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Abgtract. SuPpose Yl is a separable, infinite dimensional, complex Hilbert
space. Let $\{\lambda_{\dot{t}} : 1\leqq i\leqq n\}$ be a set of distinct elements in the open unit disc
of the complex plane $C$ and let $T\in A_{n}(\ovalbox{\tt\small REJECT})$ (to be defined below). In this
Paper, we show that if $N$ is a normal operator on an n-dimensional Hilbert
space whose matrix to some orthonormal basis $\{e_{\ell} ; 1\leqq i\leqq n\}$ is the diagonal
matrix Diag $(\{\lambda_{i} : 1\leqq i\leqq n\})$ , then there exist invariant subspaces ,St and 92 for
$T$ with .lC92 such that the compression $ T_{R}\ominus\Re$ of $T$ to $\ovalbox{\tt\small REJECT}_{\iota}\ominus\Re$ is unitarily
equivalent to $N$.

1. Introduction

Let St be a separable, infinite dimensional, complex Hilbert space and let
$X(ff)$ be the algebra of all bounded linear operators on Yr. A dual algebra is
a subalgebra of .C(St) that contains the identity operator $I_{\ovalbox{\tt\small REJECT}}$ and is closed in
the ultraweak operator topology on $X(\ovalbox{\tt\small REJECT})$ . The theory of dual algebras is
deeply related to the study of the classes $A_{n}$ (to be defined below), where $n$ is
any cardinal number such that $1\leqq n\leqq\aleph_{0}$ (cf. [1], [5], and [6]). The structures
of the classes $A_{n}$ have been applied to the topics of invariant subspaces, dilation
theory, and reflexivity (cf. [6], [13]). In particular, the study of the classes
$A_{n}$ appearing in the theory of dual algebras has been focused in the last five
years on sufficient conditions that a contraction $T\in \mathcal{L}(\ovalbox{\tt\small REJECT})$ belongs to the classes
$A_{n}$ . An abstract geometric criterion for membership in $A_{\aleph_{0}}$ was first given in
[1]. Brown-Chevreau-Exner-Pearcy $[7][8][9][10]$ obtained some relationship
between dual algebras and Fredholm theory, and established topological criteria
for membership in $A_{\aleph_{0}}$ . Recently many functional analysists have studied
structures of operators in the class $A_{n},$ $A_{\aleph_{0}}$ , or $A$ (cf. [3], [4], [11], and [12]).
As a sequel to this study, we define in section 3 new classes $C(A_{n})$ which give
a good motivation for attacking the main work of this paper. In section 4, we
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obtain some results concerning the classes $C(A_{n})$ and some dilation theorems of
operators in the classes $A_{n}$ .

2. Preliminaries and notation

The notation and terminology employed herein agree with those in [2], [6],

and [15]. We shall denote by $D$ the open unit disc in the complex plane $C$,
and we write $T$ for the boundary of $D$ . For $ 1\leqq p<\infty$ , we denote by $L^{p}=L^{p}(T)$

the Banach space of complex valued, Lebesgue measurable functions $f$ on $T$

such that $|f|^{p}$ is Lebesgue integrable, and by $L^{\infty}=L^{\infty}(T)$ the Banach algebra
of all complex valued Lebesgue measurable, essentially bounded functions on
$T$. If for $ 1\leqq P\leqq\infty$ we denote by $H^{p}=H^{p}(T)$ the subspace of $L^{p}$ consisting of
those functions whose negative Fourier coefficients vanish, then one knows
that the preannihilator $\perp(H^{\infty})$ of $H^{\infty}$ in $L^{1}$ is the subspace $H_{0}^{1}$ consisting of
those functions $g$ in $H^{1}$ whose analytic extension $\tilde{g}$ to $D$ satisfies $\tilde{g}(0)=0$ . It
is well known that $H^{\infty}$ is the dual space of $L^{1}/H_{0}^{1}$ , where the duality is given

by the pairing $\langle f, [g]\rangle=\frac{1}{2\pi}\int_{0}^{2\pi}f(e^{\ell t})g(e^{\ell t})dt,$ $f\in H^{\infty},$ $[g]\in L^{1}/H_{0}^{1}$ . For $T\in \mathcal{L}(\ovalbox{\tt\small REJECT})$,

let $d_{T}$ denote the smallest subalgebra of $X(\ovalbox{\tt\small REJECT})$ that contains $T$ and $I_{Jt}$ and
is closed in the ultraweak operator topology. Moreover, let QT denote the
quotient space $C_{1}/\perp A_{T}$ , where $C_{1}$ is the trace-class ideal in $X(ff)$ under the
trace norm, and $\perp d_{T}$ denotes the preannihilator of $\cup l_{T}$ in $C_{1}$ . One knows that
$d_{T}$ is the dual space of QT and that the duality is given by $\langle A, [L]\rangle=tr(AL)$,
$A\in A_{T},$ $[L]\in Q_{T}$ . For vectors $x$ and $y$ in $\ovalbox{\tt\small REJECT}$ , we write, as usual, $x\otimes y$ for the
rank one operator in $C_{1}$ defined by $(x\otimes y)(u)=(u, y)x$, $u\in\ovalbox{\tt\small REJECT}$ . Recall that any
contraction $T$ can be written as a direct sum $T=T_{1}\oplus T_{2}$ , where $T_{1}$ is a com-
pletely nonunitary contraction and $T_{2}$ is a unitary operator. If $T_{2}$ is absolutely
continuous or acts on the space (0), $T$ will be called an absolutely continuous
contractiort.

Let $T$ be an absolutely continuous contraction in $\mathcal{L}(\ovalbox{\tt\small REJECT})$ . Then it follows
from Fois-Nagy functional calculus [6, Theorem 4.1] that there is an algebra
homomorphism $\Phi_{T}$ : $H^{\infty}\rightarrow \mathcal{A}_{T}$ defined by $\Phi_{T}(f)=f(T)$ such that (a) $\Phi_{r}(1)=1_{fr}$,
$\Phi_{T}(\xi)=T,$ $(b)\Vert\Phi_{T}(f)\Vert\leqq\Vert f\Vert_{\infty},$ $f\in H^{\infty},$ $(c)\Phi_{T}$ is continuous if both $H^{\infty}$ and $\mathcal{A}_{T}$

are given their weak* topologies, (d) the range of $\Phi_{T}$ is weak* dense in $a_{T}$ ,
(e) there exists a bounded, linear, one-to-one map $\phi_{T}$ : $Q_{T}\rightarrow L_{1}/H_{0}^{1}$ such that
$\phi_{T}^{*}=\Phi_{T}$ , and (f) if $\Phi_{T}$ is an isometry, then $\Phi_{T}$ is a weak* homeomorphism of
$H^{\infty}$ onto $\iota A_{T}$ and $\phi_{T}$ is an isometry of QT onto $L^{1}/H_{0}^{1}$ . Let $\cup\iota\subset x(\ovalbox{\tt\small REJECT})$ be a dual
algebra and let $n$ be any cardinal number such that $1\leqq n\leqq\aleph_{0}$ . Then $d$ will
be said to have Property $(A_{n})$ provided every $n\times n$ system of simultaneous
equations of the form $[L_{ij}]=[x_{i}\otimes y_{j}],$ $0\leqq i,$ $j<n$ (which the $[L_{if}]$ are arbitrary
but fixed elements from $Q_{d}$ ) has a solution $\{x_{i}\}_{0\leq i<n},$ $\{y_{j}\}_{0\leq f<n}$ consisting of a
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pair of sequences of vectors from $3f$ (cf. [5]). The class $A(\ovalbox{\tt\small REJECT})$ consists of all
those absolutely continuous contraction $T$ in $X(\ovalbox{\tt\small REJECT})$ for which the functional
calculus $\Phi_{T}$ : $H^{\infty}\rightarrow d_{T}$ is an isometry. Furthermore, if $n$ is any cardinal number

such that $1\leqq n\leqq\aleph_{0}$ , we denote by $A_{n}(\ovalbox{\tt\small REJECT})$ the set of all $T$ in $A(ff)$ such that
the algebra $\cup l_{T}$ has property $(A_{n})$ .

We write simply $A_{n}$ for $A_{n}(\ovalbox{\tt\small REJECT})$ when there is no confusion. If $T\in X(\ovalbox{\tt\small REJECT})$

and $\ovalbox{\tt\small REJECT}\subset\ovalbox{\tt\small REJECT}$ is a semi-invariant subspace for $T(i.e.$ , there exist invariant sub-
spaces $\Re_{1}$ and $\Re_{2}$ for $T$ with $\Re_{1}\supset Tl_{2}$ such that $\ovalbox{\tt\small REJECT}=\Re_{1}\ominus\Re_{2}=\Re_{1}\cap\Re_{2}^{\perp}$ ), we write

$T_{\ovalbox{\tt\small REJECT}}$ for the compression of $T$ to $\ovalbox{\tt\small REJECT}$ . In other words, T.st $=P_{\ovalbox{\tt\small REJECT}}T|\ovalbox{\tt\small REJECT}$ , where
$P_{3\ell}$ is the orthogonal projection whose range is $\ovalbox{\tt\small REJECT}$ . Let $n$ be any cardinal
number such that $1\leqq n\leqq\aleph_{0}$ and let $(SC)_{n}$ denote the class of strict contractions
$A$ acting on Hilbert space of dimension $n$ $(i.e., \Vert A\Vert<1)$ . Throughout this
paper, we write $N$ for the set of natural numbers. For a Hilbert space JC and
any operators $T_{\ell}\in X(it),$ $i=1,2$ , we write $T_{1}\cong T_{2}$ if $T_{1}$ is unitarily equivalent

to $T_{2}$ .

3. Universal $A_{n}$-compressions

We start this section as the following definition. It should be compared

with [5, Definition 4.9].

Definition 3.1. Suppose $n$ is any cardinal number such that $1\leqq n\leqq\aleph_{0}$ If
$A$ is an operator on a Hilbert space of $dimension\leqq n$ and every operator $T$ in
$A_{n}(\ovalbox{\tt\small REJECT})$ has the property that some compression of $T$ to a semi-invariant sub-
space is unitarily equivalent to $A$ , then we call $A$ a universal $A_{n}$-compression,
and we denote the set of all universal $A_{n}$-compressions by $C(A_{n})$ .

For a contraction operator $T\in X(\ovalbox{\tt\small REJECT})$, we recall that $T\in C_{00}$ if $\Vert T^{n}x\Vert\rightarrow 0$

and $\Vert T^{*n}x\Vert\rightarrow 0(n\rightarrow\infty)$ for all $x$ in $\ovalbox{\tt\small REJECT}$ . It is obvious that every $A$ in $C(A_{n})$ is
a completely non-unitary contraction since $C(A_{n})\subset C_{00}$ .

Proposition3.2. Let $n$ be any cardinal number such that $1\leqq n\leqq\aleph_{0}$ . Then
the class $C(A_{n})$ is self-adjoint.

Proof. Let $A\in C(A_{n})$ . Then for an operator $T\in A_{n}$ , there exists a semi-
invariant subspace JC for $T$ such that $A$ is unitarily equivalent to $T_{Jt}$ . Hence
there exist invariant subspaces $\ovalbox{\tt\small REJECT}$ and su for $T$ with $\ovalbox{\tt\small REJECT}\supset\Re$ such that $\sigma x=\ovalbox{\tt\small REJECT}\ominus \mathfrak{N}$

and $T$ is the operator matrix form

(3.1) $\left(\begin{array}{lll}T_{11} & T_{12} & T_{13}\\0 & T_{Jf} & T_{2\$}\\0 & 0 & T_{3S}\end{array}\right)$
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relative to $\Re\oplus f\zeta\oplus\ovalbox{\tt\small REJECT}^{\perp}$ . Since $\ovalbox{\tt\small REJECT}\ominus\Re=m\cap\Re^{\perp}=7l^{\perp}\ominus m^{1},$ $\tau*$ is the operator
matrix form

(3.2) $\left(\begin{array}{lll}T_{33}^{\star} & T_{23}^{*} & T_{13}^{*}\\0 & (T_{j\zeta})^{*} & T_{12}^{*}\\0 & 0 & T_{11}^{*}\end{array}\right)$

relative to $\ovalbox{\tt\small REJECT}^{\perp}\oplus_{c}x\oplus\Re$ . Hence $A^{*}$ is unitarily equivalent to $(T_{X})^{*}=(T^{*})_{X}$ .
Since it is well-known that $A_{n}$ is self-adjoint, we have $A^{*}\in C(A_{n})$ . Hence
$C(A_{n})$ is self-adjoint. The proof is complete.

Recall that a completely nonunitary contraction $T\in X(ff)$ is said to be of
class $C_{0}$ if there exists $u\in H^{\infty},$ $u\not\equiv O$, such that the functional calculus $u(T)=0$
(cf. [2]).

Proposition 3.3. $(SC)_{1}=C(A_{1})\subset C(A_{2})\subset$ $\subset C_{0}\cap C(A_{\aleph_{0}})$ .

Proof. Since $A_{1}\supset A_{2}\supset\cdots\supset A_{\aleph_{0}}$ , it is obvious that $C(A_{1})\subset C(A_{2})\subset\cdots\subset C(A_{\aleph_{0}})$ .
To show $C(A_{n})\subset C_{0}$ for any $n\in N$ let $A\in C(A_{n})$ . Because the unilateral shift
$S^{(n)}$ of multiplicity $n$ belongs to the class $A_{n}$ (cf. [5, Theorem 3.7]), there exist
semi-invariant subspaces .Sit and $yl$ for $S^{(n)}$ with $\ovalbox{\tt\small REJECT}\supset\Re$ such that $A\cong S_{\Re\ominus\Re}^{(n)}$ .
If we write $\tilde{S}=S_{\ovalbox{\tt\small REJECT}\ominus\Re}^{(n)}$ , then we can say

(3.3) $S^{(n)}\cong\left(\begin{array}{lll}R & * & *\\0 & \tilde{S} & *\\0 & 0 & *\end{array}\right)$

relative to a decomposition $\Re\oplus(\ovalbox{\tt\small REJECT}\ominus\Re)\oplus m^{\perp}$ . Hence there exists $k\in N$ with
$1\leqq k\leqq n$ such that

(3.4) $S^{(k)}\cong\left(\begin{array}{ll}R & *\\0 & \tilde{S}\end{array}\right)$

relative to a decomposition $\Re\oplus(\ovalbox{\tt\small REJECT}\ominus\Re)$ . It is obvious that $R\cong S^{(\hslash)}$ since the
dimension of $\ovalbox{\tt\small REJECT}\ominus\Re$ is finite. According to [14, Corollary 2.22], we have $\S\in C_{0}$

and $A\in C_{0}$ . Hence $C(A_{n})\subset C_{0}$ . Let $A$ be a strictly contraction acting on one
dimensional Hilbert space $\ovalbox{\tt\small REJECT}_{1}$ . Then there exists $\lambda\in D$ such that $Ax=\lambda x$ for
all $x\in\ovalbox{\tt\small REJECT}_{1}$ Let $T\in A_{1}(\ovalbox{\tt\small REJECT})$ . Then it follows from [5, Corollary 3.6] that there
exist invariant subspaces $m$ and $\Re$ for $T$ with .St $\supset\Re$ such that $\dim(\ovalbox{\tt\small REJECT}\ominus\Re)=1$

and $T_{3\ell\ominus\Re}=\lambda I$. Hence $A\in C(A_{1})$ . Conversely, let $A\in C(A_{1})$ . Let $\ovalbox{\tt\small REJECT}_{1}$ be the
acting Hilbert space of $A$ . Then there exists $\lambda\in C$ such that $Ax=\lambda x$ for all
$x\in ff_{1}$ . Since $A\in C_{0}\subset C_{00}$ , we have $\Vert A^{n}e\Vert=|\lambda|^{n}\rightarrow 0(n\cdot\rightarrow\infty)$, where $e$ is a unit
vector in $\ovalbox{\tt\small REJECT}_{1}$ . Hence $|\lambda|<1$ . Therefore $A\in(SC)_{1}$ . Hence the proof is complete.
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Corollary 3.4. Supp0se $A$ is a normal operat0r on an n-dimensional Hilbert
space $\ovalbox{\tt\small REJECT}_{n}$ whose matrix to some orthonormal basis $\{e_{i}\}_{i=1}^{n}$ for $\ovalbox{\tt\small REJECT}_{n}$ is the diagonal
matrix Diag $(\{\lambda_{i}\}_{\ell=1}^{n})$ . If $A\in C(A_{n})$, then $A\in(SC)_{n}$ .

Proof. Assume $A\in C(A_{n})$ . By Proposition 3.3, we have $A\in C_{0}\subset C_{00}$ . Then
$\Vert A^{k}e_{i}\Vert=|\lambda_{i}|^{k}\rightarrow 0(k\rightarrow\infty)$ , for $i=1,$ $\cdots$ , $n$ . Therefore $\lambda_{i}\in D$ , for $i=1,$ $\cdots$ , $n$ , and
$\Vert A\Vert=\max\{|\lambda_{1}|, \cdots , |\lambda_{n}|\}<1$ . $So\leftarrow 4\in(SC)_{n}$ . The proof is complete.

4. Dilation theorems of a completely nonunitary normal operator

The following is the main theorem of this paper.

Theorem 4.1. Let $\tau\in A_{n}(ff),$ $n\in N$ and let $N$ be a completely nonunitary
normal contraction acting on an n-dimensional Hilbert space $ff_{n},$ $2\leqq n\in N$, whose
matrix relative to some orthonormal basis $\{u_{k}\}_{k=1}^{n}$ for $St_{n}$ is diagonal matrix
Diag$(\{\lambda_{k}\}_{k=1}^{n})$ . SuppOse $\lambda_{i},$ $i=1,$ $\cdots$ , $n$ , are distinct. Then there exist ,Si, $yl\in$

$Lat(T)$, the lattice of invariant subspaces for $T$, with $\ovalbox{\tt\small REJECT}\supset\Re$ such that $T_{3\ell\ominus\Re}\cong N$.

Proof. Since $N$ is a completely nonunitary contraction operator, we have
$\{\lambda_{k}\}_{k=1}^{n}\subset D$ . Hence we can take $\epsilon$ with $0<\epsilon<1-\max\{|\lambda_{i}| : i=1, \cdots , n\}$ . Let
$m=n(n+1)/2$ and let $\ovalbox{\tt\small REJECT}_{m}$ be an m-dimensional Hilbert space. Let us consider
an operator $\tilde{A}$ on $\ovalbox{\tt\small REJECT}_{m}$ whose matrix relative to some orthonormal basis $\{e_{k}\}_{k=1}^{\tau n}$

for $\ovalbox{\tt\small REJECT}_{m}$ is

(4.1)

Then it is not difficult to show that $\{e_{n}, e_{n+(n-1)}, e_{n+(n-1)+(n-2)}, \cdots , e_{m}\}$ is a
cyclic set for $\tilde{A}$ . Moreover, since $\epsilon<1-\max\{|\lambda_{i}| : i=1, \cdots , n\}$ , it follows from
a simple calculation that $\Vert\tilde{A}\Vert<1$ . Now applying [5, Theorem 3.7], there exist
.St, $7\ell\in Lat(T)$ with .St $\supset\Re$ such that $\tau_{\ovalbox{\tt\small REJECT} e\Re}$ is similar to $\tilde{A}$ . If we define a
normal operator $\tilde{N}\in X(\ovalbox{\tt\small REJECT}_{m})$ whose matrix relative to an orthonormal basis
$\{u_{k}^{(i)}\}1\leq i\leq k1\leq k\leq n$ for $\ovalbox{\tt\small REJECT}_{m}$ is the diagonal matrix

(4.2) Diag
$(\lambda_{1}^{(1)},\frac{\lambda_{2}^{(1)}}{(}2\frac{\lambda_{2}^{(t)}}{)}\frac{\lambda_{3}^{(1)},\lambda_{3}^{(2)},\lambda_{s}^{(3)}}{(3)}$ $\frac{\lambda_{n}^{(1)}}{(}\frac{\lambda_{n}^{(n)})}{n)}$
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where $\lambda_{k}^{(1)}=\lambda_{k}^{(2)}=\ldots=\lambda_{k}^{(k)}=\lambda_{k}$ , for $k=1,2,$ $\cdots$ , $n$ , then it is obvious that $\tilde{N}$ is
similar to $\tau_{\ovalbox{\tt\small REJECT} e\Re}$ . Let $X$ be an invertible operator with $T_{\ovalbox{\tt\small REJECT}\ominus\Re}X=X\tilde{N}$. Note
that $\tilde{N}u_{k}^{(i)}=\lambda_{k}^{(\ell)}u_{k}^{(\ell)},$ $1\leqq i\leqq k,$ $1\leqq k\leqq n$ . For a brief notation, we write $\mathcal{T}=T_{3\ell\ominus\Re}$ .
Since $X$ is one-to-one, it is easy to show that there exists a linearly independent

set $\{w_{k}^{(\ell)}\}1\leq i\leq k1\leq k\leq n$ in $\ovalbox{\tt\small REJECT}\ominus\Re$ such that $\Vert w_{k}^{(t)}\Vert=1$ and $\tau_{w_{k}^{(i)}=\lambda_{k}^{(i)}w_{k}^{(i)}},$ $1\leqq i\leqq k,$ $1\leqq k\leqq n$ .
Taking $f_{1}=w_{1}^{(1)}$ , we have $Tf_{1}=\lambda_{1}f_{1}$ . Assume that there exist $f_{1},$ $\cdots$ , $f_{k}$ in
$B\ell\ominus\Re(k<n)$ such that $ff_{i}=\lambda_{\ell}f_{i},$ $i=1,$ $\cdots$ , $k$ . Since $\{w_{k+1}^{(1)}, \cdots , w_{k+I}^{(k+1)}\}$ induces
a $(k+1)$-dimensional Hilbert space $R$ , there exists a unit vector $f_{k+1}\in R$ such

that $(f_{i}, f_{k+1})=0$ , for $i=1,2,$ $\cdots$ , $k$ . Let

(4.3) $f_{k+1}=\sum_{i=1}^{k+1}a_{i}w_{k+1}^{(i)}$ ,

where $a_{i}\in C$. Then we have

(4.4) $Tf_{k+1}=T(\sum_{\ell=1}^{k+1}a_{i}w_{k+1}^{(i))=}\sum_{i=1}^{k+1}a_{i}\lambda_{k+1}^{(i)}w_{k+1}^{(t)}$

$=\lambda_{k+1}\sum_{\ell=1}^{k+1}a_{i}w_{k+1}^{(i)}=\lambda_{k+1}f_{k+1}$ .

Hence by the mathematical induction, there exists an orthonormal set $\{f_{k}\}_{k=1}^{n}\subset$

$\ovalbox{\tt\small REJECT}\ominus\Re$ such that $Tf_{k}=\lambda_{k}f_{k}$ , for $k=1,2,$ $\cdots$ , $n$ . Let us denote (
$\chi=\ovalbox{\tt\small REJECT}_{k=1}^{n}f_{k}$ . If

we define a linear map $Y;\ovalbox{\tt\small REJECT}_{n}\rightarrow j$( with $Yu_{k}=f_{k},$ $k=1,2,$ $\cdots$ , $n$ , then it is
obvious that $Y$ is onto and isometry. Since $c\chi$ is an invariant subspace for ff,
$Jt$ is a semi-invariant subspace for $T$. Furthermore, we have $T_{Jf}Y=YN$.
Hence $N$ is unitarily equivalent to $T_{Jf}$ and the proof is complete.

Remark 4.2. Note from Theorem 4.1 that if $N$ is a normal completely

nonunitary contraction operator acting on an n-dimensional Hilbert space with

distinct eigenvalues, then $N\in C(A_{n})$ .

Proposition 4.3. Let $N$ be a normal completely nonunitary contraction operatOr

acting on an n-dimensional Hilbert space $\ovalbox{\tt\small REJECT}_{n},$ $2\leqq n\in N$, whose matrix relative to

some orthonormal basis $\{u_{k}\}_{k=1}^{n}$ for $\ovalbox{\tt\small REJECT}_{n}$ is the diagonal matrix Diag $(\{\lambda_{k}\}_{k=1}^{n})$ .
Then there exists $m\in N$ with $m<(n+1)n/2$ such that $N\in C(A_{m})$ .

Proof. Because of Remark 4.2, we can assume $\lambda_{i}=\lambda_{j}$ for some $i,$ $j$ .
Hence without loss of generality we can say $\lambda_{1}=\lambda_{2}=\lambda\in D$ . Put

(4.5) $\tilde{A}=Diag(\lambda, \lambda, \frac{\lambda_{3}^{(1)},\lambda}{(}\frac{3(2)\lambda_{3}^{(3)}}{8)}, \frac{\lambda_{n}^{(1)}}{\langle}n)\sim^{\lambda_{n}^{(n)})\in \mathcal{L}(\ovalbox{\tt\small REJECT}_{m})}$

where $m=(n+2)(n-1)/2<(n+1)n/2$ (cf. (4.2)). Let $T\in A_{m}$ . Since $\tilde{A}$ is a com-
pletely nonunitary contraction, by [5, Corollary 3.5], there $exist\sim$ .St, $yl\in Lat(T)$

with $\ovalbox{\tt\small REJECT}\supset\Re$ such that $\dim(\ovalbox{\tt\small REJECT}\ominus\Re)=m$ and $T_{B\ell\ominus\Re}$ is similar to $A$ . For a brief
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notation, we denote $7^{\backslash }=T_{3t\ominus\Re}$ . Repeating the method of proof of Theorem 4.1,

we have a linear independent set

(4.6) $\{u_{1}^{(1)},$ $u_{2}^{(1)},$

$\frac{u_{3}^{(1)},u}{(}33’\frac{2)(3)u_{3}}{)}( \frac{u_{n}^{(1)}}{(}n)\sim^{u_{n}^{(n)}\}}$

in $\ovalbox{\tt\small REJECT}\ominus\Re$ such that 7 $u_{k}^{(1)}=\lambda u_{k}^{(1)},$ $k=1,2$ , and $r_{u_{k}^{(i)}=\lambda_{k}u_{k}^{(i)}},$ $1\leqq i\leqq k,$ $k=3,$ $n$ .
Take an orthonormal set $\{f_{1}, f_{2}\}$ in $\ovalbox{\tt\small REJECT}_{k=1}^{2}u_{k}^{(1)}$ . Then it is easy to show that
$Tf_{k}=\lambda f_{k},$ $k=1,2$ . Hence by the proof of Theorem 4.1, there exists an ortho-

normal set $\{f_{k}\}_{k=1}^{n}$ in $\ovalbox{\tt\small REJECT}\ominus\Re$ such that $ff^{\backslash }f_{k}=\lambda_{k}f_{k},$ $k=1,$ $\cdots$ , $n$ . Put $J\zeta=\ovalbox{\tt\small REJECT}_{\ell=1}^{n}f_{i}$ .
Then $\tau|X=T_{X}\cong N$. Hence $N\in C(A_{m})$ and the proof is complete.
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