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Summary. Limit theorems for some non-degenerate U-statistics are establi-
shed when the underlying processes satisfy some strongly mixing condition.

1. Intrdduction

Let (X, ) be a countably generated measurable space. Let {§;, =0} be a
strictly stationary X-valued stochastic sequence defined on a probability space
(2, g, P). Denote by F the distribution of §: and by #}, the g-algebra generated
by &., -+, &. The sequence is called a *.mixing sequence if

_ | P(AB)—P(A)P(B)|
(.1 ¢(m)=sup __sup P(PEB)y 0 (1)
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and it is called a ¢-mixing sequence if

(1.2) é(n)=sup sup IP(AB);(Z()A)P(B)I 0 (n—oo).
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Finally, the sequence is called a strongly mixing sequence if

(1.3) a(n)=skl;;o) sup | P(AB)—P(A)P(B)| —> 0 (n—o0).
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Next, let H be a Borel measurable kernel defined on X ™.  Therefore, H::
X™—R be a measurable function such that

(1.4) 6F)={--[H(x, -, 2 T dF(x)< o

and H is symmetric in its m arguments. A U-statistic U » is then given by

1

(1.5) U"Z(ﬁjlsi1<‘2<im5"
m

H(ft,, ] Eim) (ngm)-
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A kernel H is called degenerate (for the distribution F) if for all choices of
a;=X(1<i<m) and all j(1<7=m)
(1-6) E EH(al’ Gy eb Qjsr1y " am)=0

and a U-statistic is called degenerate if the corresponding kernel has this pro-
perty. For every r(r=0, 1, ---, m) let

(L) Ho(xy, xr)=g---SH(x1, oy xm) TL dF(x)

i=7+1

so that H,=@(F) and H,=H. It is known that every U-statistic can be written
as a finite weighted sums of degenerate ones, namely,

: —_ <A (M™\rrm
aw =g
where US"” denotes the U-statistic obtained from the degenerate kernel
o7
(1-9) hr(xlr Tty x'r)= Eo(] )(—l)r_jHj(xh Tty x])'

Now, let L¥ X, F) be the Hilbert space of square-integrable functions with
respect to F. Let {g;} be an orthonormal basis of L*X, F) such that go=1.
For each r(1<r<m) put ’

(1.10) Gipns, (X1, x,)=ggtj(xj).

It is well known that for each r(1<r<m) the system {gi,, .., O§i1<i2<“‘<
ir<oo} is a basis of the Hilbert space L¥ X", F7). Let A,(iy, -, i,) be the
Fourier coefficient of the function h., i.e.,

BTV INP WNSYPR A BNV NCNRRIER) | EHER | RIICTOE
Then, for each r(1<r<m) we have

(1.12) ho(xy, -, x,)=(%})lr(i,, oy 1)y 1, (X1 s X )
in the L:-sense and by the Parseval inequality

(1.13) e ) 20 LaFGD=S1 4G, oy i <o
Put | |

(1.14) Ay, oy Bry 0, o, O=2,(61, -, i) (ISrs=m-—1),
and

Z(ih Tty im)='zm(ih ] im)-
Let
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(1.15) ' U%ZE(E hx(f;))
and
(1.16) a?=Eh¥&)+2 ﬁ Ehy(&)h(E0).

It is known that under conditions of (below) the series in [1.16)
converges absolutely and

(1.17) gi=nc*(140(1)) as n— oo,

Denker and Keller considered the limiting behavior of (n/ma,)(U,— 8(F))
when {§;} is absolutely regular. The obtained results generalized the results
in [6]. In this paper, we consider the analogous problems for some strongly
mixing sequences when all of degenerate kernels {h.(xi, x3), =+, Am(x1, =+, Xm)}
can be written in the form of

2. Main results

In what follows, we use the following notations:

(i) For any random variables » we put |[y|,={E[9|"}"(r21) if Elgp|"
< oo,

(ii) [s] denotes the largest integer # such that 2<s.

(iii) ¢, with or without subscript, denotes an absolute constant which is
not always the same.

Let D[0, 1] be the space of functions on [0, 1] that are right-continuous
and have left-hand limits. We endow D[0, 1] the J,-topology. Let {&} be a
strictly stationary X-valued sequence. Let 4,(-) and {g, .(-)} be the ones defined
in Section 1. For positive numbers a and b we put formally

2.1) Ki(a)=[h(ED)le
and
2.2) Kb)= max sup||gs, -(&:)ls-

Define the process {Y ,(¢): =0} by

n
mao,

(2.3) Ya.)= Utnea—6(F)  (20).

Theorem 1. Let {&;} be a strictly stationary X-valued sequence. Let H:
X™—R be a nondegenerate kernel. Suppose that (1.12) holds for all r 2<r=<m)
and a*, defined by (1.16), is positive. Suppose that :

@24) S, - i)l <oo
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holds. Suppose further that one of the followz'ng sets of conditions is satisfied:
(i) {&a} is *-mixing, Ki(2)<oo, Ky4)<oco and

(2.5) : a=1 BT P(n)<oco.
(ii) {&n} is ¢-mixing, Ki(2)<oo, Ky2m)<oo and
(2.6) 2R n" M (n)< oo

(iii) {&.} is strongly mixing and there exists a 6(>0) such that K, (240/m)
< oo, Ki(2m+0)< o and

(2.7) S, nmab O (n) <L oo .
Then, as n— | |
(2.8) Y.={Y.0t): 0<t<1} —D—+W={W(t): 0<t<l} in D[O, 1]

where W is a Wiener process on [0, 1].

Remark. Conditions (ii) and (iii) in may be replaced by more
flexible conditions (cf. [3], [4D.

Theorem 2. Suppose conditions of Theorem 1 are satisfied. Then, without
changing its distribution we can redefine the sequence {§., n=1} on a richer pro-
bability space on which there exists a Wiener process {W(t): 0<t<1} such that
with probability one

(2.9) (82 (=W ()| =0(t"?)  as t—oo.

3. Auxiliary results

The following is known.

Lemma 3.1. Let {;} be some sequence. Let random variables X and Y be

M- and M, .-measurable, respectively.
(i) If {G:} is *-mixing, E|X| <o and E|Y |<co, then

@G.1) |[EXY—EXEY |<¢(n)E|X|E|Y |,
which implies
(3.2) |EXY |SE| XY |=(1+¢n)HEIX|E|Y].

(ii) Suppose {{:} is ¢-mixing. Let p(>1) and q(>1) be number.s such that
pi4+g =1 If E|X|?<o and E|Y |<co, then

(3.3 |[EXY —EXEY | £2¢"7(n)| X|[p|Y .
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(iii) Suppose {L;} is strongly mixing.. Let p(>1) and ¢(>1) be numbers
such that y=p '+q¢'<1l. If E|X|?<o and E|Y |9<oo, then

(3.4) . |EXY—EXEY | S1067(m)| XI5 Xl.
Next, we consider the following lemma.

Lemma 3.2. Let {{;} be some mixing sequence of zero-mean random varzables
Then, for any positive integer r ‘

(3.5) E| > T N - AN

156, <ctpsn

if one of the following sets of conditions is satisfied :

(i) {&} #s *-mixing, SilzlPuC¢||2<oo and

(3.6) SnTg(n)<oo.
(ii) {Q:} is g-mixing, siuP"Ct”zr<°° and
3.7 Sargir(n)<co.

(iii) {&:} is strongly mixing and there exists a 6(>0) for which sup“C;lI,”a
< oo and

(3.8) SnTal et (n)< oo,

The proof of can be carried out by using Lemma 3.1 and the
method of the proof of Lemma 3 in and so omitted (cf.[8], Lemma11.4.1).

The following lemma is fundamental.

Lemma 3.3. Suppose conditions of Theorem 1 are satisfied. Then for any
t(0<t<1)

3.9 ElUGHI2sc(rn™™  (r=2, -+, m)

where ¢(2), ---, c¢(m) are absolute constants which do not depend on n.

Proof. Let r(2<r<m) be arbitrary. To prove it is enough to show
that

(3.10) El S hEp o, &) scn”

1541<<Jrsint]

By virture of is proved if we show that
(3.11) El_ 3 S -, i) M gq@)serm.

1871 <Jpslnt] (1)

For brevity, put p=[nt],
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(3:12) - ’ a Zr({i})zzr(ih iy by)
and -‘ |
(3.13) Guttin=,, 2 M2

Since for each {i} fixed {g,(§;)} is a mxxmg sequence of zero-mean random
variables such that {g;(&,)} satisfies the same mixing condition as that of {,},
by the Schwarz inequality and

LHS of B.1INSZ 0S| A{iD1- 12U DI E| GG D]
(3.14) <D un AN 1AAT DI Gl G Dl -
Scp" S [ AEPDIZan 14U DL
Now, follows from and (1.13). 0O

4. Proofs

Proof of M It is easnly shown that under conditions of [Theorem 1
@n {051252‘13(/1:(5;) 0(F)) Oﬁl‘/l} 2, W {W(l’) OSZ‘<1}
(cf. [3], [4]). Hence, is obtained from [4.1) and Lemma 3.3 O

~ Proof of Theorem 2. By results in [5], we can show that if condition of
Theorem 1 are satisﬁéd, then without changing its distribution we can redefine
the sequeﬁce ‘{E,,, n=1} on a richer probability space such that for some 7
0<r<1/2) I ’

42 . ot ZEA(h(EN—OF)-W ()| =0@/* ) a.s.
as t—oo. On the other hand, by we can easily show that
(4.3) IE U= 1/8) a.s.

as t—»oo, Hence 2. 10) is obtamed from (4. Zﬂ and K4 3 O
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