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Introduction

S. F. Bellenot defined and studied the James sum (in short, J-sum) of a
sequence <{X,> of Banach spaces, as a generalization of the classical James
space J [3], and gave concrete examples of the motivating James-Lindenstrauss
result ([4], [8]) that every separable Banach space £ can be realized as the
quotient X**/X for a suitable Banach space X with shrinking basis. A.D.
Andrew and W.L. Green studied / as a Banach algebra and characterized
the automorphisms of J in terms of certain permutations in N. In an earlier
paper we defined and studied the J-sum J(X,) of an increasing sequence
{X,> of Banach algebras and their operator theory. The purpose of this paper
is to study automorphisms on J(X,) and the associated algebra J(X,):/¥.

There are two basic types of automorphisms on J(X,): one which leave
each X, invariant, i.e. the so-called invariant automorphisms, and the other
obtained by permuting X,’s amongst themselves whenever permissible. In the
case of J, each X,=R is one dimensional, and the only way to obtain automor-
phisms on J is through permutations of basis elements. Since the basis of J is
conditional, not every permutation on N gives rise to an automorphism. The
permutations which do give rise to an automorphism on J/ have been character-
ized in [1], Theorem 4.7. It is easy to see that if each R is replaced by a
general Banach algebra X then the same characterization holds for such auto-
morphisms of the algebra J(X,) with X,=X for each n, which may also be
denoted by J(X) in view of [10]. Further the same characterization can be
readily modified to be applicable to this type of automorphisms of J(X,) when
there is =N such that X,=X, for all n=>7.

In this paper we study the invariant automorphisms on J(X,) and J(X,):'¥
with emphasis on the case when each X, has a basis {e}: jed,} A,cA,,, and
ej=e}™ if j=A,. An operator T on J(X,) is called invariant if it leaves each
X, invariant. Invariant isometries on J(X,) and J(X,)*' were characterized
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in the more general setting of Banach spaces with certain compatibility condi-
tions in [7]. The theory of invariant operators developed in (see also [5])
can be used to advantage to study automorphisms on J(X,) and J(X,):'¥. In
this sense this paper may well be regarded as continuation of and we freely
borrow the notation, terminology and results from there, e. g. for j (Y ,) see
§ 2.4 where we confine ourselves to the case when Y ,=B(X,) for each n, see
also ([9], [5], Remark 1.6.3), for [|-[l and spaces like Inv B(J(X,)*'¥), Jr(X,) and
f r(Y,) see § 2.5 and for operators 8 and 6 see §1.6. In a forthcoming paper we
note that Jp(X,) is isomorphic to ¢,(X,), the space of null sequences <{x,> with
%, in X, for each n; however, J7(X,) has much fewer isometries compared
with co(X.) (Presented at Conference of Society of Mathematical Sciences at
South Delhi Campus, Delhi, July 1992).

As in [6], the J-sum of an increasing sequence <{X,)> of closed subalgebras of
a Banach algebra Z with X,+ {0} is defined as follows:

For x=<x,>, x,€X, for each n, and for P={p,, :--, px} =P (here L is the
set of finite increasing sequences of non-negative integers), let

k-1
”x”12’= Ex nxpi——xp‘+1”2+”xpk“2
where, for notational convenience, we set X,={0}. Define
2x|l3=s 2.
fxlts sup lixll2
Then ||-||; is a norm on the space
H(Xn)={x=(x>: x,€X, for each n, x, is zero for all but finitely many »’s}

and its completion is called the J-sum of X,’s and is denoted by J(Xj,).

We assume that for each n and a, bsX,, [ab|<1/2|alllbl, or introduce
an equivalent norm in each X, in the beginning, if the need be, and then
(J(X.), I-l;) is a Banach algebra. The Banach algebra (J(X,)X'¥, ||-{,) is
defined as

JX )M = {x=(x,>: x,=X, for each n, | x||;<oo}.
Invariant Operators on J(X,) and J(X,)-'¥

1. Let <T',> be a sequence with T, B(X,)=Y, for each n.

(a) We say <T,> is eventually compatible (cf. [7], p.116; [2], p.100) if
there exists meN: T,|Xn-1=T,-, for all n=m. Obviously such a <7,)> with
sup, | Tall< oo is in J(¥,)-1%.

(b) We next consider <T',> such that there is a family {S.:acsA4} of
operators on Z such that for each n, T,=S,|X, for some acA. If A is finite
say A=1{1, 2, -+, I} then <T,>f (Y, )'¥ if and only if <T,> is eventually com-




THE JAMES SUM OF BANACH ALGEBRAS 3

patible. Sufficiency is obvious being only a special case of (a) above. To see
the necessity we observe that eventual compatibility amounts to saying that
eventually only one of S,, ---, S, survives. Suppose, on the other hand, we as-
sume that two of them, say S,, S; occur infinitely often. Let i=N: 1(S:—S2) | Xi|
=k>0. We can choose sequences np, {np in N:isn,<ni< - <m;<ni<
Ny< -, Tay=35]X,, and T,,:]:S,{X,.rj for each j. Let, for each r&N P™
={ny, ni, -+, n,, n3}. Then KT, D] pr»>+/Fk. This shows that IKT>T is not
finite.

On the other hand for any non-zero S= B(Z) which satisfies SX,cX, for
each n, let, for each », S,=(1/n)S and T,.=S.|X,. Then <T,,>ej(Y,,)“".
This shows that eventual compatibility is not necessary for <T,> to be in
J(Y )L™ when A is infinite.

However, it is so when X,’s have bases satisfying certain conditions and
T,’s are automorphisms as the following result shows:

2. Proposition. Let, for each n, Apnc Ay <N and X, have a symmetric
and orthogonal basis {e%: j=A,}, ej=e}* if j€A,, and let, A,=N N n=r for
some r<N. Suppose there exists K such that for each n and for each je4,,
le}|<K. Let for each n=>r, k,,=i¢i§1efN[|e’;—e’;H. If k=liminf k,>0, then <T,>

eJ (Y )E if and only if {T,) is eventually compatible.

Proof. We need prove only necessity. We first note that the condition

liminf 2,>0 is equivalent to the condition Eukzzoo for MS N, M infinite.
ne.

If <T,) is not eventu'ally compatible, then there exist sequences <n,), {n3> in
N:rn,<ni< - <n;<nj<ng,< - and Tyl Xn;#Tn; YV jEN. Since automor-
phisms take basis elements into basis elements, there exist for each 7, indices

ip ly#my: (Tuy=Th JeH)=elj—en). S0 | Tuyl Xo,— T P2 llelf— e I/l 2l

k/K. Since |KTwT*Zsup 331 Tw—T, |I* we have [<T,>[=co.
geN j=1

3. Remarks. (a) A common illustration is provided by taking X,=[, V n.
In this case the basis is orthogonal, symmetric and normalized and le?—e}ll=
V2 Vi#jeN, Vn.

(b) If T=B(KTr) is in B(J(X,)) (respectively B(J(X,) ') and is onto
J(X,) (respectively J(X,) ) then each T, is onto.

(¢) If T=B(T,>) is in B(J(X,)) and has closed range then ontoness of each
T, implies that of T for the simple reason that #(X,) is dense in J(X,).

(d If T=B(KT,>) is in B(J(X,)“*¥) and has closed range then ontoness of
each T, and eventual compatiblity of (T,> implies that T is onto. For this we
observe that the eventual compatiblity together with ontoness of each T, implies
that T|2(X,) is onto 2(X,). Ontoness of T now follows from the density of
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Q(X,) in J(X,)*'¥ and the hypothesis that the range T is closed.

(e) The eventual compatibility in (d) above can in fact be replaced by the
following weaker condition: for each j€ N and each x,€X; there exists me N:
Tl (x)=Tn'(x;) for all n=m because this together with ontoness of each T,
also gives that T|Q(X,) is onto Q(X,). For this we consider some x=£2(X,).
Then there exists jeN: x,=x; for n=j. Let m=; be such that TRx;=TH
x;=yn say for n=m. Also by ontoness of T,’s, for each n<m there exists
y.EX, such that T,y, equals x, for n<j and equals x; for j<n<m. Then
y=(y>=R(X,) and BT H)y)=x.

4. Proposition. Let <T,> be such that T,’s are invertible.
(i) Suppose that <TZye (¥ )F ™.
@) If T=BKTD)EBJ(X)F™), then T(J(Xn) *)=J(Xa) M.
(b) If T=BKT»)EBJ(Xy), then T(J(Xa))=J(Xx).
(ii) If T=BKT»)EB(J (X)) and it is onto ](Xn)"”‘, then <TRHe
JEH(Y ).
(iii)y If T=BKT))EB(J(X.) and it is onto J(X3), then T3 1>‘=]’T*“"(Y,,)

Proof. (i) It follows from [6, Theorem 2.6 (i)] that BTz e
Inv, B(J(X,)E'™). So in case (a) T '=B({T3") exists an operator on J(X )M
to itself and thus T is onto J(X,)*’¥. Similarly for the case (b).

(ii) By the open mapping theorem T is open and thus T“-ﬁ((T,,‘)) is -
bounded. We now apply [6, Theorem 2.6 (iii)].

(iii) It follows on the same lines as (ii) by noting that the map @ in [6,
Theorem 2.6 (iii)] may also be taken on operators on J(X,) and then applying
this theorem.

'5. Proposition. Let <T,> be a sequence of operators, TneB(an such that
T=B(T.) is in BUX)*) or BJ(Xa). T is a homomorphism, a Jordan map
or a derivation if and only if each T, is so.

6. Theorem. Let <T,> be va sequence such that T=B(T»>) is in B(J(X,)*1¥)

(or B(J(Xa))).
(i) If each T,, is an automorphism and <T7;>E JV )L™ then T is an auto-
morphism.

(ii) If T is an automorphism then each T, is an automorphism and <T3'>€
THHY ).

Proof. (i) By Proposition4 (i) T is onto J(X,)*'¥ (or J(X,)). Further
T is a homomorphism by Proposition 5. Thus 7 is an automorphism.
(ii) By Proposition 5 each T, is a homomorphism. Since T is onto, by
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Proposition 4 (ii) and (iii), <T;‘>ef%”’(Yn). Also by Remark 3 (b) each T, is
onto and so an automorphism.

7. Examples. Let for each n, X, have a symmetric and orthogonal basis
{e?, ic A,, Ay N, A,=A,,, and e?=e?** if j&A,}. Then a permutation ¢ on
A, gives rise to a permutation operator 7', which is an automorphism on X,.
T3! is the automorphism on X, generated by the permutation ¢~! on A,.

(i) By Theorem 6 (i) if <T7'>&f(Y,)2' then T=B({T,>) is an invariant
automorphism on J(X,)t!¥ (or J(X,)). Further, if A4, is finite for each n, and
sup #4,<co, by §1 (b), <T,,>e]~(Yn)L“"r if and only if <T,> is eventually com-
patible. »

(ii) Let, for each n, X,=R?. If (T,) is a sequence of permutation operators
on X,’s which is eventually compatible say after m’* term for some m&<N,
then T=B(T,>) is an invariant automorphism on J(X,)*'¥ (or J(X,)). The
cardinality of these invariant automorphisms is sup 2™=2¥,, the least infinite car-
dinal number. mer

(iii) The cardinality of invariant automorphisms which come from eventually
compatible sequences of permutation operators on X,’s is ¥, if sup#4,<c and
is ¥ (the cardinality of the continuum) if there exists reN: A,=N (¥ n=7).
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