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Summary. Bahadur-type representations of nearest-neighbor and kernel esti-
mators of the conditional p-quantile #,(x) are obtained when the sample forms
a strictly stationary absolutely regular sequence of two dimensional random
vectors.

1. Introduction

Let {(X;, Z,)} be a strictly stationary sequence of two dimensional random
vectors defined on a probability space (R, &, P). For 0< p<1, let 8,(x) denote
the p-quantile of Z given X=x. Bhattacharya and Gangopadhyay [2] obtained
Bahadur-type representations of nearest-neighbor and kernel estimators of 6 ,(x),
when {(X;, Z,)} are independent and identically distributed random vectors.

In this paper, we will consider the analogous problem when {(X:, Z,)}
satisfies some mixing condition.

2. The main results

Let (X, Z) be a two-dimensional random vector. Let f be the probability
density function of X and g(-|x) the conditional density function of z and
G(-|x) the conditional density function of Z given X=x. The object is to
estimate 6,(x,), the conditional p-quantile of Z given X=x,. Since (0, 1)
and x, will remain fixed, we shall write 6,(x,)=8.

We will consider the following conditions :

Condition I.
(i) Sf(x)>0
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(ii) f”(x,) exists in a neighborhood of x,, and there exist positive constants
e and C such that |x—=x,| <& implies | f7(x)—f"(x)| SC|x—x,].

Condition II. |

(i) g(81x,)>0 and G(0|x0)=p. _

(ii) The partial derivatives g.,(z|x) and g.,(z]x) of g(z|x) and G..(z|x)
of G(z|x) exist in a neighborhood of (x,, #) and there exist positive -
constants € and C such that |x—x,|<e¢ and |z—@]|<¢ together imply
the following:

|2:(zI0)|SC,  |g:(z|%)|SC,  |£22(2]%0)|=C,
(2.1) | 8z2(2] %) —gz(2] %) | SC | x —X,],
|Gze(2|X)—G22(2|X,) | SClx—2%,].
By Condition II, # is uniquely defined by G(@|x,)=p.

Now, let {(X;, Z;): —o<i<oo} be an R’-valued strictly stationary sto-
chastic sequence which satisfies the following condition.

Condition III. There exists a nonrandom sequence {8(n)} for which the
following requirements are satisfied:
(i) B(n)!l0 as n—oo, and

(2.2) | S mpm< oo ;
(ii) {X,} is absolutely regular, i.e.,
(2.3) E sup |P(B|H(X))—P(B)|=B(n);
BEHZ(X)

(iii) {Z,} satisfies the conditional absolutely regular condition given HZ.(X),
ie.,
(2.4) E{ sup |P(D|M2AZ)X MHZe(X))—P(D| HZAX)} <B(n).

DEMZ)

Here, #%(W) denotes the o-algebra generated by W,, -, W, (a<b).

Assume that for each 7 (X;, Z,) has the same distribution as that of (X, Z).

Next, let Y=|X—x,|. Then, the probability density function fy of VY,
the conditional probability density function g*(-|y) and the conditional distribu-
tion function G*(-|y) are given, respectively, by the following equalities:

fr(P)=f(xo+y)+ f(xe—y),

@25) gzl y)= o (F(*ot 92z Xot 9+ f(Xo— 3E(z] xa— )},
fr(y)

1

GXaly)= fr(y)

{f(xe+3)G (2] %o+ )+ (x:— )G (2] 2o— )}




BAHADUR-TYPE REPRESENTATION 53

Note that
g*%(z|0)=g(z|x,), G*z|0)=G(z]|x,).

In what follows, we write
g(z|x0)=g(z) and G(z|x)=G(2).

Let YV,=|X,—x,| (1=1). Then, {(YV, Z,): i=1} is a strictly stationary ab-
solutely regular sequence such that each (Y;, Z;) has the same distribution
function as that of (¥, Z) and the sequence has the same coefficient 8(n) as
that of {(X;, Z,)}.

Let Y, .<-<Y,. . denote the order statistics of Y, .-, Y, and Z, ,, -,
Z ».» the induced order statistics of (Y, Z,), -+, Yo, Z,), i. €.,

Z".1;=Zj if Yn,i=Yj.

For any positive integer 2<n, the k-nearest neighbor (or %-NN) empirical
distribution function of Z (with respect to x,) is defined as

(2.6) G a(@)=k" B (Z0,452)

where I(A) denotes the indicator of the event A.
Now, the %£-NN estimator of 6 can be expressed as the p-quantile of Ga. .,
i.e.,

2.7) 0..»=the [kp]th order statistic of Z,.,, =+, Za.&

=inf{z: G 1(2)2 %}.

The kernel estimator of # with uniform kernel and bandwidth A can also
be expressed in the same manner, viz.,

—inflz: & LKL(h)p]
(2.8) 5n.k—1nf{z- G k,a(2)2 K.(h) }
where
(2.9) Ka(h)= 3 (v s—h—)=nF (—’1)
n & 1= 2 Y.n 2 »
and Fy,, denotes the empirical distribution function of Y, ---, Y ,. It is obvious
that the kernel estimators are related to the ~2-NN estimators by
(2.10) 5n.k=9n.xn(n)
where K,(h) is the random integer given by [2.9).
Let

2.11) I.(a, b)={k|[n**a]<k<[n'*b]} (0<a<b)




54 K. YOSHIHARA

and
(2.12) Jale, d)=[n %, n~%d]  (0<c<d).

In the sequel, we write “a.s.” instead of writing “ultimately holds almost
surely”.

Theorem 1. Put

@13 Gna—0=pO)(%)'+(kg®) " 3 {I(Z35,>0—1— P} +Ros

where
F(x0)G z2(01x0)+2f"(x6)G 2(6 | x,)
2.14 0)=—
@19 o) 247 (x)g(6)
and
(2.15) Z%X =G G*Z iV, 1<isn, n=l.
Then
(2.16) max |R, :|=0n"3%logn) a.s.
. kely(a,b)

Theorem 2. Put

~

@1T)  Gaa—0=p(B)f (x "
+{Inh (1@} IZE > 0)—(1— P} +RY.

where p(0) and Z%,; are the ones defined by (2.14) and (2.15), respectively.

Suppose that instead of Condition 11l the following more stringent condition
than Condition 11l is satisfied :

Condition IV. There exists a function ¢(n) of n (=1) for which the next
requirements are satisfied :

(i) ¢(n)]l0 as n—o and

(2.18) 3 i (m)<oo;
(i) {X:} is ¢p-mixing, i.e.,
(2.19) sup |P(B|M2(X))—P(B)|=¢(n)
BEMZ(X)

holds almost surely ;
(iii) {Z;} satisfies the conditional ¢-mixing condition given MZ.(X), i.e.,

(2.20) sup | P(D| Mu(Z)X HZe(X))—P(D| H=x(X))| < (1)

DEM(Z)

holds almost surely.
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Then
(2.21) sup )IR’,‘,‘,,, |=0(n"%"log n) a.e.

hedp(c, d

Remark. It is known that if {X;} is ¢-mixing, then {X;} is absolutely
regular.

3. Preliminaries

In this section, we prove lemmas which correspond to Lemmas 1-9 in [2].

We introduce the following notations:

X 1Y n.)=8n.:(*), G*(- Y n,0)=Gn, (),
3.1 k — k
gn.k(')zk—ltggn.i('), Gn,k('):k_lgcn.i(')~

Define 6,,, by
3.2) Cn.k(a-n.k)zp:G(e)-
Lemma 1. For B>b/f(x,)

(33) Y,,,E,.ua,,]_S_Bn‘”a a.s.

Proof. Put r=n*/® and
ﬂj;"l(yjén_lf’B) =s5=r).
Since Y., rs3>n"'rB if and only if 37, n,<[rb] we have
(3.4) P,,=P(Y,,_Em>n“rB)=P(§l(m—Em)<—n(En,—n'l[rb])).
We note here that
n(Er;,—n-l[rb])=n(S f(Wydt—n='[rb])
Sr(Bf(x,)—b)=c,n*/".

it-xgl<n-1rB

(3.5

On the other hand, by (2.2) and the fact that |5;| <1 we have
(3.6) E| g(ﬂj—Eﬂj)rgcnz
(cf. [7]). Hence, by (3.4)-(3.6) we have

3.7 P,<cn™%®

for all n sufficiently large.
Now, (3.3) follows from (3.7) and the Borel-Cantelli lemma. O




56 K. YOSHIHARA

Next, let Fy be the distribution function of ¥. Then, by Condition I the
following facts are obtained :
(i) h(u)=F%'(u) is defined for 0<u<¢ (¢ being some positive number) as
the uinque solution of Fy(h(u))=u,
(ii) A" is continuous at 0,

(i) AO)=h"0)=0, A O)={2f(x)}"",  A"Q)=—f"(x){8f*(xe)} *.

(See in [3].
Put

Ui=F®Y) (Gz]).

Then, it is obvious that {U,: i=1} is a strictly stationary absolutely regular
sequence of random variables such that {U;: i=1} has the same mixing coef-
ficient as that of {(X;, Z,): i=1} and each U; has the uniform distribution on
(0, 1). Further, let :

Un.i::FY(Yn,i) (1§1§n).

Since YV, < - £Y,. . are the order statistics in Y,, ¢=1, -+, n, 05U, < -~
U. .=<1 are the order statistics in U;, i=1, ---, n.

IA

Lemma 2. Put

(3.8) B NVE = {12 (xo)) "(£)2+R
. = n,it— (1] n n, ko
Then
3.9 max |R,, | =0(n"%°) a.s.
ksCrd]

where r=[n*/%].

Proof. We note first that for i 1<i<[rb])

Yn.i’:h(Un.i)
(3.10) = 1O+ RO, o+ 13, 4 CTn0 gy
h"(C, U,
= 2f (et U+ 2Tl gy

where {; is a random variable such that |{;|<1. Furthermore, letting Fy, .
denote the empirical distribution function of U,, -, U,,

i
Un,i——|= max
n 15i50rd]

max
1stsCrd]

Un.i_FU. n(Un.i)

= sup | Fya(u)—ul,
osusn-—1/6p
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so that by Theorem in (cf. in [1]) and the property of the
Kiefer process

(3.11) max

1sis071d]

Define random variables R, (1) and R, .(2) by

Un.i— %. =0(n""""(log log n)'/?)  a.s.

k k
(3.12) R Y = (2f(x0)} kT 3 Ub it Ras(),
(3.13) B UL =k 3 (2) 4 R k().

i=1 t=1\1

Then, by [3.10) and [(3.11) it is easily shown that
(3.14) max |R, .(1)|=0(n"*") a.s.,

1sksird]
(3.15) max | R, .(2)|=0(n"""(log log n)'/%) a.s.,

1sks(rd]
since
(A _ LR\ e
s max [ 2 (5) —5(5) |00,
Hence, is obtained from (3.12)-(3.16). d

The following lemmas and a corollary may be proved by the methods in
[2] and the proofs of them are omitted.

Lemma 3. The following expansions hold for the conditional probability
density function g*(z|y) and the conditional distribution function G*(z|y):

g¥(z] y)=g(2)+ —é— yq(2)+y°r(y, 2),

(3.17) 1
G*(ZIy)=G(2)+7yzQ(2)+ysR(;v, z),
where
g(2)=g(z|x,), G()=G(z|x,),
_ 2 (x0)8=(2] %)
(3.18) g(2)=gz2(2] o)+ F(x) ,
_ 21 (x:)G 2(2] %)
Q=G z(z|x0)+ F (%) ,

and there exist positive constants ¢ and M such that |q(2)|, 1Q(2)|, |r(y, 2)| and
| R(y, 2)| are all bounded by M for 0<y=<e and |z—¢|<e.

Lemma 4. For every B, there exist N and C such that in the sample space
of infinite sequences
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{((y1, 20), (Y2, 22), == )+ ¥:20, 2z real},
Y,,,[N,]an'”B implzes

3.19) max |6, ,—@0|<Cn-%°" for all n=N.

keln(a: b)
Corollary. For 0<a<b
(3.20) max |6, ,—0|=0(n"%") a.s.

keIp(a,b)

Lemma 5. For 0<a<b

(3.21) max |6, ,—0— p(ﬂ)(%)zl =0(n™*"%  a.s.,

kelp(a,b)

where 0(0)=—Q(0){24 f*(x,)g(0)} .
The following lemma is easily proved by the method in [5].

Lemma 6. Let {§;} be a nonstationary absolutely regular sequence such that
1§11 =M, and E§,=0. Suppose i=maxX,<;s, E2>0. Then, for the normalized
sum n~1%S,, the following inequalities hold when n is sufficiently large and m
(Zn) is an arbitrary positive integer :

If 0<t<(a8/Mo)n'?,

(m=112) Mt

-1/2 — J— i

(322) P(n*(S,| 20 < 2mexp] ot (1 og(mn)l/2>}+4m‘8(m).
Let a,=n"*"logn and put

(3.23) Ap={w| max [0, ,—0,,|>a,} (n=1).

kSIp(a.b)

Further, fix C1(>b/f(xo)) and write
(3.24) Bn={a)|Yn,[”,3§C1n'”5} (ngl).

Lemma 7. Suppose 9,..’s are MZ«(X)-measurable random variables with
(3.25) [ 90, 2—0n, 2 | SCon~?*log n=¢,(C,).

Then, there exists Cs such that

Sin max P(1{Gns@n 0)—Cos(Gn. o)}
(3.26) n=1 kelp(a.b)

—{Gn 0. 2) =G 2(07, 1)} | >Csn-%® logn)<co.

Proof. Put
Vn. k.izl(én, k<Zn,i§19n. k)
and
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'[«ln,k,i—_-Gn.i(ign.k)—Gn,i(ﬁ-n,k)ZE(Vn. kil HMZ(X)) .

Then
{GAnk(‘gn. k)_én, k(én, k)} '— {Gn k(’gn, k)—én, k(a-n. k)}
(3.27) k
=k_lg(vn. k.i_,un. k.i) .
Since

l'lgn. k—'én, k I ésn(cz)z Czn—z/s log n,

implies that there exists C, and N such that for n>=N and for z
lying between 4, , and 4, .,

lz2—0 | <Con 2 logn+Cin~28<26,(C,)

holds on the set B,. Using the Bhattacharya and Ganpopadhyay method [2]
we conclude that

max |, .| S28(0)e.(Co)=¢¥,  (say),

15t<(rd]
which implies
(3.28) max varV, , ;< max |, | Se¥.
1sis(rd] 1sis(rd]

Therefore, by condition III (iii), and we have that for large n

max P(‘ k_lél(vn, ki Un, )

>Cyn-3%log n)

kelp(a,b)
k
— -1 e . -3/b6 o
(3.29) =, max EP([E 5 (Vo fta1.0| > Can" log | H=u( X))
(m~1/%¢) 2t
=2m exp {" 2¢k " eXmn)'? )} +4mp(m)
where m=n'* and t=n""%log n. :
Now, follows from and (3.29). , a
Lemma 8.
(3.30) | P(An i.0)=0.
Proof. Let

Do, i=I(Zn,i=0n, 4 —p)—Gn,i(On s —a5).
Then, 6, <6, .—a, implies
1e ) L@l_" g
k tgnn.k.tg k n.k(on,k an)-

It follows from that on the set B,
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[kp] = 4 1

when n is large. Hence, by the above method we get

SUP( min (Bp1—0n )< —an)<oo

a=1 kelp(a.b)

which implies

P( min (Bn2—0.0)<—a, i.0.)=0.
kcIp(a,b)

In the same way,

P( max (9,,,,,—9,,,;,)2&,. i.o.)=0,
keln(a,b)

and the proof is completed. 0
Next, let b,=n'/® and divide the interval
[én,k_an; én.k+an]
into 2[b,] equal intervals:
Jj@n

fn.h.;=[5n.,.+—bn—, (;n,,,+_<ii;)1n>a_»]

z[d'ﬂ-k..f! dn'k']+1] (].=—bn: Y _1y 0) 1) Tty bn_l),
each of length a,/b,=n"*%logn. Let

Hn, k(z)': {én,k(z)_én, Ic(én. k)} - {(Cn k(z)_én. k(én, k)}’

(3.3D) His= sup  |Hua(@|= sup [Hua(@)l,
12-0p glsan : €l &, 5
Hi= max [H7.|.
kelp(a,b)

Lemma 9. For large C

3.32) PHYX>Cn*®logn i.0.)=0.

Proof. It follows from the monotonicity of G, .(-) and G, .(-) that for
ZEJ:‘[dn.k.j; dn.k.j+1]

Hn. k(dn, k.j)‘_an, k.jéHn. k(z)éyn. k(dn, k.j+1)+an. k. J»y

where
g, k.j=an. #(da, k.j+l)_én. #(dn, k1)
Hence,
H%x= _sup |H, (2]

Il"on_ klsan
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< max |Hn.k(dn.k.j)l+ max a@q,p.;.
~bpsisby —bpsisbp-1

Then, by Lemmas 3 and 4

max dn..;<2g(0)n"**logn
~bpsisby -1

on the set S, when n is large. Consequently, by the previous method we have
that for M sufficiently large

) PUHE>(M+2g(0)n~*" log )

<VP( max  max |Hn s(dn s >Mn-%logn)+ g:lP(Bi.) < o,

n=l kelp(a,b) -dpsisbp-1

which implies (3.32). O

Lemma 10.

(3.33) D—Gr 1202, )=0O(n"%%logn) a.s.

Proof. By Lemmas 8 and 9, we have
p_én.k(én,k)zén,k(é'n,k)—(-;n.k(én.k)+Rn.k(1)
(3.34) )
——-(ﬁn.k_én.k)gn,k(o;':.k)'*'Rn,k(l)
where 8%, lies between f, . and f,,, and

(3.35) max > |R,. (1) =0(n"%*%log n), a.s.

kelpy(a,

By Corollary to Lemma 4 and Lemma 8

max |0% ,.,—60|=0(n"%"logn), a.s.
kely(a,d)

Consequently, by Lemmas 1 and 3 we have

(3.36) max |gax(0%.2)—g(0)|=0(n"**logn), a.s.
kely(a,d)
Now, (3.33) follows from (3.34)-(3.36). |
4. Proofs

Using lemmas in the preceding section we can prove Theorems 1 and 2 by
the identical methods to those of [2]. We write here only the outlines of
those methods.

Proof of Theorem 1. From (3.34)-(3.36), we have
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\T8X |04, )= {80} L p—Cna0a D] =0(n"" log ), a.s.

Since
p=Go s B, )=k B (Z 0, >80, )= {1~GCo.sBn. )],

we have the following representation :

4.1) 9n,k=6n,k+{kg(0)}_l${I(Zn.i>én,k)_{l_Gn,i(gn.k)}]+Rn.k
and

4.2) ‘max |R, .|=0(n"%"logn), a.s.

kelp(a,b)
This representation can be easily modified to two other slightly different
forms, viz.

4.3 9n_,,=5,,,k+{kg(a)}-1$[I(Z,,,,->0)—<1—Gn,¢(0))J+R,,.k
and

4.4) 9,,,,,=é,,,k+{kg(o)}-lz’::[l(zz,po)— {1—G(O} 1+ Rn. 4,
where in both and

max |R, .|=0(n"*%logn) a.s.,
kely(a,b)

Z%:=G G i(Z41)

and G(-)=G(-|x,) is the conditional distribution function of Z given X=x,.
Combine [Lemma 5 with and note that G(6)=p to complete the proof of
Theorem 1.

Proof of Theorem 2. The kernel estimator §,, can be regarded as the
NN estimator §, g, in which K,(h) is a random integer given by [2.8]. A
formal substitution for k2 by K,(h) in the representation given in
leads to

K.(h) 1 Kp(n)
45 Gna—0=p(O){2 } + g 5 U Z5>O—1=PI+Ra kyo
Thus, it is enough to show that
@) sup |Rq x,m | converges at a fast rate, '
heJ,,(c d)

where J,=[n"'%c, n '%d], 0<c¢<d, and

(b) in the first two terms of the right hand side of (4.5), K,(h) can be
replaced by the leading term of its deterministic component without slowmg
down the rate of convergence of the remainder term.

(a) and (b) can be shown by Condition IV and the following lemma.
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Lemma 11. Let A,(h)=K,(h)—nhf(x,). Then
(4.6) sup |A,(h)|=0(n?*%logn) a.s.

hed p(c, d)

To prove we need the following lemma which is essentially due
to Lemma 2.1 in [4]. (See also Lemmas 2.1.2 and 2.1.3 in [8].)

Lemma A. Let {{;} be a strictly stationary sequence of zero-mean Bernoul-
lian random variables with Var ({;)<B. Suppose {{:} is ¢-mixing and T¢(n)< .
Let v, be the smallest positive integer such that ng()/i<1. Let a, A be positive
numbers and N some positive integer obeying the relationship a*NB=<A* and
ary<A. Then, for all n<N and ¢>0, there exist constants K,, K, K, such that

@.7) (| B z2k0) < K,e-a+K3Nrg,—1(-i-)'“.

The constants K,, K,, Ky are independent of 2, a, B and N; however K, may be
depend on c.

Now, we prove Lemma 11

Proof of Lemma 11. It is easily shown that if heJ,(c, d), then by Condi-
tion I

@8  EIY.sg)—hGo=" (7t i dy—hf(x)
| =0(n"%").
We note that

Le=3{1(v.s2)-EI(V.s )}

i=1

is a partial sum of a strictly ¢-mixing sequence
h h
€ ={1(vi=5)-E1(v. =)}
of zero-mean Bernoullian random variables, and

Var (§)=0(Fy(M)=<Coh.

Hence, by Lemma A with a=C,logn, B=dC,n'® A=C,n'*logn (C, and C,
being suitable positive constants) we can prove that

4.9) L,=<Cyn*®logn a.s.

for some C; (>0) which is independent of n. Hence, follows from
and 0
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From and the fact that

max |R, .|=0(n"*"%logn) a.s.
kely(a.b)

it now follows that

sup | Ra x,m|=0(n"*"logn), a.s.

kST p (e, d) .
We consider the first two terms on the right hand side of (4.5). Of these,
K.(h)\ ,
OV = 0(6) (xRt 4 R,
where
Aq(h) Aq(h)
’ _— 2 2
na=p(O) f R G {2 }

nhf(x,)
and by ~

sup |Ry..|=0(n"*%logn) a.s.
hGJn(C. d)

To examine the other term, let

Un1=1(Z%,:>0)—(1—p), ma(h)=[nhf(x,)].

Then
1 K,,m)U 1 mn(mU pr P
man(h)
(4.10) gy — Anh) L

Ko(h) mu(g®) & Umer

" _l_An(h) 1 Knpth) _mn(n)
MR Ka(h) mn(h)g(a)[ 2 Uni— 2 Un.i]

t=1
where {U,,,, '+, Ua,x} satisfies the conditional ¢-mixing condition given HZ.(X),
with

EWUn, | M2(X))=0.

Since the analogous assertion to Lemma A (which, in later, will be called
Lemma B) is easily proved for partial sums of the conditional ¢-mixing sequence,

from Lemma 11 we obtain
4.11) sup |R4..1=0(n"3%"logn) a.s.

hed p(c, d)
Next, let ko< hy, << h,,,, denote the jump points of m,(h)=[nhf(x,)]

in Ja(c, d). Since for each j and for all A, ;Sh<h,, i,
Kp(h) man(h)

2 Un.i_ 2 Un,i
i=1

i=1

Kp(hp, manlhn, ;)

Un,i_" 2 U‘n.t
i=1

+ {I{n(hn.j+1)—Kn(hn,j)}
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we only need to verify

KnChn, mp(hp, 7
(4.12) max 2 Uni— 2 U, :|=0(n'"logn) a.s.
0sjsvy i=1 i=1
and
(4.13) 01323( {Ka(han, s01)— Ka(hy,, )} =0(n*®logn) a.s.

in order to conclude in (4.10)

sup |R% ,|=0(n"%%logn) a.s.
heJp(c, d)

We note here that
R jir—ha ;S{nf(x0)} ' and v, <n**(d—c)f(x,).
Hence, using the relations

Kn(hn.jﬂ)"'Kn(hn.j)

=L B {i( v )

ﬁg-i <Y,< hnéj“)}

+0([hn.j+1—hn,j|)
and for some C, (>0)
P(OISI},%;X | Kn(ha, j40)—Kn(ha, ;)| 2 Cin''® log n)

= jz PUKn(ha, o) —Kn(hn )| = Con'¥ log n),

from Lemmas B and 11 we have [4.13). Similarly, we can obtain from
Lemmas B and 11. Thus, we have the desired conclusion. O
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