ROTATIONAL HYPERSURFACES IN \boldsymbol{S}^{n} AND \boldsymbol{H}^{n} WITH CONSTANT SCALAR CURVATURE

By
Hiroshi Mori
(Received June 11, 1991)

1. Introduction

In a recent work [4], M. L. Leite classified all complete, rotational, (spherical) hypersurfaces in \boldsymbol{R}^{n} and H^{n} with constant scalar curvature. She also presented partial results for S^{n}.

In this paper we shall classify all complete, rotational, (hyperbolic and parabolic) hypersurfaces in H^{n} with constant scalar curvature with which M.L. Leite does not treat. In particular, we shall exhibit a collection of new complete hypersurfaces in H^{n} with S ranging in the closed interval [-1, 0]. And we shall accomplish Leite's result on classification of complete, rotational hypersurfaces in S^{n} with constant scalar curvature S with the exception of that $n \geqq 11$ and $S \neq$ one number ($>n /(n-1)$).

We refer the readers to Section 2 and [7] for the terminology.
Theorem 1 (Classification of hyperbolic, rotational hypersurfaces in H^{n}).
(i) There is no complete, rotational hypersurface with constant scalar curvature S, for $S<-1$, or $S>0$.
(ii) Up to isometry in H^{n}, the complete, rotational hypersurfaces with constant scalar curvature $S \in[-1,0)$ form a one-parameter family of examples.
(iii) There exists a one-parameter family of complete, rotational hypersurfaces with scalar curvature zero, any of which is the product of a circle and \boldsymbol{R} (resp. an ($n-2$)-dimensional hyperbolic space with constant sectional curvature) provided $n=3$ (resp. $n \geqq 4$), given in the Corollary of Proposition 3.1 below.

Theorem 2 (Classification of parabolic, rotational hypersurfaces in H^{n}).
(i) There is no complete, rotational hypersurface with constant scalar curvature S, for $S<-1$, or $S>0$.
(ii) Up to isometry in H^{n}, the complete, rotational hypersurfaces with constant scalar curvature $S \in[-1,0)$ form a one-parameter family of examples.
(iii) There is a one-parameter family of complete, rotational hypersurfaces with constant scalar curvature 0 , any of which is a horosphere, given in the

1990 Mathematics Subject Classification. Primary 53A10; Secondary 53C42.
Key words and phrases. rotational hypersurface, constant scalar curvature.

Corollary of Proposition 3.1 below.
Theorem 3 (Classification of rotational hypersurfaces in S^{n}).
(i) Up to isometry in S^{n}, there exists a one-parameter family of complete, immersed, rotational hypersurfaces in S^{n} with constant scalar curvature $S \in$ $((n-3) /(n-1), 1)$, converging to the embedded cylinder of Corollary 2.3 in [4]. There exists an infinite countable subfamily of the family consisting of compact hypersurfaces, which contains an embedded hypersurface provided $S \in((n-2)$ / ($n-1$), 1).
(ii) For $S \geqq 1$, there exists a one-parameter family of complete, immersed, rotational hypersurfaces in S^{n} with constant scalar curvature S, converging on one side to the cylinder of Corollary 2.3 in [4]. An infinite countable subfamily consisting of compact hypersurfaces which converges to a sequence of isometrically embedded spheres of radius $1 / \sqrt{S}$, with exception of that $n \geqq 11$ and $S \neq$ one number ($>n /(n-1)$).
(iii) There are no complete hypersurfaces in S^{n} with constant scalar curvature $S \leqq(n-3) /(n-1)$.

2. Preliminaries

We shall denote by L^{n+1} the vector space of ($n+1$)-tuples $x=\left(x_{1}, \cdots, x_{n+1}\right)$ with the Lorentzian metric $\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n+1} y_{n+1}$, where $y=$ $\left(y_{1}, \cdots, y_{n+1}\right)$, and shall consider the hyperbolic n-space $H^{n}(c)$ with constant sectional curvature $c, c<0$, as a hypersurface of L^{n+1}, namely,

$$
\left.H^{n}(c)=\left\{x \in L^{n+1} ;\langle x, x\rangle=1 / c, x_{1}\right\rangle 0\right\} .
$$

We shall set $H^{n}=H^{n}(-1)$ for simplicity. An orthogonal transformation of L^{n+1} is a linear map which preserves the Lorentzian metric \langle,$\rangle ; the orthogonal$ transformations induce, by restriction, all the isometries of H^{n}. We shall denote by P^{k} a k-dimensional linear subspace of L^{n+1} and by $O\left(P^{k}\right)$ the set of orthogonal transformations of L^{n+1} with positive determinant which leave P^{k} pointwise fixed. We shall say that P^{k} is Lorentzian (resp. Riemannian, resp. degenerate) if the restriction $\left.\langle\rangle\right|_{P k$,$} is a Lorentzian metric (resp. Riemannian metric, resp.$ a degenerate quadratic form).

Definition 2.1. Choose P^{2} and $P^{3} \supset P^{2}$, and let C be a regular C^{2}-curve in $P^{3} \cap H^{n}$ which does not meet P^{2}. The orbit of C under the action of $O\left(P^{2}\right)$ is said to be a rotational, spherical (resp. hyperbolic, resp. parabolic) hypersurface in H^{n} if P^{2} is Lorentzian (resp. Riemannian, resp. degenerate).

We shall write down the parametrization of rotational hypersurfaces explicitly. It is easily shown that we can choose a basis e_{k} of L^{n+1} satisfying
the following conditions:
(1) P^{2} is the plane generated by e_{n} and e_{n+1};
(2) P^{3} is the 3 -subspace generated by e_{1} and P^{2};
(3) for two vectors $x=\sum x_{i} e_{i}$ and $y=\sum y_{i} e_{i}$, we have that the inner product $\langle x, y\rangle$ is equal to

$$
\begin{aligned}
& x_{1} y_{1}+\cdots+x_{n} y_{n}-x_{n+1} y_{n+1} \quad \text { (spherical case), } \\
& -x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n+1} y_{n+1} \quad \text { (hyperbolic case), } \\
& -x_{1} y_{n}+x_{2} y_{2}+\cdots+x_{n-1} y_{n-1}-x_{n} y_{1}+x_{n+1} y_{n+1} \quad \text { (parabolic case). }
\end{aligned}
$$

When $\left.\langle\rangle\right|_{P 2$,$} is a nondegenerate (resp. degenerate) quadratic form, let x_{1}=$ $x(s), x_{n}=y(s)$ (resp. $x_{1}=y(s), x_{n}=x(s)$) and $x_{n+1}=z(s), s \in J$ be an equation of the curve C which is parametrized by arc length and whose domain of definition J is an open interval of \boldsymbol{R} containing zero. Using the profile curve C there exists a C^{2}-mapping f from the product space $J \times S^{n-2}$ (resp. $J \times H^{n-2}$, resp. $J \times R^{n-2}$) into H^{n} whose local parametrization is as follows:

$$
\begin{align*}
f\left(s, \theta_{1}, \cdots, \theta_{n-2}\right)= & x(s) \sin \theta_{1} e_{1}+x(s) \cos \theta_{1} \tag{2.1}\\
& \times \Theta\left(\theta_{2}, \cdots, \theta_{n-2}\right)+y(s) e_{n}+z(s) e_{n+1}, \\
& s \in J,-\pi / 2<\theta_{1}<\pi / 2, \quad \text { (spherical case) }, \\
f\left(s, \theta_{1}, \cdots, \theta_{n-2}\right)= & x(s) \cosh \theta_{1} e_{1}+x(s) \sinh \theta_{1} \tag{2.2}\\
& \times \Theta\left(\theta_{2}, \cdots \cdots \theta_{n-2}\right)+y(s) e_{n}+z(s) e_{n+1}, \\
& s \in J, 0<\theta_{1}<\infty, \quad \text { (hyperbolic case), } \\
f\left(s, \theta_{1}, \cdots, \theta_{n-2}\right)= & {\left[-y(s)+\frac{1}{2} \theta_{1}^{2} x(s)\right] e_{1}+x(s) \theta_{1} } \tag{2.3}\\
& \times \theta\left(\theta_{2}, \cdots, \theta_{n-2}\right)+x(s) e_{n}+z(s) e_{n+1}, \\
& s \in J, 0<\theta_{1}<\infty, \quad \text { (parabolic case), }
\end{align*}
$$

where $\theta\left(\theta_{2}, \cdots, \theta_{n-2}\right)$ is a local parametrization of the unit $(n-3)$-sphere S^{n-3} in the Euclidean ($n-2$)-space generated by the vectors e_{2}, \cdots, e_{n-1} :

$$
\begin{aligned}
\Theta\left(\theta_{2}, \cdots, \theta_{n-2}\right)= & \sin \theta_{2} e_{2}+\cos \theta_{2} \sin \theta_{3} e_{3}+\cdots+\cos \theta_{2} \cdots \\
& \times \cos \theta_{n-3} \sin \theta_{n-2} e_{n-2}+\cos \theta_{2} \cdots \cos \theta_{n-2} e_{n-1}
\end{aligned}
$$

where $-\pi / 2<\theta_{i}<\pi / 2(i=2, \cdots, n-3),-\pi<\theta_{n-2}<\pi$ (cf. [3], [5]).
Remark. When $n=3$, the term $\Theta\left(e_{2}, \cdots, e_{n-2}\right)$ in (2.1)-(2.3) is replaced by e_{2}; and the range of θ_{1} in (2.2) and (2.3) can be replaced by the one " $0<\left|\theta_{1}\right|$ $<\infty$ ".

We see, with respect to the parametrization that the first fundamental form of the C^{2}-mapping f is

$$
\begin{align*}
& \quad I=d s^{2}+x(s)^{2} d \theta_{1}^{2}+x(s)^{2} \cos ^{2} \theta_{1} d \Theta^{2} \tag{2.4}\\
& {\left[\text { resp. } d s^{2}+x(s)^{2} d \theta_{1}^{2}+x(s)^{2} \theta_{1}^{2} d \Theta^{2},\right.} \\
& \text { resp. } \left.\quad d s^{2}+x(s)^{2} d \theta_{1}^{2}+x(s)^{2} \sinh ^{2} \theta_{1} d \Theta^{2}\right],
\end{align*}
$$

in spherical (resp. parabolic, resp. hyperbolic) case, where $d \Theta^{2}$ is the canonical Riemannian metric of the unit ($n-3$)-spere S^{n-3}.

From (2.1)-(2.4) it follows that the mapping f is an immersion if and only if the following condition is satisfied on the interval J,

$$
\begin{array}{ll}
x(s)>0, & \text { (spherical and parabolic cases). } \tag{2.5}\\
x(s) \geqq 1, & \text { (hyperbolic case). }
\end{array}
$$

It will sometimes be convenient to use the notation $M_{\delta}, \delta=1,0$ or -1 , to denote a rotational hypersurface in H^{n}, where $\delta=1$ (resp. $\delta=0$, resp. $\delta=-1$) means M_{δ} is a spherical (resp. parabolic, resp. hyperbolic) hypersurface. The following result is obtained easily (cf. [3]).

Unless otherwise stated, all manifolds are connected and, we are in the C^{∞} category.

Proposition 2.1. Let M_{δ} be a rotational hypersurface in H^{n} defined by the immersion f. Assume that $\delta+x(s)^{2}-x^{\prime}(s)^{2}>0$ on J. Then the tangential directions of the parameters $\theta_{1}, \cdots, \theta_{n-2}$ and s are principal directions; the principal curvatures along the coordinates curves θ_{i} are all equal and given by

$$
\lambda=\sqrt{\delta+x^{2}-x^{\prime 2}} / x
$$

and the principal curvature along the coordinate curve s is

$$
\mu=-\left(x^{\prime \prime}-x\right) / \sqrt{\delta+x^{2}-x^{\prime 2}} .
$$

3. Rotational hypersurfaces in H^{n} with constant scalar curvature

From Proposition 2.1 and (2.5) it can be shown (cf. [3], [5]) under the assumption

$$
\begin{equation*}
\delta+x(s)^{2}-x^{\prime}(s)^{2}>0 \quad \text { on } J \tag{3.1}
\end{equation*}
$$

that the mapping f is of constant scalar curvature S if and only if, on the interval J, the following relations hold:

$$
\begin{equation*}
2 x x^{\prime \prime}-(n-3)\left(\delta-x^{\prime 2}\right)+(n-1) S x^{2}=0 ; \tag{3.2}
\end{equation*}
$$

$$
\begin{gather*}
y=\left(x^{2}+1\right)^{1 / 2} \sinh \varphi(s), \quad z=\left(x^{2}+1\right)^{1 / 2} \cosh \varphi(s), \tag{3.3}\\
\varphi(s)=\int_{0}^{s}\left(1+x^{2}-x^{\prime 2}\right)^{1 / 2}\left(x^{2}+1\right)^{-1} d \sigma, \quad \text { and } x>0 \\
\quad \text { (spherical case), } \\
y=\left(x^{2}-1\right)^{1 / 2} \sin \varphi(s), \quad z=\left(x^{2}-1\right)^{1 / 2} \cos \varphi(s), \tag{3.4}\\
\varphi(s)=\int_{0}^{s}\left(-1+x^{2}-x^{\prime 2}\right)^{1 / 2}\left(x^{2}-1\right)^{-1} d \sigma, \quad \text { and } \quad x>1
\end{gather*}
$$

(hyperbolic case),

$$
\begin{array}{lr}
y=-\left(z^{2}+1\right) / 2 x, & z=x \int_{0}^{s}\left(x^{2}-x^{2}\right)^{1 / 2} x^{-2} d \sigma \tag{3.5}\\
\text { and } \quad x>0 & \text { (parabolic case). }
\end{array}
$$

Remark. If the condition (3.1) breaks down (i.e. the condition is replaced by the following

$$
\begin{equation*}
\left.\delta+x(s)^{2}-x^{\prime}(s)^{2} \geqq 0 \quad \text { on } J\right), \tag{3.1}
\end{equation*}
$$

we cannot use the formulae (3.3)-(3.5) directly. But the condition that our hypersurfaces are rotational guarantees the existence of profile curve C in such an extreme case. We shall, in detail, explain it in the proof of Theorem 1.

Leite studied the rotational, spherical hypersurfaces in H^{n} as well as for those ones in S^{n} and \boldsymbol{R}^{n}.

In what follows, we consider only rotational hyperbolic and parabolic hypersurfaces in H^{n}. Multiplying by $x^{\prime} x^{n-4}$ on the both sides of (3.2) and then integrating we have the following.

Proposition 3.1. Equation (3.2) is equivalent to the following first order $D E$

$$
\begin{equation*}
x^{n-3}\left(-\delta+S x^{2}+x^{\prime 2}\right)=K \tag{3.6}
\end{equation*}
$$

where K is a constant; moreover, for a constant solution, which we may put as $\left(a^{2}-\delta\right)^{1 / 2}(a:$ positive constant), we have

$$
\begin{aligned}
& S=(n-3) \delta\left[\left(a^{2}-\delta\right)(n-1)\right]^{-1}, \\
& K=-2 \delta\left[\left(a^{2}-\delta\right)^{(n-3) / 2}\right](n-1)^{-1} .
\end{aligned}
$$

Corollary. The hyperfurface in H^{n} corresponding to the constant solution in Proposition 3.1 is, for a positive constant a, the product $H^{n-2}\left(-1 /\left(a^{2}+1\right)\right) \times$ $S^{1}(a)$ of a circle and a hyperbolic ($n-2$)-space with constant sectional curvature (resp. a horosphere) provided $\delta=-1$ (resp. $\delta=0$).

4. The existence theorem of ODE (3.6)

Equation (3.6) tells us a local solution $x(s)$ of (3.1) paired with its first derivative is a subset, denoted by (x, x^{\prime}), of a level curve for the function $H(u, v)$ defined by

$$
\begin{equation*}
H(u, v) \equiv u^{n-3}\left(-\delta+S u^{2}+v^{2}\right)=K, \tag{4.1}
\end{equation*}
$$

where K is a constant.
Definition 4.1. We say that a solution $x \geqq-\delta$ of (3.6) is complete if x is defined for all s in \boldsymbol{R} and satisfies the following condition:

$$
\begin{equation*}
\delta+x(s)^{2}-x^{\prime}(s)^{2} \geqq 0, \quad s \in \boldsymbol{R} \tag{3.1}
\end{equation*}
$$

Lemma 4.1. Let S be a negative constant, n an integer, $n \geqq 4$ and, $\delta=-1$ or 0 . Then, there exists a unique C^{∞}-function $u=u(t, K)$ defined on $\boldsymbol{R} \times(-\infty, 0)$ which is a solution of the following ordinary differential equation

$$
\begin{equation*}
(d u / d t)^{2}=\delta-S u^{2}+K u^{3-n} \equiv \varphi(u, K) \tag{4.2}
\end{equation*}
$$

with the initial condition $\varphi(u(0, K), K)=0$, where K is regarded as parameter.
Proof. First, recall that the following sublemma of local existence and uniqueness for a normal ODE (see [6]).

Sublemma. Let D (resp. D^{\prime}) be an open subset of \boldsymbol{R}^{n} (resp. \boldsymbol{R}^{m}), and I an open interval of \boldsymbol{R}. Denote by f a C^{∞}-mapping from the product space $D \times I \times D^{\prime}$ into \boldsymbol{R}^{n}. Then, for a given point x_{0} in D and a given compact subset K^{\prime} of D^{\prime}, there exist an open subinterval $I_{0}=(-\varepsilon, \varepsilon)$ of I and a unique C^{∞}-mapping $x(t, \alpha)$ from the product $I_{0} \times \operatorname{Int}\left(K^{\prime}\right)$ into \boldsymbol{R}^{n} such that for fixed α in K and $\lambda \operatorname{in} \operatorname{Int}\left(K^{\prime}\right)$

$$
\begin{aligned}
\frac{d}{d t} x(t, \alpha) & =f(x(t, \alpha), t, \lambda), \quad t \in I_{0} \\
x(0, \alpha) & =x_{0}
\end{aligned}
$$

where $\operatorname{Int}\left(K^{\prime}\right)$ is the interior of the set K^{\prime}.
We shall now proceed to prove Lemma 4.1. Consider the function $\varphi(u, K)$ gvien in Lemma 4.1. It can be easily seen that for a fixed $K<0$ there exists a unique number $u^{*}=u^{*}(n, S, K, \delta)>-\delta$ such that

$$
\varphi(u, K)>0 \quad \text { for } \quad u>u^{*}, \quad \varphi\left(u^{*}, K\right)=0 .
$$

It then follows from sublemma that for each $u_{0}>u^{*}$ and each $K_{0}<0$, there
exist positive numbers ε and η, and a C^{∞}-function $v(t, K)$ on $(-\varepsilon, \varepsilon) \times\left(K_{0}-\eta\right.$, $K_{0}+\eta$) such that

$$
\begin{align*}
\frac{d}{d t} v(t, K) & =\sqrt{\varphi(v(t, K), K)}, \quad|t|<\varepsilon, \quad\left|K-K_{0}\right|<\eta \tag{4.3}\\
v(0, K) & =u_{0}, \quad\left|K-K_{0}\right|<\eta . \tag{4.4}
\end{align*}
$$

Here and in what follows, K is regarded as a parameter, unless otherwise stated. Note that an open set (u^{*}, ∞) of \boldsymbol{R} is a Lindelöf space. Using this fact and applying sublemma to the ODE (4.2) to glue such local solutions. From this method we can show that there exists a unique C^{∞}-function $u(t, K)$ defined on $(0, \infty) \times(-\infty, 0)$ which satisfies, for each fixed $K<0$, that

$$
\begin{align*}
& \frac{d}{d t} u(t, K)=\sqrt{\varphi(u(t, K), K)}, \quad t>0, \tag{4.5}\\
& u(+0, K)=u^{*}, \quad u(+\infty, K)=+\infty . \tag{4.6}
\end{align*}
$$

We extend the function $u(t, K)$ to a C^{∞}-function defined on $(\boldsymbol{R} \backslash\{0\}) \times$ ($-\infty, 0$), by

$$
u(t, K)=u(-t, K), \quad t, K<0
$$

Then we have, for each fixed $K<0$, that

$$
\begin{equation*}
\frac{d}{d t} u(t, K)=\eta \sqrt{\varphi(u(t, K), K)}, \quad \eta=\operatorname{sign} t \tag{4.7}
\end{equation*}
$$

$t \in \boldsymbol{R} \backslash\{0\}$ and that $u(t, K) \rightarrow u^{*}$ (resp. $+\infty$) as $t \rightarrow 0$ (resp. $|t| \rightarrow+\infty$). From this together with (4.7) it follows that $(d / d t) u(t, K) \rightarrow 0$ as $t \rightarrow 0$.

If we define $u(0, K)=u^{*},(d / d t) u(0, K)=0$, we see that $u(t, K)$ is a C^{2} function on $\boldsymbol{R} \times(-\infty, 0)$. Differentiating (4.7) on the both sides we have, for each fixed $K<0$, that

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} u(t, K)=-S u(t, K)+\frac{(3-n) K}{2} u(t, K)^{2-n} . \tag{4.8}
\end{equation*}
$$

It follows from (4.8) that $d^{2} u(t, K) / d t^{2}$ may be extended to a C^{2}-function on $\boldsymbol{R} \times(-\infty, 0)$, which implies in turn that $u(t, K)$ may be regarded as C^{4}-function on $\boldsymbol{R} \times(-\infty, 0)$. Repeating this argument we see that $u(t, K)$ may, in fact, be a C^{∞}-function on $\boldsymbol{R} \times(-\infty, 0)$. This completes the proof.

By using Lemma 3.2 in [4] and Lemma 7.2 in [2] together with Lemma 4.1, we can show the (global) existence theorem of (3.6) and the completeness of our rotational hypersurfaces.

Lemma 4.2. When $S>0$ or $S<-1$, there exist no solutions of (3.6) or a solution of (3.6) (if there exists) cannot be extended to a complete one. When $S=0$ and $n=3$ (resp. $n \geqq 4, \delta=-1$, resp. $n \geqq 4, \delta=0$), a complete solution of (3.6) is the constant one provided $K=-\delta$ (resp. $K>-\delta$, resp. $K=-\delta$). When $-1 \leqq$
$S<0$ and $n \geqq 4$, a solution of (3.6) can (resp. cannot) be extended to a complete one provided $K \leqq 0$ (resp. $K>0$). When $-1 \leqq S<0$ and $n=3$, a solution of (3.6) can (resp. cannot) be extended to a complete one provided $K \leqq-\delta(1+S)$ (resp. $K>-\delta(1+S)$).

Lemma 4.3. Suppose that the profile curve C in Section 2 is C^{∞} and is defined on \boldsymbol{R}. If the function $x(t)$ satisfies for all $t \in \boldsymbol{R}$, that

$$
\begin{array}{ll}
x(t)>0, & \text { (parabolic and spherical cases) }, \\
x(t) \geqq 1, & \text { (hyperbolic case) },
\end{array}
$$

then the hypersurface in H^{n} given by the immersion f is complete.

5. Proof of Theorem 1 and 2

We shall only prove Theorem 1 because the proof of Theorem 2 is similar. It is clear that the assertion (i) is true in virtue of Lemma 4.2. We shall prove the assertion (ii) in case $n \geqq 4$, the case $n=3$ is left to the readers.

The level curve $H(u, v)=K$ reduces the following form

$$
\begin{equation*}
v^{2}=-1-S u^{2}+K u^{3-n} . \tag{5.8}
\end{equation*}
$$

From Lemma 4. 2 it suffices to consider the case where $K \leqq 0$. We shall first consider the subcase $K=0$. Putting $a=\sqrt{-S}$, we see that a complete solution $u=x(s)$ of (3.6) may be defined, up to translation in parameter s, by

$$
\begin{equation*}
x(s)=\frac{1}{a} \cosh (a s), \quad s \in \boldsymbol{R} . \tag{5.9}
\end{equation*}
$$

We see that if $-1<S<0$ (i.e., $0<a<1$), then the function $x(s)$ satisfies the condition (3.1). It then follows that the funtions $y(s), z(s)$ may be defined by

$$
y(s)=\sqrt{x(s)^{2}-1} \cos \theta(s), \quad z(s)=\sqrt{x(s)^{2}-1} \sin \theta(s),
$$

where

$$
\boldsymbol{\theta}(s)=\operatorname{Tan}^{-1}\left[\sinh (a s) / \sqrt{1-a^{2}}\right], \quad s \in \boldsymbol{R} .
$$

From this together with Lemma 4.3 it can be shown that for each fixed $S,-1<S<0$, there exists, up to isometry leaving the x_{1}, \cdots, x_{n-1}-plane in L^{n+1} fixed, a complete, rotational hypersurface $M(S, 0)$ in H^{n} with constant scalar curvature $S,-1<S<0$.

We shall next consider the subcase $S=-1$. Note that the condition (3.1) with $\delta=-1$ breaks down for the function $x(s)$ in (5.9) with $a=1$. If $S=-1$ (i. e., $a=1$), it follows that the functions $y(s), z(s)$ which satisfy (2.6) are given, up to isometry leaving the x_{1}, \cdots, x_{n-1}-subspace in L^{n+1} fixed, by

$$
x(s)=\cosh s, \quad y(s)=\sinh s, \quad z(s)=0 .
$$

Thus, the complete rotational hypersurface in H^{n} corresponding to the profile curve $\alpha(s)=(\cosh s) e_{1}+(\sinh s) e_{n}$ is the totally geodesic one $H^{n-1}=\left\{x \in H^{n}\right.$; $\left.x_{n+1}=0\right\}$.

Finally, we consider the subcase $K<0$ and $-1 \leqq S<0$. In that case, we see that for each fixed $K<0$ the function $x(s)=u(s, K), s \in \boldsymbol{R}$, given in Lemma 4.1 with $\delta=-1$, satisfies the condition (3.1) with $\delta=-1$. So we can define the functions $y(s), z(s)$ and $\varphi(s)$ by (3.4) and they are C^{∞}.

Thus, it follows from Lemma 4. 3 that there exists a one-parameter family of complete, rotational hypersurfaces $M(S, K)$ in H^{n} with constant scalar curvature $S(-\infty<K<0)$. This completes the proof of (ii). The assertion (iii) is proved by the similar argument. This completes the proof of Theorem 1.

6. Proof of Theorem 3

We shall briefly review the representation of rotational hypersurfaces in S^{n}. We fix the rectangular coordinates of \boldsymbol{R}^{n+1} in which S^{n} is realized as the unit hypersphere. A rotational hypersurface M in S^{n} is, up to isometry of S^{n}, defined by the immersion $f: J \times S^{n-2} \rightarrow S^{n}$

$$
\begin{equation*}
f\left(s, u_{1}, \cdots, u_{n-1}\right)=\left(x(s) u_{1}, \cdots, x(s) u_{n-1}, y(s), z(s)\right), \tag{6.1}
\end{equation*}
$$

where J is an open interval in \boldsymbol{R} containing the zero, and $\sum_{j=1}^{n=1} u_{j}^{2}=1$. We may assume that

$$
\begin{equation*}
x^{\prime}(s)^{2}+y^{\prime}(s)^{2}+z^{\prime}(s)^{2} \equiv 1 . \tag{6.2}
\end{equation*}
$$

As in Section 2 we get, through a local parametrization of S^{n-2}, the fundamental form is (2.4), provided L^{n+1} with the Lorentzian metric is replaced by \boldsymbol{R}^{n+1} with the Euclidean metric. It then follows from this observation that the mapping f is an immersion if and only if the following conditin is satisfied on the interval J :

$$
\begin{equation*}
x(s)>0 . \tag{6.3}
\end{equation*}
$$

Since $x(s)^{2}+y(s)^{2}+z(s)^{2} \equiv 1$ we may put

$$
\begin{equation*}
y=\left(1-x(s)^{2}\right)^{1 / 2} \cos \theta(s), \quad z=\left(1-x(s)^{2}\right)^{1 / 2} \sin \theta(s) \tag{6.4}
\end{equation*}
$$

From the equations of Gauss and Codazzi together with (6.1) and (6.2) we can also have Proposition 2.2 and Corollary 2.3 in [4].

We notice that our functions $x(s)$ and $\theta(s)$ can be identical with the functions $f(s) \equiv \sin r(s)$ and $h(s)$ in Leite's paper respectively (see the proof of Theorem 3.6 in [4]). We can show the following Lemma (cf. Lemma 4.1).

Lemma 6.1. Let $n \geqq 4$ and $S>(n-3) /(n-1)$, and set $c(S)=\max \{1-S, 0\}$ and $K_{0}=(2 /(n-1))\{(n-3) /(n-1) S\}^{(n-3) / 2}$. For each $K, c(S)<K<K_{0}$, there exist a unique C^{∞}-function $x=x(s, K)$ defined on $\boldsymbol{R} \times\left(c(S), K_{0}\right)$, and a constant $l=l(K)$ satisfying that

$$
(\partial x / \partial s)^{2}=1-S x^{2}-K x^{3-n},
$$

and for each fixed $K, c(S)<K<K_{0}, x(s, K)$ is an even and periodic function of s with period $2 l$, and attains the positive minimum (resp. maximum) at $s=0$ (resp. $s=l$).

Lemma 6.2. Let $n(\geqq 3)$ be an integer and define the function $\varphi(x)$ given in $[1, \infty)$ by

$$
\varphi(x)=\{(n-1) x-(n-3)\}^{-1 / 3}-\frac{2}{\pi} \operatorname{Tan}^{-1}\left\{(x-1)^{-1 / 2}\right\}
$$

Then the function $\varphi(x)$ has the following properties.
If $3 \leqq n \leqq 10$, then $0<\varphi(x)<1 / \sqrt{2}$ for all $x \geqq 1$.
If $11 \leqq n$, then $0<\varphi(x)<1 / \sqrt{2}$ for $1 \leqq x<c_{n},-1 / 2<\varphi(x)<0$, for $c_{n}<x$, and $\varphi(x)=0$ for $x=c_{n}$, where $n /(n-1)<c_{n}<\infty$.

Proof. It is clear that the sign of the derivative $\varphi^{\prime}(x)(x>1)$ is equal to the one of the function

$$
\begin{equation*}
h(x)=\left(x-\frac{n-3}{n-1}\right)^{3}-\frac{\pi^{2}}{n-1} x^{2}(x-1), \quad x>1 . \tag{6.5}
\end{equation*}
$$

We shall next consider the case $11 \leqq n$ only, the case $3 \leqq n \leqq 10$ is left to the readers. In this case we see that the sign of the coefficients of x^{3} on the right hand side of (6.5) is positive and that $h(0)<0, h(1)>0$. It can be easily shown that $h(n /(n-1))<0$ and that $h(x) \rightarrow \infty$ as $x \rightarrow \infty$. From this observation it follows that there exist constants $c, d, 1<c<n /(n-1)<d<\infty$ such that $h(x)>0$ (resp. $h(x)<0$) for $1 \leqq x<c$ or $x>d$ (resp. for $c<x<d$). This implies that $\varphi^{\prime}(x)>0$ (resp. $\left.\varphi^{\prime}(x)<0\right)$ for $1 \leqq x<c$ or $x>d$ (resp. for $c<x<d$). Note that $\varphi(x) \rightarrow 0$ as $x \rightarrow \infty$, and that $\varphi(x)>-(1 / \pi) \times \operatorname{Tan}^{-1}\{1 / \sqrt{x-1}\}>-1 / 2$ for all $x>1$. Combining these facts, we see that the assertion of this lemma is true for $n \geqq 11$. This completes the proof of Lemma 6.2.

Suppose that the profile curve $C, \alpha(t)=(x(t), 0, \cdots, y(t), z(t))$, in S^{n} is extendable to a C^{∞}-curve defined on \boldsymbol{R}. Consider, for a positive constant l, the following systems of conditions.

$$
\begin{align*}
& x(t) \equiv-x(-t) \equiv x(t+2 l), \quad x^{\prime}(0)=1, \quad x^{\prime}(l)=-1, \tag{i}\\
& 0<x(t) \quad \text { for } \quad t, \quad 0<t<l ; \\
& x(t) \equiv x(t+2 l), \quad x(t) \geqq x(0)>0 \quad \text { for all } t ; \tag{ii}
\end{align*}
$$

(iii)

$$
x(t) \equiv \text { constant in }(0,1] .
$$

Now we can show the following lemma by using Lemma 9.114 in [1] and Lemma 7.2 in [2].

Lemma 6.3. Assume that the profile curve $C, \alpha(t)=(x(t), 0, \cdots, y(t), z(t))$, is extendable to a C^{∞}-curve defined on \boldsymbol{R}. If the function $x(t)$ satisfies one of the systems (ii), (iii) (resp. the system (i)), then the hypersurface in S^{n} given by the immersion f is complete (resp. extends to a complete hypersurface in S^{n}).

We shall now prove Theorem 3, It is clear that the assertions (i) and (iii) are true (see [4], pp. 300-303). We shall prove the assertion (ii). It can be shown that if $S>(n-3) /(n-1)$ and $c(S)<K<K_{0}$, then the function $x=x(s, K)$ given in Lemma 6.1 satisfies that

$$
\begin{equation*}
1-x^{2}-(\partial x / \partial s)^{2}>0 \tag{6.5}
\end{equation*}
$$

for all s in \boldsymbol{R}. From this observation we can define the function $\theta(s, K)$ by

$$
\theta(s, K)=\int_{0}^{s}\left\{1-x(\sigma, K)^{2}-(\partial x(\sigma, K) / \partial \sigma)^{2}\right\}^{1 / 2}\left(1-x(\sigma, K)^{2}\right)^{-1} d s
$$

Thus, it follows from Lemma 6.3 that there exists for each fixed $S, S>$ $(n-3) /(n-1)$, a one-parameter family of complete, rotational hypersurfaces $M(S, K)\left(c(S)<K<K_{0}\right)$ in S^{n} with constant scalar curvature S.

We shall now discuss the compactness of our hypersurfaces $M(S, K)$ is S^{n}. Putting $P(K)=\theta(l(K), K)$, we have that $P(K)$ is a continuous function of K, $c(S)<K<K_{0}$. And the following properties hold (cf. [4], pp. 301-303):

$$
\begin{equation*}
P(K) \longrightarrow 2 \pi / \sqrt{(n-1) S-(n-3)} \quad \text { as } \quad K \uparrow K_{0}, \tag{6.6}
\end{equation*}
$$

when $S>(n-3) /(n-1)$;

$$
\begin{equation*}
P(K) \longrightarrow 2 \operatorname{Tan}^{-1} 1 / \sqrt{S-1} \quad \text { as } \quad K \downarrow 0 \tag{6.7}
\end{equation*}
$$

when $S \geqq 1$.
On the other hand, we see that a rotational hypersurface defined by the immersion f is compact if and only if the profile curve $\alpha(s)=(x(s), 0, \cdots, 0$, $y(s), z(s)$) is a closed curve, which is, in turn, equivalent to the value $P(K)$ satisfies that

$$
P(K)=2 \pi r,
$$

where r is a positive rational number.
Using this observation and Lemma 6. 3 together with (6.6) and (6.7), we see that the assertion (ii) is true. This completes the proof of Theorem 3.

References

[1] A.L. Besse, Einstein Manifolds, Springer-Verlag, 1987.
[2] R.L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
[3] M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc., 277 (1983), 685-709.
[4] M.L. Leite, Rotational hypersurfaces of space forms with constant scalar curvature, Manuscripta Math., 67 (1990), 284-304.
[5] H. Mori, Stable complete constant mean curvature surfaces in R^{3} and H^{3}, Trans. Amer. Math. Soc., 278 (1983), 671-687.
[6] R. Narasimhan, Analysis on real and complex manifolds, North-Holland Publ. Company, Amsterdam, 1968.
[7] M. Spivak, A comprehensive introduction to Differential Geometry, vol. 4, 2nd edn, Publish or Perish, Inc. Berkeley, 1979.

Department of Mathematics Joetsu University of Education Joetsu 943, Niigata Pref.
Japan

