ROTATIONAL HYPERSURFACES IN Sⁿ AND Hⁿ WITH CONSTANT SCALAR CURVATURE

By

HIROSHI MORI

(Received June 11, 1991)

1. Introduction

In a recent work [4], M.L. Leite classified all complete, rotational, (spherical) hypersurfaces in \mathbb{R}^n and H^n with constant scalar curvature. She also presented partial results for S^n .

In this paper we shall classify all complete, rotational, (hyperbolic and parabolic) hypersurfaces in H^n with constant scalar curvature with which M.L. Leite does not treat. In particular, we shall exhibit a collection of new complete hypersurfaces in H^n with S ranging in the closed interval [-1, 0]. And we shall accomplish Leite's result on classification of complete, rotational hypersurfaces in S^n with constant scalar curvature S with the exception of that $n \ge 11$ and $S \ne$ one number (>n/(n-1)).

We refer the readers to Section 2 and [7] for the terminology.

Theorem 1 (Classification of hyperbolic, rotational hypersurfaces in H^n).

- (i) There is no complete, rotational hypersurface with constant scalar curvature S, for S<-1, or S>0.
- (ii) Up to isometry in H^n , the complete, rotational hypersurfaces with constant scalar curvature $S \in [-1, 0)$ form a one-parameter family of examples.
- (iii) There exists a one-parameter family of complete, rotational hypersurfaces with scalar curvature zero, any of which is the product of a circle and R (resp. an (n-2)-dimensional hyperbolic space with constant sectional curvature) provided n=3 (resp. $n\geq 4$), given in the Corollary of Proposition 3.1 below.

Theorem 2 (Classification of parabolic, rotational hypersurfaces in H^n).

- (i) There is no complete, rotational hypersurface with constant scalar curvature S, for S<-1, or S>0.
- (ii) Up to isometry in H^n , the complete, rotational hypersurfaces with constant scalar curvature $S \in [-1, 0)$ form a one-parameter family of examples.
- (iii) There is a one-parameter family of complete, rotational hypersurfaces with constant scalar curvature 0, any of which is a horosphere, given in the

1990 Mathematics Subject Classification. Primary 53A10; Secondary 53C42. Key words and phrases. rotational hypersurface, constant scalar curvature.

Corollary of Proposition 3.1 below.

Theorem 3 (Classification of rotational hypersurfaces in S^n).

- (i) Up to isometry in S^n , there exists a one-parameter family of complete, immersed, rotational hypersurfaces in S^n with constant scalar curvature $S \in ((n-3)/(n-1), 1)$, converging to the embedded cylinder of Corollary 2.3 in [4]. There exists an infinite countable subfamily of the family consisting of compact hypersurfaces, which contains an embedded hypersurface provided $S \in ((n-2)/(n-1), 1)$.
- (ii) For $S \ge 1$, there exists a one-parameter family of complete, immersed, rotational hypersurfaces in S^n with constant scalar curvature S, converging on one side to the cylinder of Corollary 2.3 in [4]. An infinite countable subfamily consisting of compact hypersurfaces which converges to a sequence of isometrically embedded spheres of radius $1/\sqrt{S}$, with exception of that $n \ge 11$ and $S \ne one number(>n/(n-1))$.
- (iii) There are no complete hypersurfaces in S^n with constant scalar curvature $S \leq (n-3)/(n-1)$.

2. Preliminaries

We shall denote by L^{n+1} the vector space of (n+1)-tuples $x=(x_1, \dots, x_{n+1})$ with the Lorentzian metric $\langle x, y \rangle = -x_1y_1 + x_2y_2 + \dots + x_{n+1}y_{n+1}$, where $y=(y_1, \dots, y_{n+1})$, and shall consider the hyperbolic n-space $H^n(c)$ with constant sectional curvature c, c < 0, as a hypersurface of L^{n+1} , namely,

$$H^{n}(c) = \{x \in L^{n+1}; \langle x, x \rangle = 1/c, x_{1} > 0\}.$$

We shall set $H^n = H^n(-1)$ for simplicity. An orthogonal transformation of L^{n+1} is a linear map which preserves the Lorentzian metric $\langle \ , \ \rangle$; the orthogonal transformations induce, by restriction, all the isometries of H^n . We shall denote by P^k a k-dimensional linear subspace of L^{n+1} and by $O(P^k)$ the set of orthogonal transformations of L^{n+1} with positive determinant which leave P^k pointwise fixed. We shall say that P^k is Lorentzian (resp. Riemannian, resp. degenerate) if the restriction $\langle \ , \ \rangle|_{P^k}$ is a Lorentzian metric (resp. Riemannian metric, resp. a degenerate quadratic form).

Definition 2.1. Choose P^2 and $P^3 \supset P^2$, and let C be a regular C^2 -curve in $P^3 \cap H^n$ which does not meet P^2 . The orbit of C under the action of $O(P^2)$ is said to be a rotational, spherical (resp. hyperbolic, resp. parabolic) hypersurface in H^n if P^2 is Lorentzian (resp. Riemannian, resp. degenerate).

We shall write down the parametrization of rotational hypersurfaces explicitly. It is easily shown that we can choose a basis e_k of L^{n+1} satisfying

the following conditions:

- (1) P^2 is the plane generated by e_n and e_{n+1} ;
- (2) P^3 is the 3-subspace generated by e_1 and P^2 ;
- (3) for two vectors $x = \sum x_i e_i$ and $y = \sum y_i e_i$, we have that the inner product $\langle x, y \rangle$ is equal to

$$x_1y_1 + \cdots + x_ny_n - x_{n+1}y_{n+1}$$
 (spherical case),
 $-x_1y_1 + x_2y_2 + \cdots + x_{n+1}y_{n+1}$ (hyperbolic case),
 $-x_1y_n + x_2y_2 + \cdots + x_{n-1}y_{n-1} - x_ny_1 + x_{n+1}y_{n+1}$ (parabolic case).

When $\langle , \rangle|_{P^2}$ is a nondegenerate (resp. degenerate) quadratic form, let $x_1 = x(s)$, $x_n = y(s)$ (resp. $x_1 = y(s)$, $x_n = x(s)$) and $x_{n+1} = z(s)$, $s \in J$ be an equation of the curve C which is parametrized by arc length and whose domain of definition J is an open interval of R containing zero. Using the profile curve C there exists a C^2 -mapping f from the product space $J \times S^{n-2}$ (resp. $J \times H^{n-2}$, resp. $J \times R^{n-2}$) into H^n whose local parametrization is as follows:

$$(2.1) f(s, \theta_{1}, \dots, \theta_{n-2}) = x(s) \sin \theta_{1}e_{1} + x(s) \cos \theta_{1}$$

$$\times \Theta(\theta_{2}, \dots, \theta_{n-2}) + y(s)e_{n} + z(s)e_{n+1},$$

$$s \in J, -\pi/2 < \theta_{1} < \pi/2, (spherical case),$$

$$(2.2) f(s, \theta_{1}, \dots, \theta_{n-2}) = x(s) \cosh \theta_{1}e_{1} + x(s) \sinh \theta_{1}$$

$$\times \Theta(\theta_{2}, \dots \theta_{n-2}) + y(s)e_{n} + z(s)e_{n+1},$$

$$s \in J, 0 < \theta_{1} < \infty, (hyperbolic case),$$

$$(2.3) f(s, \theta_{1}, \dots, \theta_{n-2}) = \left[-y(s) + \frac{1}{2}\theta_{1}^{2}x(s)\right]e_{1} + x(s)\theta_{1}$$

$$\times \Theta(\theta_{2}, \dots, \theta_{n-2}) + x(s)e_{n} + z(s)e_{n+1},$$

where $\Theta(\theta_2, \dots, \theta_{n-2})$ is a local parametrization of the unit (n-3)-sphere S^{n-3} in the Euclidean (n-2)-space generated by the vectors e_2, \dots, e_{n-1} :

 $s \in I$, $0 < \theta_1 < \infty$, (parabolic case),

$$\Theta(\theta_2, \dots, \theta_{n-2}) = \sin \theta_2 e_2 + \cos \theta_2 \sin \theta_3 e_3 + \dots + \cos \theta_2 \dots$$

$$\times \cos \theta_{n-3} \sin \theta_{n-2} e_{n-2} + \cos \theta_2 \dots \cos \theta_{n-2} e_{n-1},$$

where
$$-\pi/2 < \theta_i < \pi/2$$
 (i=2, ..., n-3), $-\pi < \theta_{n-2} < \pi$ (cf. [3], [5]).

Remark. When n=3, the term $\Theta(e_2, \dots, e_{n-2})$ in (2.1)-(2.3) is replaced by e_2 ; and the range of θ_1 in (2.2) and (2.3) can be replaced by the one " $0<|\theta_1|$ < ∞ ".

We see, with respect to the parametrization that the first fundamental form of the C^2 -mapping f is

(2.4)
$$I = ds^{2} + x(s)^{2} d\theta_{1}^{2} + x(s)^{2} \cos^{2}\theta_{1} d\Theta^{2}$$
[resp.
$$ds^{2} + x(s)^{2} d\theta_{1}^{2} + x(s)^{2} \theta_{1}^{2} d\Theta^{2},$$
resp.
$$ds^{2} + x(s)^{2} d\theta_{1}^{2} + x(s)^{2} \sinh^{2}\theta_{1} d\Theta^{2}],$$

in spherical (resp. parabolic, resp. hyperbolic) case, where $d\Theta^2$ is the canonical Riemannian metric of the unit (n-3)-spere S^{n-3} .

From (2.1)-(2.4) it follows that the mapping f is an immersion if and only if the following condition is satisfied on the interval J,

(2.5)
$$x(s)>0$$
, (spherical and parabolic cases). $x(s)\ge 1$, (hyperbolic case).

It will sometimes be convenient to use the notation M_{δ} , $\delta=1$, 0 or -1, to denote a rotational hypersurface in H^n , where $\delta=1$ (resp. $\delta=0$, resp. $\delta=-1$) means M_{δ} is a spherical (resp. parabolic, resp. hyperbolic) hypersurface. The following result is obtained easily (cf. [3]).

Unless otherwise stated, all manifolds are connected and, we are in the C^{∞} category.

Proposition 2.1. Let M_{δ} be a rotational hypersurface in H^n defined by the immersion f. Assume that $\delta + x(s)^2 - x'(s)^2 > 0$ on f. Then the tangential directions of the parameters $\theta_1, \dots, \theta_{n-2}$ and f are principal directions; the principal curvatures along the coordinates curves θ_{δ} are all equal and given by

$$\lambda = \sqrt{\delta + x^2 - x'^2}/x$$
,

and the principal curvature along the coordinate curve s is

$$\mu = -(x''-x)/\sqrt{\delta + x^2 - x'^2}.$$

3. Rotational hypersurfaces in H^n with constant scalar curvature

From Proposition 2.1 and (2.5) it can be shown (cf. [3], [5]) under the assumption

(3.1)
$$\delta + x(s)^2 - x'(s)^2 > 0$$
 on J ,

that the mapping f is of constant scalar curvature S if and only if, on the interval J, the following relations hold:

(3.2)
$$2xx''-(n-3)(\delta-x'^2)+(n-1)Sx^2=0;$$

(3.3)
$$y = (x^2 + 1)^{1/2} \sinh \varphi(s), \qquad z = (x^2 + 1)^{1/2} \cosh \varphi(s),$$
$$\varphi(s) = \int_0^s (1 + x^2 - x'^2)^{1/2} (x^2 + 1)^{-1} d\sigma, \quad \text{and} \quad x > 0$$

(spherical case),

(3.4)
$$y = (x^2 - 1)^{1/2} \sin \varphi(s), \qquad z = (x^2 - 1)^{1/2} \cos \varphi(s),$$

$$\varphi(s) = \int_0^s (-1 + x^2 - x'^2)^{1/2} (x^2 - 1)^{-1} d\sigma, \quad \text{and} \quad x > 1$$

(hyperbolic case),

(3.5)
$$y = -(z^2 + 1)/2x$$
, $z = x \int_0^s (x^2 - x'^2)^{1/2} x^{-2} d\sigma$, and $x > 0$ (parabolic case).

Remark. If the condition (3.1) breaks down (i.e. the condition is replaced by the following

$$(3.1)' \qquad \delta + x(s)^2 - x'(s)^2 \ge 0 \quad \text{on } f,$$

we cannot use the formulae (3.3)-(3.5) directly. But the condition that our hypersurfaces are rotational guarantees the existence of profile curve C in such an extreme case. We shall, in detail, explain it in the proof of Theorem 1.

Leite studied the rotational, spherical hypersurfaces in H^n as well as for those ones in S^n and \mathbb{R}^n .

In what follows, we consider only rotational hyperbolic and parabolic hypersurfaces in H^n . Multiplying by $x'x^{n-4}$ on the both sides of (3.2) and then integrating we have the following.

Proposition 3.1. Equation (3.2) is equivalent to the following first order DE (3.6) $x^{n-3}(-\delta + Sx^2 + x'^2) = K,$

where K is a constant; moreover, for a constant solution, which we may put as $(a^2-\delta)^{1/2}$ (a: positive constant), we have

$$S = (n-3)\delta[(a^2-\delta)(n-1)]^{-1},$$

$$K = -2\delta[(a^2-\delta)^{(n-3)/2}](n-1)^{-1}.$$

Corollary. The hyperfurface in H^n corresponding to the constant solution in Proposition 3.1 is, for a positive constant a, the product $H^{n-2}(-1/(a^2+1)) \times S^1(a)$ of a circle and a hyperbolic (n-2)-space with constant sectional curvature (resp. a horosphere) provided $\delta = -1$ (resp. $\delta = 0$).

4. The existence theorem of ODE (3.6)

Equation (3.6) tells us a local solution x(s) of (3.1) paired with its first derivative is a subset, denoted by (x, x'), of a level curve for the function H(u, v) defined by

(4.1)
$$H(u, v) \equiv u^{n-3}(-\delta + Su^2 + v^2) = K,$$

where K is a constant.

Definition 4.1. We say that a solution $x \ge -\delta$ of (3.6) is complete if x is defined for all s in R and satisfies the following condition:

$$(3.1)'' \qquad \delta + x(s)^2 - x'(s)^2 \ge 0, \qquad s \in \mathbb{R}.$$

Lemma 4.1. Let S be a negative constant, n an integer, $n \ge 4$ and, $\delta = -1$ or 0. Then, there exists a unique C^{∞} -function u = u(t, K) defined on $\mathbf{R} \times (-\infty, 0)$ which is a solution of the following ordinary differential equation

$$(4.2) (du/dt)^2 = \delta - Su^2 + Ku^{3-n} \equiv \varphi(u, K)$$

with the initial condition $\varphi(u(0, K), K)=0$, where K is regarded as parameter.

Proof. First, recall that the following sublemma of local existence and uniqueness for a normal ODE (see [6]).

Sublemma. Let D (resp. D') be an open subset of \mathbb{R}^n (resp. \mathbb{R}^m), and I an open interval of \mathbb{R} . Denote by f a C^{∞} -mapping from the product space $D \times I \times D'$ into \mathbb{R}^n . Then, for a given point x_0 in D and a given compact subset K' of D', there exist an open subinterval $I_0 = (-\varepsilon, \varepsilon)$ of I and a unique C^{∞} -mapping $x(t, \alpha)$ from the product $I_0 \times \operatorname{Int}(K')$ into \mathbb{R}^n such that for fixed α in K and λ in $\operatorname{Int}(K')$

$$\frac{d}{dt}x(t, \alpha) = f(x(t, \alpha), t, \lambda), \qquad t \in I_0,$$

$$x(0, \alpha) = x_0,$$

where Int(K') is the interior of the set K'.

We shall now proceed to prove Lemma 4.1. Consider the function $\varphi(u, K)$ given in Lemma 4.1. It can be easily seen that for a fixed K<0 there exists a unique number $u^*=u^*(n, S, K, \delta)>-\delta$ such that

$$\varphi(u, K) > 0$$
 for $u > u^*$, $\varphi(u^*, K) = 0$.

It then follows from sublemma that for each $u_0>u^*$ and each $K_0<0$, there

exist positive numbers ε and η , and a C^{∞} -function v(t,K) on $(-\varepsilon,\varepsilon)\times (K_0-\eta,K_0+\eta)$ such that

(4.3)
$$\frac{d}{dt}v(t, K) = \sqrt{\varphi(v(t, K), K)}, \quad |t| < \varepsilon, \quad |K - K_0| < \eta,$$

(4.4)
$$v(0, K) = u_0, \quad |K - K_0| < \eta$$
.

Here and in what follows, K is regarded as a parameter, unless otherwise stated. Note that an open set (u^*, ∞) of R is a Lindelöf space. Using this fact and applying sublemma to the ODE (4.2) to glue such local solutions. From this method we can show that there exists a unique C^{∞} -function u(t, K) defined on $(0, \infty) \times (-\infty, 0)$ which satisfies, for each fixed K < 0, that

(4.5)
$$\frac{d}{dt}u(t, K) = \sqrt{\varphi(u(t, K), K)}, \quad t > 0,$$

(4.6)
$$u(+0, K)=u^*, u(+\infty, K)=+\infty.$$

We extend the function u(t, K) to a C^{∞} -function defined on $(\mathbb{R} \setminus \{0\}) \times (-\infty, 0)$, by

$$u(t, K) = u(-t, K), t, K < 0.$$

Then we have, for each fixed K < 0, that

(4.7)
$$\frac{d}{dt}u(t, K) = \eta \sqrt{\varphi(u(t, K), K)}, \quad \eta = \operatorname{sign} t,$$

 $t \in \mathbb{R} \setminus \{0\}$ and that $u(t, K) \to u^* (\text{resp.} + \infty)$ as $t \to 0$ (resp. $|t| \to +\infty$). From this together with (4.7) it follows that $(d/dt)u(t, K) \to 0$ as $t \to 0$.

If we define $u(0, K)=u^*$, (d/dt)u(0, K)=0, we see that u(t, K) is a C^2 -function on $\mathbb{R}\times(-\infty, 0)$. Differentiating (4.7) on the both sides we have, for each fixed K<0, that

(4.8)
$$\frac{d^2}{dt^2}u(t, K) = -Su(t, K) + \frac{(3-n)K}{2}u(t, K)^{2-n}.$$

It follows from (4.8) that $d^2u(t, K)/dt^2$ may be extended to a C^2 -function on $\mathbf{R} \times (-\infty, 0)$, which implies in turn that u(t, K) may be regarded as C^4 -function on $\mathbf{R} \times (-\infty, 0)$. Repeating this argument we see that u(t, K) may, in fact, be a C^∞ -function on $\mathbf{R} \times (-\infty, 0)$. This completes the proof.

By using Lemma 3.2 in [4] and Lemma 7.2 in [2] together with Lemma 4.1, we can show the (global) existence theorem of (3.6) and the completeness of our rotational hypersurfaces.

Lemma 4.2. When S>0 or S<-1, there exist no solutions of (3.6) or a solution of (3.6) (if there exists) cannot be extended to a complete one. When S=0 and n=3 (resp. $n\ge 4$, $\delta=-1$, resp. $n\ge 4$, $\delta=0$), a complete solution of (3.6) is the constant one provided $K=-\delta$ (resp. $K>-\delta$, resp. $K=-\delta$). When $-1\le$

S<0 and $n\ge 4$, a solution of (3.6) can (resp. cannot) be extended to a complete one provided $K\le 0$ (resp. K>0). When $-1\le S<0$ and n=3, a solution of (3.6) can (resp. cannot) be extended to a complete one provided $K\le -\delta(1+S)$ (resp. $K>-\delta(1+S)$).

Lemma 4.3. Suppose that the profile curve C in Section 2 is C^{∞} and is defined on R. If the function x(t) satisfies for all $t \in R$, that

$$x(t)>0$$
, (parabolic and spherical cases),

$$x(t) \ge 1$$
, (hyperbolic case),

then the hypersurface in H^n given by the immersion f is complete.

5. Proof of Theorem 1 and 2

We shall only prove Theorem 1 because the proof of Theorem 2 is similar. It is clear that the assertion (i) is true in virtue of Lemma 4.2. We shall prove the assertion (ii) in case $n \ge 4$, the case n = 3 is left to the readers.

The level curve H(u, v) = K reduces the following form

$$(5.8) v^2 = -1 - Su^2 + Ku^{3-n}.$$

From Lemma 4.2 it suffices to consider the case where $K \le 0$. We shall first consider the subcase K=0. Putting $a=\sqrt{-S}$, we see that a complete solution u=x(s) of (3.6) may be defined, up to translation in parameter s, by

(5.9)
$$x(s) = \frac{1}{a} \cosh(as), \quad s \in \mathbb{R}.$$

We see that if -1 < S < 0 (i.e., 0 < a < 1), then the function x(s) satisfies the condition (3.1). It then follows that the functions y(s), z(s) may be defined by

$$y(s) = \sqrt{x(s)^2 - 1} \cos \theta(s), \qquad z(s) = \sqrt{x(s)^2 - 1} \sin \theta(s),$$

where

$$\theta(s) = \operatorname{Tan}^{-1} \left[\sinh(as) / \sqrt{1 - a^2} \right], \quad s \in \mathbb{R}.$$

From this together with Lemma 4.3 it can be shown that for each fixed S, -1 < S < 0, there exists, up to isometry leaving the x_1, \dots, x_{n-1} -plane in L^{n+1} fixed, a complete, rotational hypersurface M(S, 0) in H^n with constant scalar curvature S, -1 < S < 0.

We shall next consider the subcase S=-1. Note that the condition (3.1) with $\delta=-1$ breaks down for the function x(s) in (5.9) with a=1. If S=-1 (i.e., a=1), it follows that the functions y(s), z(s) which satisfy (2.6) are given, up to isometry leaving the x_1, \dots, x_{n-1} -subspace in L^{n+1} fixed, by

$$x(s) = \cosh s$$
, $y(s) = \sinh s$, $z(s) = 0$.

Thus, the complete rotational hypersurface in H^n corresponding to the profile curve $\alpha(s) = (\cosh s)e_1 + (\sinh s)e_n$ is the totally geodesic one $H^{n-1} = \{x \in H^n; x_{n+1} = 0\}$.

Finally, we consider the subcase K<0 and $-1 \le S<0$. In that case, we see that for each fixed K<0 the function x(s)=u(s,K), $s \in \mathbb{R}$, given in Lemma 4.1 with $\delta=-1$, satisfies the condition (3.1) with $\delta=-1$. So we can define the functions y(s), z(s) and $\varphi(s)$ by (3.4) and they are C^{∞} .

Thus, it follows from Lemma 4.3 that there exists a one-parameter family of complete, rotational hypersurfaces M(S, K) in H^n with constant scalar curvature $S(-\infty < K < 0)$. This completes the proof of (ii). The assertion (iii) is proved by the similar argument. This completes the proof of Theorem 1.

6. Proof of Theorem 3

We shall briefly review the representation of rotational hypersurfaces in S^n . We fix the rectangular coordinates of \mathbb{R}^{n+1} in which S^n is realized as the unit hypersphere. A rotational hypersurface M in S^n is, up to isometry of S^n , defined by the immersion $f: J \times S^{n-2} \to S^n$

(6.1)
$$f(s, u_1, \dots, u_{n-1}) = (x(s)u_1, \dots, x(s)u_{n-1}, y(s), z(s)),$$

where J is an open interval in R containing the zero, and $\sum_{j=1}^{n-1} u_j^2 = 1$. We may assume that

(6.2)
$$x'(s)^2 + y'(s)^2 + z'(s)^2 \equiv 1.$$

As in Section 2 we get, through a local parametrization of S^{n-2} , the fundamental form is (2.4), provided L^{n+1} with the Lorentzian metric is replaced by \mathbb{R}^{n+1} with the Euclidean metric. It then follows from this observation that the mapping f is an immersion if and only if the following conditin is satisfied on the interval f:

(6.3)
$$x(s) > 0$$
.

Since $x(s)^2 + y(s)^2 + z(s)^2 \equiv 1$ we may put

(6.4)
$$y=(1-x(s)^2)^{1/2}\cos\theta(s), z=(1-x(s)^2)^{1/2}\sin\theta(s).$$

From the equations of Gauss and Codazzi together with (6.1) and (6.2) we can also have Proposition 2.2 and Corollary 2.3 in [4].

We notice that our functions x(s) and $\theta(s)$ can be identical with the functions $f(s) \equiv \sin r(s)$ and h(s) in Leite's paper respectively (see the proof of Theorem 3.6 in [4]). We can show the following Lemma (cf. Lemma 4.1).

Lemma 6.1. Let $n \ge 4$ and S > (n-3)/(n-1), and set $c(S) = \max\{1-S, 0\}$ and $K_0 = (2/(n-1))\{(n-3)/(n-1)S\}^{(n-3)/2}$. For each K, $c(S) < K < K_0$, there exist a unique C^{∞} -function x = x(s, K) defined on $\mathbf{R} \times (c(S), K_0)$, and a constant l = l(K) satisfying that

$$(\partial x/\partial s)^2 = 1 - Sx^2 - Kx^{3-n}$$

and for each fixed K, $c(S) < K < K_0$, x(s, K) is an even and periodic function of s with period 2l, and attains the positive minimum (resp. maximum) at s=0 (resp. s=l).

Lemma 6.2. Let $n \geq 3$ be an integer and define the function $\varphi(x)$ given in $[1, \infty)$ by

$$\varphi(x) = \{(n-1)x - (n-3)\}^{-1/3} - \frac{2}{\pi} \operatorname{Tan}^{-1} \{(x-1)^{-1/2}\}.$$

Then the function $\varphi(x)$ has the following properties.

If $3 \le n \le 10$, then $0 < \varphi(x) < 1/\sqrt{2}$ for all $x \ge 1$.

If $11 \le n$, then $0 < \varphi(x) < 1/\sqrt{2}$ for $1 \le x < c_n$, $-1/2 < \varphi(x) < 0$, for $c_n < x$, and $\varphi(x) = 0$ for $x = c_n$, where $n/(n-1) < c_n < \infty$.

Proof. It is clear that the sign of the derivative $\varphi'(x)$ (x>1) is equal to the one of the function

(6.5)
$$h(x) = \left(x - \frac{n-3}{n-1}\right)^{3} - \frac{\pi^{2}}{n-1}x^{2}(x-1), \quad x > 1.$$

We shall next consider the case $11 \le n$ only, the case $3 \le n \le 10$ is left to the readers. In this case we see that the sign of the coefficients of x^3 on the right hand side of (6.5) is positive and that h(0) < 0, h(1) > 0. It can be easily shown that h(n/(n-1)) < 0 and that $h(x) \to \infty$ as $x \to \infty$. From this observation it follows that there exist constants c, d, $1 < c < n/(n-1) < d < \infty$ such that h(x) > 0 (resp. h(x) < 0) for $1 \le x < c$ or x > d (resp. for c < x < d). This implies that $\varphi'(x) > 0$ (resp. $\varphi'(x) < 0$) for $1 \le x < c$ or x > d (resp. for c < x < d). Note that $\varphi(x) \to 0$ as $x \to \infty$, and that $\varphi(x) > -(1/\pi) \times \operatorname{Tan}^{-1}\{1/\sqrt{x-1}\} > -1/2$ for all x > 1. Combining these facts, we see that the assertion of this lemma is true for $n \ge 11$. This completes the proof of Lemma 6.2.

Suppose that the profile curve C, $\alpha(t)=(x(t), 0, \dots, y(t), z(t))$, in S^n is extendable to a C^{∞} -curve defined on R. Consider, for a positive constant l, the following systems of conditions.

(i)
$$x(t) \equiv -x(-t) \equiv x(t+2l), \quad x'(0)=1, \quad x'(l)=-1,$$

 $0 < x(t) \quad \text{for} \quad t, \quad 0 < t < l;$

(ii)
$$x(t) \equiv x(t+2l), \quad x(t) \ge x(0) > 0 \quad \text{for all } t;$$

(iii)
$$x(t) \equiv \text{constant in } (0, 1].$$

Now we can show the following lemma by using Lemma 9.114 in [1] and Lemma 7.2 in [2].

Lemma 6.3. Assume that the profile curve C, $\alpha(t)=(x(t), 0, \dots, y(t), z(t))$, is extendable to a C^{∞} -curve defined on R. If the function x(t) satisfies one of the systems (ii), (iii) (resp. the system (i)), then the hypersurface in S^n given by the immersion f is complete (resp. extends to a complete hypersurface in S^n).

We shall now prove Theorem 3. It is clear that the assertions (i) and (iii) are true (see [4], pp. 300-303). We shall prove the assertion (ii). It can be shown that if S>(n-3)/(n-1) and $c(S)< K< K_0$, then the function x=x(s,K) given in Lemma 6.1 satisfies that

$$(6.5) 1-x^2-(\partial x/\partial s)^2>0$$

for all s in R. From this observation we can define the function $\theta(s, K)$ by

$$\theta(s, K) = \int_0^s \{1 - x(\sigma, K)^2 - (\partial x(\sigma, K)/\partial \sigma)^2\}^{1/2} (1 - x(\sigma, K)^2)^{-1} ds.$$

Thus, it follows from Lemma 6.3 that there exists for each fixed S, S > (n-3)/(n-1), a one-parameter family of complete, rotational hypersurfaces M(S, K) $(c(S) < K < K_0)$ in S^n with constant scalar curvature S.

We shall now discuss the compactness of our hypersurfaces M(S, K) is S^n . Putting $P(K) = \theta(l(K), K)$, we have that P(K) is a continuous function of K, $c(S) < K < K_0$. And the following properties hold (cf. [4], pp. 301-303):

(6.6)
$$P(K) \longrightarrow 2\pi/\sqrt{(n-1)S-(n-3)} \quad \text{as} \quad K \uparrow K_0,$$

when S > (n-3)/(n-1);

(6.7)
$$P(K) \longrightarrow 2 \operatorname{Tan}^{-1} 1/\sqrt{S-1} \quad \text{as} \quad K \downarrow 0,$$

when $S \ge 1$.

On the other hand, we see that a rotational hypersurface defined by the immersion f is compact if and only if the profile curve $\alpha(s)=(x(s),\,0,\,\cdots,\,0,\,y(s),\,z(s))$ is a closed curve, which is, in turn, equivalent to the value P(K) satisfies that

$$P(K)=2\pi r$$
,

where r is a positive rational number.

Using this observation and Lemma 6.3 together with (6.6) and (6.7), we see that the assertion (ii) is true. This completes the proof of Theorem 3.

References

- [1] A.L. Besse, Einstein Manifolds, Springer-Verlag, 1987.
- [2] R.L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
- [3] M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc., 277 (1983), 685-709.
- [4] M.L. Leite, Rotational hypersurfaces of space forms with constant scalar curvature, Manuscripta Math., 67 (1990), 284-304.
- [5] H. Mori, Stable complete constant mean curvature surfaces in R³ and H³, Trans. Amer. Math. Soc., 278 (1983), 671-687.
- [6] R. Narasimhan, Analysis on real and complex manifolds, North-Holland Publ. Company, Amsterdam, 1968.
- [7] M. Spivak, A comprehensive introduction to Differential Geometry, vol. 4, 2nd edn, Publish or Perish, Inc. Berkeley, 1979.

Department of Mathematics Joetsu University of Education Joetsu 943, Niigata Pref. Japan