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1. Introduction

In a recent work [4], M. L. Leite classified all complete, rotational, (spherical)
hypersurfaces in $R^{n}$ and $H^{n}$ with constant scalar curvature. She also presented
partial results for $S^{n}$ .

In this paper we shall classify all complete, rotational, (hyperbolic and
parabolic) hypersurfaces in $H^{n}$ with constant scalar curvature with which M. L.
Leite does not treat. In particular, we shall exhibit a collection of new complete
hypersurfaces in $H^{n}$ with $S$ ranging in the closed interval $[$ –1, $0]$ . And we
shall accomplish Leite’s result on classification of complete, rotational hyper-
surfaces in $S^{n}$ with constant scalar curvature $S$ with the exception of that $n\geqq 11$

and $ S\neq$ one number $(>n/(n-1))$ .
We refer the readers to Section 2 and [7] for the terminology.

Theorem 1 (Classification of $hyPerbolic$ , rotational $hyPersurfaces$ in $H$“).
(i) There is no comPlete, rotational $hyPersurface$ with constant scalar cur-

vature $S$, for $S<-1$ , or $S>0$ .
(ii) Up to isometry in $H^{n}$ , the $comPlete$ , rotational $hyPersurfaces$ with con-

stant scalar curvature $S\in[-1,0$) form $a$ one-parameter family of examples.
(iii) There exists $a$ one-parameter family of $comPlete$ , rotational hyPersurfaces

with scalar curvature zero, any of which is the product of a circle and $ R(resP\cdot$

an $(n-2)$-dimensional $hyPerbolic$ sPace with constant sectional curvature) $prov\prime ded$

$n=3(resP\cdot n\geqq 4)$ , given in the Corollary of $ProPosition3.1$ below.

Theorem 2 (Classification of parabolic, rotational $hyPersurfaces$ in $H^{n}$ ).
(i) There is no comPlete, rotational $hyPersurface$ with constant scalar cur-

vature $S$, for $S<-1$ , or $S>0$ .
(ii) Up to isometry in $H^{n}$ , the complete, rotational $hyPersurfaces$ with con-

stant scalar curvature $S\in[-1,0$) form $a$ one-parameter family of examPles.
(iii) There is $a$ one-parameter family of complete, rotational $hyPersurfaces$

with constant scalar curvature $0$ , any of which is a horosphere, given in the
1990 Mathematics Subject Classification. Primary $53A10_{j}$ Secondary $53C42$ .
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Corollary of Prop0sition 3.1 below.

Theorem 3 (Classification of rotational hypersurfaces in $S^{n}$ ).

(i) Up to isometry in $S^{n}$ , there exists $a$ one-parameter family of complete,

immersed, rotational hypersurfaces in $S^{n}$ with constant scalar curvature $ s\in$

$((n-3)/(n-1)’, 1)$, converging to the embedded cylinder of Corollary 2.3 in [4].

There exists an inflnite countable subfamily of the family consisting of compact

hypersurfaces, which contains an embedded hypersurface pr0vided $S\in((n-2)/$

$(n-1),$ $1$ ).

(ii) For $S\geqq 1$ , there exists $a$ one-parameter family of complete, immersed,

rotational hypersurfaces in $S^{n}$ with constant scalar curvature $S$ , converging on
one side to the cylinder of Corollary 2.3 in [4]. An infinite countable subfamily
consisting of compact hypersurfaces which converges to a sequence of iso-
metrically embedded spheres of radius $1/\sqrt{S}$ , with excepti0n of that $n\geqq 11$ and
$S\neq onenumber(>n/(n-1))$ .

(iii) There are no complete hypersurfaces in $S^{n}$ with constant scalar curvature
$S\leqq(n-3)/(n-1)$ .

2. Preliminaries

We shall denote by $L^{n+1}$ the vector space of $(n+1)$-tuples $x=(x_{1}, \cdots , x_{n+1})$

with the Lorentzian metric $\langle x, y\rangle=-x_{1}y_{1}+x_{f}y_{2}+\cdots+x_{n+1}y_{n+1}$ , where $y=$

$(y_{1}, \cdots , y_{n+1})$, and shall consider the hyperbolic n-space $H^{n}(c)$ with constant
sectional curvature $c,$ $c<0$ , as a hypersurface of $L^{n+1}$ , namely,

$H^{n}(c)=\{x\in L^{n+1} ; \langle x, x\rangle=1/c, x_{1}>0\}$ .
We shall set $H^{n}=H^{n}(-1)$ for simplicity. An orthogonal transformation of

$L^{n+1}$ is a linear map which preserves the Lorentzian metric $\langle, \rangle$ ; the orthogonal

transformations induce, by restriction, all the isometries of $H^{n}$ . We shall denote
by $P^{k}$ a k-dimensional linear subspace of $L^{n+\iota}$ and by $O(P^{k})$ the set of orthogonal

transformations of $L^{n+1}$ with positive determinant which leave $P^{k}$ pointwise
fixed. We shall say that $P^{k}$ is Lorentzian (resp. Riemannian, resp. degenerate)

if the restriction $\langle, \rangle|_{Pk}$ is a Lorentzian metric (resp. Riemannian metric, resp.
a degenerate quadratic form).

Deflnition 2.1. Choose $P^{2}$ and $P^{S}\supset P^{I}$, and let $C$ be a regular $C^{2}$-curve in
$P^{3}\cap H^{n}$ which does not meet $P^{2}$ . The orbit of $C$ under the action of $O(P^{g})$

is said to be a rotational, spherical (resp. hyperbolic, resp. parabolic) hyper-

surface in $H^{n}$ if $P^{2}$ is Lorentzian (resp. Riemannian, resp. degenerate).

We shall write down the parametrization of rotational hypersurfaces ex-
plicitly. It is easily shown that we can choose a basis $e_{k}$ of $L^{n+1}$ satisfying
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the following conditions:
(1) $P^{2}$ is the plane generated by $e_{n}$ and $e_{n+1}$ ;
(2) $P^{3}$ is the 3-subspace generated by $e_{1}$ and $P^{2}$ ;
(3) for two vectors $x=\sum x_{i}e_{i}$ and $y=\sum y_{i}e_{t}$ , we have that the inner product

$\langle x, y\rangle$ is equal to

$x_{1}y_{1}+\cdots+x_{n}y_{n}-x_{n+1}y_{n+1}$ (spherical case),

$x_{1}y_{1}+x_{2}y_{2}+\cdots+x_{n+1}y_{n+1}$ (hyperbolic case),

$-x_{1}y_{n}+x_{2}y_{2}+\cdots+x_{n- 1}y_{n-1}-x_{n}y_{1}+x_{n+1}y_{n+1}$ (paraMlic case).

When $\langle, \rangle|_{P2}$ is a nOndegenerate (resp. degenerate) quadratic form, let $x_{1}=$

$x(s),$ $x_{n}=y(s)$ (resp. $x_{1}=y(s),$ $x_{n}=x(s)$) and $x_{n+1}=z(s),$ $s\in J$ be an equation of
the curve $C$ which is parametrized by arc length and whose domain of defini-
tion $J$ is an open interval of $R$ containing zero. Using the profile curve $C$

there exists a $C^{2}$-mapping $f$ from the product space $J\times S^{n-2}$ (resp. $J\times H^{n-2}$ ,
resp. $J\times R^{n-2}$) into $H^{n}$ whose local parametrization is as follows:
(2.1) $f(s, \theta_{1}, \cdots \theta_{n- 2})=x(s)$ sin $\theta_{1}e_{1}+x(s)$ cos $\theta_{1}$

$\times\Theta(\theta_{2}, \cdots \theta_{n-2})+y(s)e_{n}+z(s)e_{n+1}$ ,

$s\in J,$ $-\pi/2<\theta_{1}<\pi/2$ , (spherical case),

(2.2) $f(s, \theta_{1}, \cdots , \theta_{n-2})=x(s)$ cosh $\theta_{1}e_{1}+x(s)$ sinh $\theta_{1}$

$\times\Theta(\theta_{2}, \theta_{n-2})+y(s)e_{n}+z(s)e_{n+1}$ ,

$s\in J,$ $ 0<\theta_{1}<\infty$ , (hyperbolic case),

(2.3) $f(s, \theta_{1}, \cdots \theta_{n-2})=[-y(s)+\frac{1}{2}\theta_{1}^{g}x(s)]e_{1}+x(s)\theta_{1}$

$\times\Theta(\theta_{2}, ’ \theta_{n-2})+x(s)e_{n}+z(s)e_{n+1}$ ,

$s\in J,$ $ 0<\theta_{1}<\infty$ , (paraMlic case),

where $\Theta(\theta_{2}, \cdots , \theta_{n-2})$ is a local parametrization of the unit $(n-3)$-sphere $S^{n-3}$

in the Euclidean $(n-2)$-space generated by the vectors $e_{2},$ $\cdots$ , $e_{n- 1}$ ;

$\Theta(\theta_{2}, \cdots , \theta_{n-2})=\sin\theta_{2}e_{2}+\cos\theta_{2}$ sin $\theta_{3}e_{3}+\cdots+\cos\theta_{2}\cdots$

$\times\cos\theta_{n-3}$ sin $\theta_{n-2}e_{n-2}+\cos\theta_{2}\cdots$ cos $\theta_{n-2}e_{n-1}$ ,

where $-\pi/2<\theta_{\ell}<\pi/2$ $(i=2, -- , n-3),$ $-\pi<\theta_{n- 2}<\pi$ (cf. [3], [5]).

Remark. When $n=3$, the term $\Theta(e_{2},$ $\cdots$ , $e_{n-2}$) in $(2.1)-(2.3)$ is replaced by
$e_{2}$ ; and the range of $\theta_{1}$ in (2.2) and (2.3) can be replaced by the one $0<|\theta_{1}|$

$<\infty$ .
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We see, with respect to the parametrization that the first fundamental form

of the $C^{2}$-mapping $f$ is

(2.4) $I=ds^{g}+x(s)^{g}d\theta_{1}^{2}+x(s)^{2}\cos^{2}\theta_{1}d\Theta^{2}$

[resp. $ds^{2}+x(s)^{g}d\theta_{1}^{2}+x(s)^{2}\theta_{1}^{2}d\Theta^{2}$ ,

resp. $ds^{g}+x(s)^{t}d\theta_{1}^{2}+x(s)^{g}\sinh^{t}\theta_{1}d\Theta^{2}$],

in spherical (resp. parabolic, resp. hyperbolic) case, where $de^{g}$ is the canonical

Riemannian metric of the unit $(n-3)$-spere $S^{n-3}$ .
From $(2.1)-(2.4)$ it follows that the mapping $f$ is an immersion if and only

if the following condition is satisfied on the interval $J$ ,

(2.5) $x(s)>0$ , (spherical and parabolic cases).

$x(s)\geqq 1$ , (hyperbolic case).

It will sometimes be convenient to use the notation $M_{\delta},$ $\delta=1,0$ or $-1$ , to

denote a rotational hypersurface in $H^{n}$ , where $\delta=1$ (resp. $\delta=0$ , resp. $\delta=-1$ )

means $M_{\delta}$ is a spherical (resp. parabolic, resp. hyperbolic) hypersurface. The

following result is obtained easily (cf. [3]).

Unless otherwise stated, all manifolds are connected and, we are in the $C^{\infty}$

category.

Proposition 2.1. Let $M_{\delta}$ be a rotational $hyPersurface$ in $H^{n}$ defined by the

immersion $f$. Assume that $\delta+x(s)^{2}-x^{\prime}(s)^{2}>0$ on J. Then the tangential direc-

tions of the parameters $\theta_{1},$
$\cdots,$

$\theta_{n-2}$ and $s$ are Principal directions; the Principal

curvatures along the coordinates curves $\theta_{i}$ are all equal and given by

$\lambda=\sqrt{}\delta+x^{2}-x^{\prime 2}/x$ ,

and the Principal curvature along the coordinate curve $s$ is

$\mu=-(x^{\prime\prime}-x)/\sqrt{\delta+x^{2}-x^{\prime 2}}$ .

3. Rotational hypersurfaces in $H^{n}$ with constant scalar curvature

From Proposition 2.1 and (2.5) it can be shown (cf. [3], [5]) under the

assumption

(3.1) $\delta+x(s)^{2}-x^{\prime}(s)^{2}>0$ on $J$ ,

that the mapping $f$ is of constant scalar curvature $S$ if and only if, on the

interval $J$ , the following relations hold:

(3.2) $2xx^{\prime\prime}-(n-3)(\delta-x^{\prime 2})+(n-1)Sx^{g}=0$ ;
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(3.3) $y=(x^{2}+1)^{1/2}\sinh\varphi(s)$ , $z=(x^{2}+1)^{1/2}\cosh\varphi(s)$ ,

$\varphi(s)=\int_{0}^{\epsilon}(1+x^{2}-x^{\prime 2})^{1/g}(x^{2}+1)^{-1}d\sigma$ , and $x>0$

(spherical case),

(3.4) $y=(x^{2}-1)^{1/g}\sin\varphi(s)$ , $z=(x^{g}-1)^{1/g}\cos\varphi(s)$ ,

$\varphi(s)=\int_{0}^{l}(-1+x^{\epsilon\epsilon}-x^{\prime})^{1/g}(x^{2}-1)^{-1}d\sigma$ , and $x>1$

(hyperbolic case),

(3.5) $y=-(z^{\mathfrak{g}}+1)/2x$ , $ z=x\int_{0}^{l}(x^{2}-x^{\prime 8})^{1/2}x^{-2}d\sigma$ ,

and $x>0$ (parabolic case).

Remark. If the condition (3.1) breaks down ( $i.e$ . the condition is replaced
by the following

(3.1) $\delta+x(s)^{2}-x^{\prime}(s)^{2}\geqq 0$ on $J$),

we cannot use the formulae $(3.3)-(3.5)$ directly. But the condition that our
hypersurfaces are rotational guarantees the existence of profile curve $C$ in suchan extreme case. We shall, in detail, explain it in the proof of Theorem 1.

Leite studied the rotational, spherical hypersurfaces in $H^{n}$ as well as for
those ones in $S^{n}$ and $R^{n}$ .

In what follows, we consider only rotational hyperbolic and parabolic hy-
persurfaces in $H^{n}$ . Multiplying by $x^{\prime}x^{n-4}$ on the both sides of (3.2) and then
integrating we have the following.

Proposition 3.1. Equation (3.2) is equivalent to the following first order DE
(3.6) $x^{n-3}(-\delta+Sx^{2}+x^{\prime 2})=K$ ,

where $K$ is a constant; moreover, for a constant solution, which we may Put as
$(a^{2}-\delta)^{1/g}$ ( $a:pos\iota t\iota ve$ constant), we have

$S=(n-3)\delta[(a^{g}-\delta\times n-1)]^{-1}$ ,

$K=-2\delta[(a^{2}-\delta)^{(n-3)/2}](n-1)^{-1}$ .
Corollary. The hyPerfurface in $H^{n}$ corresponding to the constant solution

in $ProPosition3.1$ is, for a positive constant $a$, the product $ H^{n-2}(-1/(a^{g}+1))\times$

$S^{1}(a)$ of a circle and a $hyPerbolic$ $(n-2)$-sPace with constant sectional curvature
(resp. a horosphere)provided $\delta=-1$ (resp. $\delta=0$).



156 H. MORI

4. The existence theorem of ODE (3.6)

Equation (3.6) tells us a local solution $x(s)$ of (3.1) paired with its first

derivative is a subset, denoted by $(x, x^{\prime})$, of a level curve for the function
$H(u, v)$ defined by

(4.1) $H(u, v)\equiv u^{n-3}(-\delta+Su^{2}+v^{g})=K$ ,

where $K$ is a constant.

Definition 4.1. We say that a solution $ x\geqq-\delta$ of (3.6) is complete if $x$ is

defined for all $s$ in $R$ and satisfies the following condition:

(3.1) $\delta+x(s)^{a}-x^{\prime}(s)^{l}\geqq 0$ , $s\in R$ .

Lemma 4.1. Let $S$ be a negative constant, $n$ an integer, $n\geqq 4$ and, $\delta=-1$

or $0$ . Then, there exists a unique $C^{\infty}$-function $u=u(t, K)$ defined on $R\times(-\infty, 0)$

which is a solution of the following ordinary differential equation

(4.2) $(du/dt)^{2}=\delta-Su^{2}+Ku^{3-n}\equiv\varphi(u, K)$

with the initial condition $\varphi(u(O, K),$ $K$ ) $=0$ , where $K$ is regarded as parameter.

Proof. First, recall that the following sublemma of local existence and

uniqueness for a normal ODE (see [6]).

Sublemma. Let $D$ (resp. $D^{\prime}$ ) be an open subset of $R^{n}$ (resp. $R^{m}$ ), and $I$

an open interval of $R$ . Denote by $f$ a $C^{\infty}$-mapping from the product space
$D\times I\times D^{\prime}$ into $R^{n}$ . Then, for a given point $x_{0}$ in $D$ and a given compact

subset $K^{\prime}$ of $D^{\prime}$ , there exist an open subinterval $l_{0}=(-\epsilon, \epsilon)$ of 1 and a unique
$C^{\infty}$-mapping $x(t, \alpha)$ from the product $I_{0}\times Int(K^{\prime})$ into $R^{n}$ such that for fixed $\alpha$

in $K$ and $\lambda$ in Int $(K^{\prime})$

$\frac{d}{dt}x(t, \alpha)=f(x(t, \alpha),$ $t,$
$\lambda$ ), $t\in I_{0}$ ,

$x(0, \alpha)=x_{0}$ ,

where Int $(K^{\prime})$ is the interior of the set $K^{\prime}$ .

We shall now proceed to prove Lemma 4.1. Consider the function $\varphi(u, K)$

gvien in Lemma 4.1. It can be easily seen that for a fixed $K<0$ there exists

a unique number $ u^{*}=u^{*}(n, S, K, \delta)>-\delta$ such that

$\varphi(u, K)>0$ for $u>u^{*}$ , $\varphi(u^{*}, K)=0$ .

It then follows from sublemma that for each $u_{0}>u^{*}$ and each $K_{0}<0$, there
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exist positive numbers $\epsilon$ and $\eta$ , and a $C^{\infty}$-function $v(t, K)$ on $(-\epsilon, \epsilon)\times(K_{0}-\eta$ ,
$K_{0}+\eta)$ such that

(4.3) $\frac{d}{dt}v(t, K)=\sqrt{\varphi(v(t,K),K)}$, $|t|<\epsilon$ , $|K-K_{0}|<\eta$ ,

(4.4) $v(0, K)=u_{0}$ , $|K-K_{0}|<\eta$ .
Here and in what follows, $K$ is regarded as a parameter, unless otherwise

stated. Note that an open set $(u^{*}, \infty)$ of $R$ is a Lindel\"of space. Using this
fact and applying sublemma to the ODE (4.2) to glue such local solutions. From
this method we can show that there exists a unique $C^{\infty}$-function $u(t, K)$ defined
on $(0, \infty)\times(-\infty, 0)$ which satisfies, for each fixed $K<0$, that

(4.5) $\frac{d}{dt}u(t, K)=\sqrt{\varphi(u(t,K),K)}$, $t>0$ ,

(4.6) $u(+0, K)=u^{*}$ , $ u(+\infty, K)=+\infty$ .
We extend the function $u(t, K)$ to a $C^{\infty}$-function defined on $(R\backslash \{0\})\times$

$(-\infty, 0)$, by
$u(t, K)=u(-t, K)$, $t,$ $K<0$ .

Then we have, for each fixed $K<0$, that

(4.7) $\frac{d}{dt}u(t, K)=\eta\sqrt{\varphi(u(t,K),K)}$, $\eta=signt$ ,

$t\in R\backslash \{0\}$ and that $u(t, K)\rightarrow u^{*}$ (resp. $+\infty$ ) as $t\rightarrow 0$ (resp. $|t|\rightarrow+\infty$ ). From this
together with (4.7) it follows that $(d/dt)u(t, K)\rightarrow 0$ as $t\rightarrow 0$ .

If we define $u(O, K)=u^{*},$ $(d/dt)u(0, K)=0$ , we see that $u(t, K)$ is a $C^{2}-$

function on $R\times(-\infty, 0)$ . Differentiating (4.7) on the both sides we have, for
each fixed $K<0$, that

(4.8) $\frac{d^{2}}{dt^{2}}u(t, K)=-Su(t, K)+\frac{(3-n)K}{2}u(t, K)^{2-n}$ .
It follows from (4.8) that $d^{2}u(t, K)/dt^{2}$ may be extended to a $C^{2}$-function on
$R\times(-\infty, 0)$, which implies in turn that $u(t, K)$ may be regarded as $C^{4}$-func-
tion on $R\times(-\infty, 0)$ . Repeating this argument we see that $u(t, K)$ may, in
fact, be a $C^{\infty}$-function on $R\times(-\infty, 0)$ . This completes the proof.

By usimg Lemma 3.2 in [4] and Lemma 7.2 in [2] together with Lemma
4.1, we can show the (global) existence theorem of (3.6) and the completeness
of our rotational hypersurfaces.

Lemma 4.2. When $S>0$ or $S<-1$ , there exist no solutions of (3.6) or a
solution of (3.6) (if there exists) cannot be extended to a $comPlete$ one. When
$S=0$ and $n=3$ (resp. $n\geqq 4,$ $\delta=-1$ , resp. $n\geqq 4,$ $\delta=0$), a complete solution of (3.6)
is the constant one provided $ K=-\delta$ $(resPK>-\delta, resP. K=-\delta)$ . When $-1\leqq$
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$S<0$ and $n\geqq 4$ , a solution of (3.6) can ( $ resP\cdot$ cannot) be extended to a comPlete
one provided $K\leqq 0(resP\cdot K>0)$ . When $-1\leqq S<0$ and $n=3$, a solution of (3.6)

can ($resP$ . cannot) be extended to a complete one Provided $ K\leqq-\delta(1+S)(resP\cdot$

$K>-\delta(1+S))$ .

Lemma 4.3. SuPpose that the profile curve $C$ in Section 2 is $C^{\infty}$ and is

defined on R. If the function $x(t)$ satisfies for all $t\in R$, that

$x(t)>0$ , (Parabolic and spherlcal cases),

$x(t)\geqq 1$ , ($hyPerbolic$ case),

then the $hyPersurface$ in $H^{n}$ given by the immersion $f$ is $comPlete$ .

5. Proof of Theorem 1 and 2

We shall only prove Theorem 1 because the proof of Theorem 2 is similar.
It is clear that the assertion (i) is true in virtue of Lemma 4.2. We shall
prove the assertion (ii) in case $n\geqq 4$ , the case $n=3$ is left to the readers.

The level curve $H(u, v)=K$ reduces the following form

(5.8) $v^{2}=-1-Su^{2}+Ku^{3-n}$ .
From Lemma 4.2 it suffices to consider the case where $K\leqq 0$ . We shall

first consider the subcase $K=0$ . Putting $a=\sim^{/}\overline{-S}$ , we see that a complete

solution $u=x(s)$ of (3.6) may be defined, up to translation in parameter $s$ , by

(5.9) $ x(s)=\frac{1}{a}\cosh$ (as), $s\in R$ .

We see that if $-1<S<0(i.e., 0<a<1)$, then the function $x(s)$ satisfies the

condition (3.1). It then follows that the funtions $y(s),$ $z(s)$ may be defined by

$y(s)=\sqrt{x(s)^{2}-1}$ cos $\theta(s)$ , $z(s)=\sqrt{2-1}$

where
$\theta(s)=Tan^{-1}[\sinh(as)/\sqrt{1-a^{2}}]$ , $s\in R$ .

From this together with Lemma 4.3 it can be shown that for each fixed
$S,$ $-1<S<0$, there exists, up to isometry leaving the $x_{1},$ $\cdots$ , $x_{n-1}$-plane in
$L^{n+1}$ fixed, a complete, rotational hypersurface $M(S, 0)$ in $H^{n}$ with constant

scalar curvature $S,$ $-1<S<0$ .
We shall next consider the subcase $S=-1$ . Note that the condition (3.1)

with $\delta=-1$ breaks down for the function $x(s)$ in (5.9) with $a=1$ . If $S=-1$

$(i.e., a=1)$, it follows that the functions $y(s),$ $z(s)$ which satisfy (2.6) are given,

up to isometry leaving the $x_{1},$
$\cdots$ , $x_{n- 1}$-subspace in $L^{n+1}$ fixed, by
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$x(s)=\cosh s$ , $y(s)=\sinh s$ , $z(s)=0$ .
Thus, the complete rotational hypersurface in $H^{n}$ corresponding to the profile
curve $\alpha(s)=(\cosh s)e_{1}+(\sinh s)e_{n}$ is the totally geodesic one $H^{n-1}=\{x\in H^{n}$ ;
$x_{n+1}=0\}$ .

Finally, we consider the subcase $K<0$ and $-1\leqq S<0$ . In that case, we
see that for each fixed $K<0$ the function $x(s)=u(s, K),$ $s\in R$, given in Lemma
4.1 with $\delta=-1$ , satisfies the condition (3.1) with $\delta=-1$ . So we can define
the functions $y(s),$ $z(s)$ and $\varphi(s)$ by (3.4) and they are $C^{\infty}$ .

Thus, it follows from Lemma 4.3 that there exists a one-parameter family
of complete, rotational hypersurfaces $M(S, K)$ in $H^{n}$ with constant scalar cur-
vature $S(-\infty<K<0)$ . This completes the proof of (ii). The assertion (iii) is
proved by the similar argument. This completes the proof of Theorem 1.

6. Proof of Theorem 3

We shall briefly review the representation of rotational hypersurfaces in
$S^{n}$ . We fix the rectangular coordinates of $R^{n+1}$ in which $S^{n}$ is realized as the
unit hypersphere. A rotational hypersurface $M$ in $S^{n}$ is, up to isometry of $S^{n}$ ,
defined by the immersion $f$ : $J\times S^{n-2}\rightarrow S^{n}$

(6.1) $f(s, u_{1}, \cdots , u_{n-1})=(x(s)u_{1}, \cdots , x(s)u_{n-1}, y(s), z(s))$ ,

where $J$ is an open interval in $R$ containing the zero, and $\Sigma_{j=1}^{n-1}u_{j}^{2}=1$ . We may
assume that

(6.2) $x^{\prime}(s)^{2}+y^{\prime}(s)^{2}+z^{\prime}(s)^{l}\equiv 1$ .
As in Section 2 we get, through a local parametrization of $S^{n-2}$ , the funda-

mental form is (2.4), provided $L^{n+1}$ with the Lorentzian metric is replaced by
$R^{n+1}$ with the Euclidean metric. It then follows from this observation that the
mapping $f$ is an immersion if and only if the following conditin is satisfied on
the interval $J$ :
(6.3) $x(s)>0$ .
Since $x(s)^{2}+y(s)^{2}+z(s)^{2}\equiv 1$ we may put

(6.4) $y=(1-x(s)^{2})^{1\prime 2}\cos\theta(s)$, $z=(1-x(s)^{2})^{1/2}\sin\theta(s)$ .
From the equat $i$ons of Gauss and Codazzi together with (6.1) and (6.2) we
can also have Proposition 2.2 and Corollary 2.3 in [4].

We notice that our functions $x(s)$ and $\theta(s)$ can be identical with the func-
tions $f(s)\equiv\sin r(s)$ and $h(s)$ in Leite’s paper respectively (see the proof of
Theorem 3.6 in [4]). We can show the following Lemma (cf. Lemma 4.1).
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Lemma 6.1. Let $n\geqq 4$ and $S>(n-3)/(n-1)$, and set $c(S)=\max\{1-S, 0\}$ and
$K_{0}=(2/(n-1))\{(n-3)/(n-1)S\}^{(n-3)/2}$ . For each $K,$ $c(S)<K<K_{0}$ , there exist a
unique $C^{\infty}$-function $x=x(s, K)$ defined on $R\times(c(S), K_{0})$, and a constant $1=l(K)$

satisfying that
$(\partial x/\partial s)^{2}=1-Sx^{2}-Kx^{3-n}$ ,

and for each fixed $K,$ $c(S)<K<K_{0},$ $x(s, K)$ is an even and Periodic function of
$s$ with $Per\iota od2l$ , and attains the Positive minimum ($resP$ . maximum) at $ s=0(resP\cdot$

$s=l)$ .
Lemma 6.2. Let $n(\geqq 3)$ be an integer and define the function $\varphi(x)$ given

in $[1, \infty$ ) by

$\varphi(x)=\{(n-1)x-(n-3)\}^{-1/3}-\frac{2}{\pi}$Tan $\{(x-1)^{-1/2}\}$ .
Then the function $\varphi(x)$ has the following prOperties.

If $3\leqq n\leqq 10$ , then $0<\varphi(x)<1/\sqrt{2}$ for all $x\geqq 1$ .
If $11\leqq n$ , then $ 0<\varphi(x\rangle$ $<1/\sqrt{2}$ for $1\leqq x<c_{n},$ $-1/2<\varphi(x)<0$, for $c_{n}<x$ ,

and $\varphi(x)=0$ for $x=c_{n}$ , where $ n/(n-1)<c_{n}<\infty$ .

Proof. It is clear that the sign of the derivative $\varphi^{\prime}(x)(x>1)$ is equal to

the one of the function

(6.5) $h(x)=(x-\frac{n-3}{n-1})^{3}-\frac{\pi^{2}}{n-1}x^{2}(x-1)$ , $x>1$ .

We shall next consider the case $11\leqq n$ only, the case $3\leqq n\leqq 10$ is left to

the readers. In this case we see that the sign of the coefficients of $x^{3}$ on the
right hand side of (6.5) is positive and that $h(O)<0,$ $h(1)>0$ . It can be easily

shown that $h(n/(n-1))<0$ and that $ h(x)\rightarrow\infty$ as $ x\rightarrow\infty$ . From this observation
it follows that there exist constants $c$ , $d,$ $ 1<c<n/(n-1)<d<\infty$ such that
$h(x)>0$ (resp. $h(x)<0$) for $1\leqq x<c$ or $x>d$ (resp. for $c<x<d$ ). This implies

that $\varphi^{\prime}(x)>0$ (resp. $\varphi^{\prime}(x)<0$) for $1\leqq x<c$ or $x>d$ (resp. for $c<x<d$ ). Note
that $\varphi(x)\rightarrow 0$ as $ x\rightarrow\infty$ , and that $\varphi(x)>-(1/\pi)\times Tan^{-1}\{1/\sqrt{x-1}\}>-1/2$ for all
$x>1$ . Combining these facts, we see that the assertion of this lemma is true

for $n\geqq 11$ . This completes the proof of Lemma 6.2.

Suppose that the profile curve $C,$ $\alpha(t)=(x(t), 0, \cdots , y(t), z(t))$, in $S^{n}$ is ex-
tendable to a $C^{\infty}$-curve defined on $R$. Consider, for a positive constant $l$ , the
following systems of conditions.

(i) $x(t)\equiv-x(-t)\equiv x(t+2l)$, $x^{\prime}(0)=1$ , $x^{\prime}(l)=-1$ ,

$0<x(t)$ for $t$ , $0<t<l$ ;

(ii) $x(t)\equiv x(t+2l)$,
(

$x(t)\geqq x(0)>0$ for all $t$ ;
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(iii) $x(t)\equiv constant$ in $(0,1$].

Now we can show the following lemma by using Lemma 9.114 in [1] and
Lemma 7.2 in [2].

Lemma 6.3. Assume that the Profile curve $C,$ $a(t)=(x(t), 0, \cdots , y(t), z(t))$,
is extendable to a $C^{\infty}$-curve defined on R. If the function $x(t)$ satisfies one of
the systems (ii), (iii) (resp. the system $(i)$), then the $hyPersurface$ in $S^{n}$ given by
the immersion $f$ is comPlete (resp. extends to a complete hyPersurface in $S^{n}$ ).

We shall now prove Theorem 3. It is clear that the assertions (i) and
(iii) are true (see [4], pp. 300-303). We shall prove the assertion (ii). It can
be shown that if $S>(n-3)/(n-1)$ and $c(S)<K<K_{0}$ , then the function $x=x(s, K)$
given in Lemma 6.1 satisfies that
(6.5) $1-x^{2}-(\partial x/\partial s)^{2}>0$

for all $s$ in $R$. From this observation we can define the function $\theta(s, K)$ by

$\theta(s, K)=\int_{0}^{*}\{1-x(\sigma, K)^{2}-(\partial x(\sigma, K)/\partial\sigma)^{2}\}^{1/2}(1-x(\sigma, K)^{2})^{-1}ds$ .
Thus, it follows from Lemma 6.3 that there exists for each fixed $S,$ $S>$

$(n-3)/(n-1)$, a one-parameter family of complete, rotational hypersurfaces
$M(S, K)(c(S)<K<K_{0})$ in $S^{n}$ with constant scalar curvature $S$ .

We shall now discuss the compactness of our hypersurfaces $M(S, K)$ is $S^{n}$ .
Putting $P(K)=\theta(l(K), K)$, we have that $P(K)$ is a continuous function of $K$,
$c(S)<K<K_{0}$ . And the following properties hold (cf. [4], pp. 301-303):

(6.6) $P(K)\rightarrow 2\pi/\sqrt{(n-1)S-(n-3})$ as $K\uparrow K_{0}$ ,

when $S>(n-3)/(n-1)$ ;

(6.7) $P(K)\rightarrow 2$ Tan $1/\sqrt{S-1}$ as $K\downarrow 0$ ,

when $S\geqq 1$ .
On the other hand, we see that a rotational hypersurface defined by the

immersion $f$ is compact if and only if the profile curve $\alpha(s)=(x(s),$ $0,$ $\cdots$ , $0$,
$y(s),$ $z(s))$ is a closed curve, which is, in turn, equivalent to the value $P(K)$

satisfies that
$P(K)=2\pi r$ ,

where $r$ is a positive rational number.
Using this observation and Lemma 6.3 together with (6.6) and (6.7), we

see that the assertion (ii) is true. This completes the proof of Theorem 3.
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