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Introduction

S. F. Bellenot [2] defined and studied the James sum (in short, J-sum) of a
sequence $\langle X_{n}\rangle$ of Banach spaces, as a generalization of the classical James
space $J[3]$ , and gave concrete examples of the motivating James-Lindenstrauss
result ([4], [8]) that every separable Banach space $E$ can be realized as the
quotient $x**/X$ for a suitable Banach space $X$ with shrinking basis. A. D.
Andrew and W. L. Green [1] studied $J$ as a Banach algebra and characterized
the automorphisms of $J$ in terms of certain permutations in $N$ . In an earlier
paper [6] we defined and studied the J-sum $J(X_{n})$ of an increasing sequence
$\langle X_{n}\rangle$ of Banach algebras and their operator theory. The purpose of this paper
is to study automorphisms on $J(X_{n})$ and the associated algebra $J(X_{n})^{LIM}$ .

There are two basic types of automorphisms on $J(X_{n})$ : one which leave
each $X_{n}$ invariant, $i$ . $e$ . the so-called invariant automorphisms, and the other
obtained by permuting $X_{n}’ s$ amongst themselves whenever permissible. In the
case of $J$ , each $X_{n}=R$ is one dimensional, and the only way to obtain automor-
phisms on $J$ is through permutations of basis elements. Since the basis of $J$ is
conditional, not every permutation on $N$ gives rise to an automorphism. The
permutations which do give rise to an automorphism on $J$ have been character-
ized in [1], Theorem 4.7. It is easy to see that if each $R$ is replaced by a
general Banach algebra $X$ then the same characterization holds for such auto-
morphisms of the algebra $J(X_{n})$ with $X_{n}=X$ for each $n$ , which may also be
denoted by $J(X)$ in view of [10]. Further the same characterization can be
readily modified to be applicable to this type of automorphisms of $J(X_{n})$ when
there is $r\in N$ such that $X_{n}=X_{r}$ for all $n\geqq r$ .

In this paper we study the invariant automorphisms on $J(X_{n})$ and $J(X_{n})^{LIM}$

with emphasis on the case when each $X_{n}$ has a basis $\{e_{j}^{n} ; j\in\Lambda_{n}\}\Lambda_{n}\subset\Lambda_{n+1}$ and
$e_{j}^{n}=e_{j}^{n+1}$ if $j\in\Lambda_{n}$ . An operator $T$ on $J(X_{n})$ is called invariant if it leaves each
$X_{n}$ invariant. Invariant isometries on $J(X_{n})$ and $J(X_{n})^{LIM}$ were characterized
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in the more general setting of Banach spaces with certain compatibility condi-
tions in [7]. The theory of invariant operators developed in [6] (see also [5])

can be used to advantage to study automorphisms on $J(X_{n})$ and $J(X_{n})^{LIH}$ . In
this sense this paper may well be regarded as continuation of [6] and we freely
borrow the notation, terminology and results from there, $e$ . $g$ . for $J(Y_{n})$ see
\S 2.4 where we confine ourselves to the case when $Y_{n}=B(X_{n})$ for each $n$ , see
also ([9], [5], Remark I.6.3), for $\Vert|\cdot\Vert|$ and spaces like Inv $B(J(X_{n})^{LIr}),$ $J_{T}(X_{n})$ and
$\tilde{J}_{T}(Y_{n})$ see \S 2.5 and for operators $\beta$ and $\theta$ see \S 1.6. In a forthcoming paper we
note that $J_{T}(X_{n})$ is isomorphic to $c_{0}(X_{n})$ , the space of null sequences $\langle x_{n}\rangle$ with
$x_{n}$ in $X_{n}$ for each $n$ ; however, $J_{T}(X_{n})$ has much fewer isometries compared
with $c_{0}(X_{n})$ (Presented at Conference of Society of Mathematical Sciences at
South Delhi Campus, Delhi, July 1992).

As in [6], the J-sum of an increasing sequence $\langle X_{n}\rangle$ of closed subalgebras of
a Banach algebra $Z$ with $X_{1}\neq\{0\}$ is defined as follows:

For $x=\langle x_{n}\rangle,$ $x_{n}\in X_{n}$ for each $n$ , and for $P=\{p_{1}, \cdots p_{k}\}\in \mathcal{P}$ (here $\mathcal{P}$ is the
set of finite increasing sequences of non-negative integers), let

$\Vert x\Vert_{P}^{2}=\sum_{=1}^{k-1}\Vert x_{p_{\ell}}-x_{p\ell+1}\Vert^{2}+\Vert x_{p_{k}}\Vert^{2}$

where, for notational convenience, we set $X_{0}=\{0\}$ . Define

$2\Vert x\Vert_{J}^{2}=suP\in g^{\Vert X\Vert_{P}^{2}}$ .

Then $\Vert\cdot\Vert_{J}$ is a norm on the space

$\phi(X_{n})=$ { $x=\langle x_{n}\rangle;x_{n}\in X_{n}$ for each $n,$ $x_{n}$ is zero for all but finitely many $n’ s$}

and its completion is called the J-sum of $X_{n}’ s$ and is denoted by $J(X_{n})$ .
We assume that for each $n$ and $a$ , $b\in X_{n}$ , $\Vert ab\Vert\leqq 1/2\Vert a\Vert\Vert b\Vert$ , or introduce

an equivalent norm in each $X_{n}$ in the beginning, if the need be, and then
$(J(X_{n}), \Vert\cdot\Vert_{J})$ is a Banach algebra. The Banach algebra $(J(X_{n})^{LIK}, \Vert\cdot\Vert_{J})$ is
defined as

$J(X.)^{LIM}=$ { $x=\langle x.\rangle:x_{n}\in X_{n}$ for each $n,$ $\Vert x\Vert_{J}<\infty$ }.

Invariant OPerators on $J(X_{n})$ and $J(X_{n})^{LIK}$

1. Let $\langle T_{n}\rangle$ be a sequence with $T_{n}\in B(X_{n})=Y_{n}$ for each $n$ .
(a) We say $\langle T_{n}\rangle$ is eventually compatible (cf. [7], p. 116; [2], p. 100) if

there exists $m\in N:T_{n}|X_{n-1}=T_{n-1}$ for all $n\geqq m$ . Obviously such a $\langle T_{n}\rangle$ with
$\sup_{n}\Vert T_{n}\Vert<\infty$ is in $\tilde{J}(Y_{n})^{LI}$“.

(b) We next consider $\langle T_{n}\rangle$ such that there is a family $\{S_{\alpha} : a\in\Lambda\}$ of
operators on $Z$ such that for each $n,$ $T_{n}=S_{a}|X_{n}$ for some $\alpha\in\Lambda$ . If $\Lambda$ is finite
say $\Lambda=\{1,2, \cdots , 1\}$ then $\langle T_{n}\rangle\in J(Y_{n})^{LIH}$ if and only if $\langle T_{n}\rangle$ is eventually com-
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patible. Sufficiency is obvious being only a special case of (a) above. To see
the necessity we observe that eventual compatibility amounts to saying that
eventually only one of $S_{1},$ $\cdots$ , $S_{\ell}$ survives. SuPpose, on the other hand, we as-
sume that two of them, say $S_{1},$ $S_{l}$ occur infinitely often. Let $ i\in N:\Vert(S_{1}-S_{g})|X_{i}\Vert$

$=k>0$ . We can choose sequences $\langle n_{f}\rangle,$ $\langle n_{f}^{\prime}\rangle$ in $N:i\leqq n_{1}<n_{1}^{\prime}<\ldots<n_{j}<n_{j}^{\prime}<$

$ n_{J+1}<\ldots$ , $T_{n_{j}}=S_{1}|X_{n_{j}}$ and $T_{n_{j}^{\prime}}=S_{g}|X_{n_{f}^{\prime}}$ for each $j$ . Let, for each $r\in NP^{(r)}$

$=\{n_{1}, n_{1}^{\prime}, \cdots n_{r}, n_{r}^{\prime}\}$ . Then $\Vert\langle T_{n}\rangle\Vert_{P^{(r)}}\sim>\sqrt{\gamma}k$ . This shows that $\Vert\langle T_{n}\rangle\Vert\sim$ is not
finite.

On the other hand for any non-zero $S\in B(Z)$ which satisfies $SX_{n}\subset X_{n}$ for
each $n$ , let, for each $n,$ $S_{n}=(1/n)S$ and $T_{n}=S_{n}|X_{n}$ . Then $\langle T_{n}\rangle\in J(Y_{n})^{LIK}$ .
This shows that eventual compatibility is not necessary for $\langle T_{n}\rangle$ to be in
$J(Y_{n})^{LIH}$ when $\Lambda$ is infinite.

However, it is so when $X_{n}’ s$ have bases satisfying certain conditions and
$T_{n}’ s$ are automorphisms as the following result shows:

2. Proposition. Let, for each $n,$ $A_{n}\subset\Lambda_{n+1}\subset N$ and $X_{n}$ have a symmetric
and orthogonal basis $\{e_{j}^{n} : j\in\Lambda_{n}\},$ $e_{j}^{n}=e_{f}^{n+1}$ if $j\in\Lambda_{n}$ , and let, $\Lambda_{n}=N\forall n\geqq\gamma$ for
some $r\in N$ SuppOse there exists $K$ such that for each $n$ and for each $j\in\Lambda_{n}$ ,
$\Vert e_{f}^{n}\Vert\leqq K$. Let for each $n\geqq r,$

$ k_{n}=\inf_{\ell\neq f\in N}\Vert e_{i}^{n}-e_{j}^{n}\Vert$ . If $k=\lim\inf k_{n}>0$, then $\langle T_{n}\rangle$

$\in j(Y_{n})^{LIK}$ if and only if $\langle T_{n}\rangle$ is eventually compatible.

Proof. We need prove only necessity. We first note that the condition
lim $infk_{n}>0$ is equivalent to the condition $\sum_{n\in H}k_{n}^{2}=\infty$ for $M\subseteqq N,$ $M$ infinite.
If $\langle T_{n}\rangle$ is not eventually compatible, then there exist sequences $\langle n_{j}\rangle$ , $\langle n_{j}^{\prime}\rangle$ in
$ N;r\leqq n_{1}<n_{1}^{\prime}<\ldots<n_{j}<n_{f}^{\prime}<n_{j+1}<\ldots$ and $T_{n_{j}^{\prime}}|X_{n_{j}}\neq T_{n_{j}}\forall j\in N$. Since automor-
phisms take basis elements into basis elements, there exist for each $j$, indices
$l_{f},$ $l_{j}\neq m_{j}$ ; $(T_{n_{j}^{\prime}}-T_{n_{j}})(e_{\ell_{j}}^{n_{j}})=e_{\ell_{j}}^{n_{j}}-e_{m_{j}^{j}}^{n}$ . So $\Vert T_{n_{f}^{\prime}}|X_{n_{j}}-T_{n_{j}}\Vert^{2}\geqq||e_{\ell}^{n}\ell-e_{m_{f}}^{n_{j}}\Vert/\Vert e_{\ell}^{n}\ell\Vert\geqq$

$k/K$. Since $\Vert\langle T_{n}\rangle\Vert^{8}\geqq\sup_{q\in Nf}\sum_{\Leftarrow 1}^{q}\sim\Vert T_{n\}}-T_{n_{j}}\Vert^{2}$ we have $\Vert\langle T_{n}\rangle\Vert=\infty\sim$ .

3. Remarks. (a) A common illustration is provided by taking $X_{n}=l_{s}\forall n$ .
In this case the basis is orthogonal, symmetric and normalized and $\Vert e_{\ell}^{n}-e_{f}^{n}\Vert=$

$\sqrt Z\forall i\neq j\in N,$ $\forall n$ .
(b) If $T=\beta(\langle T_{n}\rangle)$ is in $B(J(X_{n}))$ (respectively $B(J(X_{n})^{LIg})$ and is onto

$J(X_{n})$ (respectively $J(X_{n})^{LIH}$) then each $T_{n}$ is onto.
(c) If $T=\beta(\langle T_{n}\rangle)$ is in $B(J(X_{n}))$ and has closed range then ontoness of each

$T_{n}$ implies that of $T$ for the simple reason that $\phi(X_{n})$ is dense in $J(X_{n})$ .
(d) If $T=\beta(\langle T_{n}\rangle)$ is in $B(J(X_{n})^{LIK})$ and has closed range then ontoness of

each $T_{n}$ and eventual compatiblity of $\langle T_{n}\rangle$ implies that $T$ is onto. For this we
observe that the eventual compatiblity together with ontoness of each $T_{n}$ implies
that $T|\Omega(X_{n})$ is onto $\Omega(X_{n})$ . Ontoness of $T$ now follows from the density of
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$\Omega(X_{n})$ in $J(X_{n})^{LIM}$ and the hypothesis that the range $T$ is closed.
(e) The eventual compatibility in (d) above can in fact be replaced by the

following weaker condition: for each $j\in N$ and each $x_{j}\in X_{j}$ there exists $m\in N$ :
$T_{n}^{-1}(x_{f})=T_{\overline{rn}^{1}}(x_{f})$ for all $n\geqq m$ because this together with ontoness of each $T_{n}$

also gives that $T|\Omega(X_{n})$ is onto $\Omega(X_{n})$ . For this we consider some $x\in\Omega(X_{n})$ .
Then there exists $j\in N:x_{n}=x_{j}$ for $n\geqq j$ . Let $m\geqq j$ be such that $T_{n}^{-1}x_{j}=T_{m}^{-1}$

$x_{f}=y_{m}$ say for $n\geqq m$ . Also by ontoness of $T_{n}’ s$, for each $n<m$ there exists
$y_{n}\in X_{n}$ such that $T_{n}y_{n}$ equals $x_{n}$ for $n\leqq j$ and equals $x_{f}$ for $j\leqq n<m$ . Then
$y=\langle y_{n}\rangle\in\Omega(X_{n})$ and $\beta(\langle T_{n}\rangle)(y)=x$ .

4. Proposition. Let $\langle T_{n}\rangle$ be such that $T_{n}’ s$ are invertible.
(i) Suppose that $\langle T_{n}^{-1}\rangle\in\tilde{J}(Y_{n})^{LIM}$ .

(a)If $T=\beta(\langle T_{n}\rangle)\in B(J(X_{n})^{LIH})$ , then $T(J(X_{n})^{LIH})=J(X_{n})^{LIM}$ .
(b) If $T=\beta(\langle T_{n}\rangle)\in B(J(X_{n}))$ , then $T(J(X_{n}))=J(X_{n})$ .

(ii) If $T=\beta(\langle T_{n}\rangle)\in B(J(X_{n})^{LIM})$ and it is onto $J(X_{n})^{LIM}$ , then $\langle T_{n}^{-1}\rangle\in$

$\tilde{J}_{T}^{LIM}(Y_{n})$ .
(iii) If $T=\beta(\langle T_{n}\rangle)\in B(J(X_{n}))$ and it is onto $J(X_{n})$ , then $\langle T_{n}^{-1}\rangle\in\tilde{J}_{T}^{LIM}(Y_{n})$ .

Proof. (i) It follows from [6, Theorem 2.6 $(i)$] that $\beta(\langle T_{\overline{n}}^{1}\rangle)\in$

$Inv_{J}B(J(X_{n})^{LIM})$ . So in case (a) $T^{-1}=\beta(\langle T_{n}^{-1}\rangle)$ exists an operator on $J(X_{n})^{LIM}$

to itself and thus $T$ is onto $J(X_{n})^{LIM}$ . Similarly for the case (b).

(ii) By the open mapping theorem $T$ is open and thus $T^{-1}=\beta(\langle T_{n}^{-1}\rangle)$ is

bounded. We now aPply [6, Theorem 2.6 (iii)].

(iii) It follows on the same lines as (ii) by noting that the map $\theta$ in [6,

Theorem 2.6 (iii)] may also be taken on operators on $J(X_{n})$ and then aPplying

this theorem.

5. Proposition. Let $\langle T_{n}\rangle$ be a sequence of operators, $T_{n}\in B(X_{n})$ such that
$T=\beta(\langle T_{n}\rangle)$ is in $B(J(X_{n})^{LIH})$ or $B(J(X_{n}))$ . $T$ is a homomorPhism, a Jordan map
or a derivation if and only if each $T_{n}$ is so.

6. Theorem. Let $\langle T_{n}\rangle$ be a sequence such that $T=\beta(\langle T_{n}\rangle)$ is in $B(J(X_{n})^{LIK})$

(or $B(J(X_{n}))$).

(i) If each $T_{n}$ is an automorphism and $\langle T_{n}^{-1}\rangle\in\tilde{J}(Y_{n})^{LIH}$ then $T$ is an auto-
morphism.

(ii) If $T$ is an automorPhism then each $T_{n}$ is an automorPhism and $\langle T_{\overline{n}^{1}}\rangle\in$

$\tilde{J}_{T}^{LIK}(Y_{n})$ .

Proof. (i) By Proposition 4 (i) $T$ is onto $J(X.)^{LIM}$ (or $J(X_{n})$). Further
$T$ is a homomorphism by Proposition 5. Thus $T$ is an automorphism.

(ii) By Proposition 5 each $T_{n}$ is a homomorphism. Since $T$ is onto, by
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Proposition 4 (ii) and (iii), $\langle T_{n}^{-1}\rangle\in j_{T}^{LIM}(Y_{n})$ . Also by Remark 3 (b) each $T_{n}$ is
onto and so an automorphism.

7. Examples. Let for each $n,$ $X_{n}$ have a symmetric and orthogonal basis
{ $e_{i}^{n},$ $i\in\Lambda_{n},$ $\Lambda_{n}\subset N,$ $\Lambda_{n}\subset\Lambda_{n+1}$ and $e_{j}^{n}=e_{j}^{n+1}$ if $j\in\Lambda_{n}$ }. Then a permutation $\sigma$ on

$\Lambda_{n}$ gives rise to a permutation operator $T_{n}$ which is an automorphism on $X_{n}$ .
$T_{n}^{-1}$ is the automorphism on $X_{n}$ generated by the permutation $\sigma^{-1}$ on $\Lambda_{n}$ .

(i) By Theorem 6 (i) if $\langle T_{n}^{-1}\rangle\in\tilde{J}(Y_{n})^{LIM}$ then $T=\beta(\langle T_{n}\rangle)$ is an invariant
automorphism on $J(X_{n})^{LiM}$ (or $J(X_{n})$). Further, if $\Lambda_{n}$ is finite for each $n$ , and
$sup\#\Lambda_{n}<\infty$ , by \S 1 (b), $\langle T_{n}\rangle\in J(Y_{n})^{LIM}$ if and only if $\langle T_{n}\rangle$ is eventually com-
patible.

(ii) Let, for each $n,$ $X_{n}=R^{2}$ . If $\langle T_{n}\rangle$ is a sequence of permutation operators
on $X_{n}’ s$ which is eventually compatible say after $m^{th}$ term for some $m\in N$,
then $T=\beta(\langle T_{n}\rangle)$ is an invariant automorphism on $J(X_{n})^{LIM}$ (or $J(X_{n})$). The
cardinality of these invariant automorphisms is $\sup_{m\in N}2^{m}=\aleph_{0}$ , the least infinite car-
dinal number.

(iii) The cardinality of invariant automorphisms which come from eventually
compatible sequences of permutation operators on $X_{n}’ s$ is $\aleph_{0}$ if $sup\#\Lambda_{n}<\infty$ and
is $\aleph$ (the cardinality of the continuum) if there exists $r\in N:\Lambda_{n}=N(\forall n\geqq r)$ .
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