x(2t). The functions c,(t)=1, ¢,(t) = ¢.(t) = ¢~¢, wt)=t, F(t, u) =
2¢™**u, c(t)=2¢7* satisfy the conditions of [Theorem 1. Moreover, y(t)=te® is
a solution of inequality such that lirrll inf y(t)>0. Then there exists a

positive solution x of equation [23) with the properties (3).
For instance, x(t)=e’ is a solution of equation for which

littninf(Lox)(t)>0 and x(t)=e'<tel=y(t) for =2

Example 7. Consider the differential equation
Lef[e tx/(1))' ] +2e*x(2)=—2e"%, (=2 (25)
and the differential inequality
Le e tx'1)] ] +2e ' x(2)=—2e7%, t=2 (26)

Here (Ax)t)=x(2t). The functions c¢,(?)=1, c\(t)=cy(t)=e"t, w(t)=—t, F(t, u)=
2¢74t-u, c(t)=—2¢7? satisfy the conditions of [Theorem 2. Moreover, y(t)=
—tet is a solution of inequality [26). Then there exists a negative solution x
of equation with the properties (5).

For instance, x(¢)=—e* is such a solution.

Example 8. Consider the differential equation
[ttt 2x ()] 1+t x(3t2)=6¢4, t=1 27

Here (Ax)(#)=x(3t*). The functions w(#)=2¢, c(t)=6t"*, F(t, u)=t"*u>0 for uec
R,, cy(t)=t"? c,(t)=t"" satisfy the conditions of [Theorem 3. Then each positive
solution of equation enjoys the property (6). For instance, x(¢)=t is such
a solution for which lir{.}(x(t)/tz)zo.

Example 9. Consider the differential equation
Le~[e’x(®)]' ) —2e~tx(2t)=0, t=2 (28)
and the differential inequality
—[e t[etx(t)]' ] +2etx(2t)=0, t=2. (29)

Here (Ax)(t)=x(2t). The functions c,(t)=e, c,(t) =e"t, F(t, u) = 2¢~'u satisfy
the conditions of [Theorem 9. Moreover, y(t)=—e?% is a solution of inequality
such that lim(L,y)(f)=—co. Then there exists a negative solution x of
equation with the properties [11).
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For instance, x(f)=—e¢' is such a solution.

Example 10. Consider the differential equations
2t x'@®)]) ) —4t " x(t)=—4t7°%, t=1, (30)
(2t~ x/ (1)) ) —4t7"x(t%)=0, t=1. 31)

Here (Ax)(#)=x(t?. The functions c,(t)=t"!, ¢c,()=¢t"2, F(t, u)=4t"tu, C(t)=—4t"%,

w(t)=(2/3)t* satisfy the conditions of [Theorem 10. Moreover, y(¥)=t? is a solu-

tion of equation such that liminf y(#)>0. Then there exists a positive
t—so00

solution x of equation with the properties (12). For instance, x(¢)=t>0 is
a solution of equation for which %im(Lox)(t)zoo, x(t)=t=t*=y(t), t=1.

t
3. Let (Jlx)(t):St_ k(t, s), x(s)ds where a is a positive constant, ke

C([to+a, ©)*; (0, o)) and there exists a constant ¢>0 such that k(, s)<c
eventually.
We shall prove that for the operator considered conditions H5-H8 are met.
If 0<x(@®)<y(t), then

UNO—ADO={" &t 93()—x(s)1ds =0

It is immediately verified that conditions H5 and H9 hold. x,, x€9,, k=
0,1, -, £irn xx()=x(), i.e., for any &¢>0 and each fixed number t{>t, there

exists k,>0 such that for k=%, we have |x,(t)—x()| <e/(ca).
Then
Lizg(aﬂx BO=(Ax)t).

Example 11. Consider the differential equation

e’—1
2e?

[e“[e“x'(z‘)]’]’—}—S:_1 e tx(s)ds=

et t=1. (32)

and the differential inequality

2__
1 y>1. (33)

t
t-1 2e? ’

[e-*te-tx'a)]']'ﬂ etx(s)ds<

Here (Jlx)(t):Sz le“‘x(s)ds. The functions ¢,(t)=1, c¢,(t)=c,()=e %, F(t, u)=u

z—
k(t, s)=e* ', wit)=(e?—1)/(12e?)e* satisfy the conditions of [Cheorem 1. Moreover,
y(t)=t, ¢*>0 is a solution of inequality such that tlim inf(Loy)#®)>0. Then

there exists a positive solution x of equation with the properties (3).
For instance, x(t)=e' is such a solution.

Example 12. Consider the differential equation
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52
et 0T+ emixods=25 e, 21, (34)
and the differential inequality
t 1—e?
[e“[e“x’(t)]’]’—{—gt_le"‘x(s)dsg gt et, t=1 (35)

Here (Jx)(t)zS:_le’"‘x(s)ds. The functions ¢,(t)=1, c,t)=c.(t)=e"!, F(t, u)=u
1—e? 1—e?

k(t, s)=es“§_l, C(t):‘—'z—e—{—et, w(t)zwe“,

satisfy the conditions of [Theorem 2. Moreover, y(t)=—te* is a solution of
inequality [(35).

Then there exists a negative solution x of equation (34) with the properties
).

For instance, x(t)=—e* is such a solution.
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