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Abstract: A graph $\tilde{G}$ is called a branched covering of $G$ with a prOjectiOn
$p;\tilde{G}\rightarrow G$ if there is a surjection $p;V(\tilde{G})\rightarrow V(G)$ such that $p|_{N(\tilde{v})}$ : $N(\tilde{v})\rightarrow N(v)$

is surjective for any vertex $v\in V(G)$ and $\tilde{v}\in p^{-1}(v)$ . It is said to be regular
if $\sim there$ is a subgroup $A$ of $Aut(\tilde{G})$ such that for any two vertices $u,$ $ v\in$

$V(G),$ $P(u)=P(v)$ if and only if $\tau(u)=v$ for some $\tau\in A$ . In this paper we
show that $G$ has a planar and finite regular branched covering if and only if
$G$ is either planar or projective-planar.

1. Introduction

Let $G$ be a simple, connected, finite graph and let $V(G)$ and $E(G)$ denote
the vertex set and the edge set of $G$ respectively. We call the set of vertices
adjacent to a vertex $v\in V(G)$ the neighborhood of $v$ and denote it by $N(v)$ .

A graph $\tilde{G}$ is called a branched covering of $G$ with a $project\iota onp:\tilde{G}\rightarrow G$ if
there is a surjection $p:V(\tilde{G})\rightarrow V(G)$ such that $p|_{N(\overline{v})}$ : $N(\tilde{v})\rightarrow N(v)$ is a surjection
for any vertex $v\in V(G)$ and $\partial\in p^{-1}(v)$ . $\tilde{G}$ is called a covering (or an unbranched
covering) of $G$ if $p|_{N(\emptyset)}$ : $N(\tilde{v})\rightarrow N(v)$ is in particular a bijection. A branched
covering is possibly infinite but is assumed to be connected throughout this
paper.

A branched covering $p:\tilde{G}\rightarrow G$ is called regular if there is a subgroup $A$ of
$Aut(\tilde{G})$ , the automorphism group of $\tilde{G}$ , such that two vertices $u,$

$v\in V(\tilde{G})$ pro-
ject to the same vertex $p(u)(=p(v))$ of $G$ if and only if some automorphism
$\tau\in A$ carries $u$ to $v(\tau(u)=v)$ . This group $A$ is called the covering translation
group of $P:\tilde{G}\rightarrow G$ and each element of $A$ is called a covering translation. Note
that the covering translations of a regular unbranched covering, except the
identical translation, have no fixed point in $V(\tilde{G})$ .

Our main result is the following.

Theorem 1.1. A graph $G$ has a regular branched covering $\tilde{G}$ which is a
finite planar graph if and only if $G$ is either planar or Projective-planar.

This is motivated by a theorem recently proved by Negami [3].
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Theorem 1.2 (Negami [3]). A graph $G$ has a regular covering $\tilde{G}$ which is
a fiinte planar graph if and only if $G$ is either planar or projective-planar.

If a graph $G$ has a regular covering $\tilde{G},\tilde{G}$ is also a regular branched cover-
ing of $G$ by definition. So Theorem 1.1 is an extension of Theorem 1.2. Com-
bining this theorem with Corollary 2 in [2], we have the following.

Corollary 1.3. If a graph $G$ has a regular branched covering $\tilde{G}$ which is a

finite and planar graph, then $G$ has a 2-fold planar unbranched covering.

After some preliminaries in the next section, we prove the theorem, using
Whitney’s theorem [5] and the property of 2-orbifolds which can be found in
Thurstom [4, Chap. 13].

2. Lemmas

Denote the minimal degree of a graph $\tilde{G}$ by $\delta(\tilde{G})$ . Assuming $\delta(\tilde{G})\geqq 3$ , we
discuss the situation for a while. Let $\tau$ be any automorphism which belongs

to a subset $A$ of $Aut(\tilde{G})$ . Suppose $G$ is n-connected and $U$ is an n-cut of $G$ .
A subset $S$ of $V(G)$ is called a fragment for $U$ if the induced subgraph $\langle S\rangle$ of
$G$ is a component of $G-U$. A fragment $S$ is called an A-equivariant fragment
if either $\tau(S)\cap S=\emptyset$ or $\tau(S)=S$.

The following lemmas are useful to prove the $threm$ when $\tilde{G}$ is not 3-
connected.

Lemma 2.1. Let $\tilde{G}$ be a connected, but not 3-connected, graPh and $\delta(\tilde{G})\geqq 3$ .
If $p;\tilde{G}\rightarrow G$ is a finite regular branched covering with covering translation grouP
$A$ of order $\geqq 2$ , then the following three hold:

(1) The inclusion minimal fragment $S$ for $a$ 1- or 2-cut $U$ of $\tilde{G}$ is an A-
equivariant fragment.

(2) If $ K=\langle S\cup U\rangle$ is not 3-connected, then Uis a 2-cut, say $\{u, v\}$ , and $K+uv$

is 3-connected.
(3) If $p(U)s$ not a cutset of $G,$ $V(G)=p(S)\cup p(U)$ .

Proof. Choose a 1- or 2-cut $U$ of $\tilde{G}$ and the fragment $S$ for $U$ such that
$S$ is minimal with respect to inclusion among all the fragments of $\tilde{G}$ . Note
that $S$ contains neither a l-cut nor a vertex of any 2-cut of $\tilde{G}$ .

Let $\tau\in A$ be any covering translation. Since $\tau$ is an automorphism of $\tilde{G}$ ,
$\tau(U)$ is also a cutset of $\tilde{G}$ and $|U|=|\tau(U)|$ . So we consider how $U$ and $\tau(U)$

are placed in $\tilde{G}$ . Considering the minimality of $S$ and the property of $U$, as
mentioned above, we can decide the location of the vertices and we get seven
cases shown in Fig. 2.1. For example, in the first case, that is, when $U$ is a
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l-cut and $\tau(U)\neq U,$ $\tau(S)\cap S=\emptyset$ because $\tilde{G}$ is connected.

$\emptyset$

$\emptyset$ 2

$\emptyset$

6

Fig. 2.1.

In each of there cases either $\tau(S)\cap S=\emptyset$ or $\tau(S)=S$ . Thus (1) follows.
Note that neither of the vertices in $\tau(U)$ lies in $S$ .

Let $ K=\langle S\cup U\rangle$ with $S$ being the same minimal fragment as chosen above
and suppose $K$ has either a 1- or 2-cut $U_{K}$ .

If $U=\{u\},$ $U_{K}$ is also a cutset of $\tilde{G}$ . This contradicts the minimality of
$S$. So $U$ must be a 2-cut $\{u, v\}$ . Let $U_{S}=S\cap U_{K}$ . Since $\langle S\rangle$ is connected,
$ U_{s}\neq\emptyset$ and $U_{S}$ is not a cutset of $\tilde{G}$ by the minimality of $S$ . If $U_{S}$ is a l-cut
$u^{\prime},$ $\{u, u^{\prime}\}$ is a 2-cut of $\tilde{G}$ . This contradicts the minimality of $S$, so $U_{S}=U_{K}$ .

Let the components of $\langle S-U_{S}\rangle$ be $W_{1},$ $W_{2},$ $\cdots$ , $W_{k}$ . Then for $i=1,2,$ $\cdots$ , $k$ ,
$W_{i}$ has at least one vertex which belongs to either $N(u)$ or $N(v)$ in $K$ because
of the minimality of $S$. So $U_{S}$ is not a cutset of $K+uv$ . Thus (2) follows.

Choose a vertex $\tilde{y}\in S$ and fix it. Set $y=p(\tilde{y})$ . Assume that $G-p(U)$ is
connected. Then there is $y-x$ path $Q_{x}$ in $G-p(U)$ for any vertex $x\in V(G)$

$-p(U)$ . Starting from $\tilde{y}$ and naturally tracing edges in $\tilde{G}$ which project to the
edges on $Q_{x}$ , we can get the path lift $\tilde{Q}_{x}$ of $Q_{x}$ and its terminal vertex $\tilde{x}$ pro-
jects to $x$ . Since $Q_{x}$ does not meet $p(u)$ and $p(v)$ , its lift $\tilde{Q}_{x}$ is a path in $\langle S\rangle$ .
Therefore, for any vertex $x\in V(G)-p(U)$ , there is a vertex $\tilde{x}\in S$ such that
$p(\tilde{x})=x$ . This implies that $V(G)=p(S)\cup p(U)$ . Thus (3) follows. $\square $

Lemma 2.2. Let $\tilde{G},$

$p$, and $U$ be as in Lemma 2.1. If $\tilde{G}$ is a planar branched
covering with $|V(\tilde{G})|$ mimmal, $p(U)$ must be a cutset of $G$ .

Proof. Suppose $p(U)$ is not a conset of $G$ by Lemma 2.1, $\tilde{G}$ has an $A-$

equivariant fragment $S$ and $V(G)=p(S)\cup p(U)$ .
Here we consider a subgroup $B$ of $A$ which acts as an automorphism group

of $ K=\langle S\cup U\rangle$ , that is, $A\supset B=\{\tau|\tau(K)=K\}$ .
1) When $U=\{u\}$ , let $K^{\prime}=K$.
2) When $U=\{u, v\}$ and $\tau(u)=v$ for some $\tau\in B$ , let $K^{\prime}=K$.
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3) When $U=\{u, v\}$ and $\tau(u)=v$ for some $\tau\in A-B$ , let $K^{\prime}$ be the graph
obtained from $K$ by identifying $u$ with $v$ .

4) When $U=\{u, v\}$ and $\tau(u)\neq v$ for all $\tau\in A$ and $uv\not\in E(\tilde{G})$ and $ p(u)p(v)\in$

$E(G)$ , let $K^{\prime}=K+uv$.
5) When $U=\{u, v\}$ and $\tau(u)\neq v$ for all $\tau\in A$ and $uv\not\in E(\tilde{G})$ and $ p(u)p(v)\not\in$

$E(G)$ , let $K^{\prime}=K$.
6) When $U=\{u, v\}$ and $\tau(u)\neq v$ for all $\tau\in A$ and $uv\in E(\tilde{G})$ and $ p(u)p(v)\in$

$E(G)$ , let $K^{\prime}=K$.
In each case of $1$ ) $\sim 6$), it is clear that we still have the same quotient

$K^{\prime}/B=G$ . So $K^{\prime}$ is a regular branched covering of $G$ , which contradicts the
minimality of $|V(\tilde{G})|$ . $\square $

3. Proof of the theorem

Suppose that $\tilde{G}$ is a finite regular branched covering of $G$ and that $\tilde{G}$ is
planar. Let $p:\tilde{G}\rightarrow G$ be the branched covering projection and $A\subset Aut(\tilde{G})$ the
covering translation group.

When $\tilde{G}$ is 3-connected, the theorem follows fairly immediately from Whit-
ney’s theorem [5]:

Theorem 3.1 (Whitney [5]). A 3-connected planar graph can be embedded
in a sphere such that each automorphism of the graph extends to a homeomorphism
of the sphere onto itself.

We call this embedding a faithful embedding [1].

Embed $\tilde{G}$ faithfully in a sphere $S^{2}$ , and the translation group $A\subset Aut(\tilde{G})$

can be regarded as a group consisting of some self-homeomorphism $h:S^{2}\rightarrow S^{2}$

such that $h(\tilde{G})=\tilde{G}$ . Thus we can embed $\tilde{G}/A$ in $S^{2}/A$ .
So the following diagram holds.

Fig. 3.1.

$S^{2}/A$ is the quotient of $S^{2}$ by the action of $A$ , called an elliptic 2-orbifold
in [4], and its underlying space is homeomorphic to $S^{2},$ $D^{2}$ or $P^{2}$ . Since $G=$

$\tilde{G}/A,$ $G$ can be embedded in a sphere or a projective plane.

This completes the proof when $\tilde{G}$ is 3-connected.
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The rest of this paper is for the proof when $\tilde{G}$ is not 3-connected. We
use induction on the number of vertices of $G$ .

When $|V(G)|\leqq 6,$ $G$ is either planar or projective-planar. For the complete
graph $K_{6}$ can be embedded in a projective plane, as depicted in Fig. 3.2.

Fig. 3.2.

Next we divide the case into two; when $\delta(\tilde{G})\geqq 3$ and when otherwise.
When $\delta(\tilde{G})\geqq 3$ , we suppose any graph with finite planar branched covering that
has fewer vertices than $G$ is either planar or projective-planar.

First we modify $ K=\langle S\cup U\rangle$ and $p(K)$ to prove that $p(K)$ is planar.
(1) When $U=\{u\}$ , let $K^{\prime}=K$ and $G_{2}=p(K)$ . Then $P^{\prime}=P|_{K^{\prime}}$ : $K^{\prime}\rightarrow G_{2}$ is a

branched covering with the covering translation group $B=\{\tau|_{K^{\prime}} : \tau(K)=K, \tau\in A\}$ .
By Lemma 2.1, $K^{\prime}$ is 3-connected and so $K^{\prime}$ can be faithfully embedded in the
sphere $S^{2}$ by Theorem 3.1. Since $\tau(U)\cap S=\emptyset$ for each $\tau\in B$ (this is obvious
when we check the shape of $\tilde{G}$ described in the proof of Lemma 2.1), $u$ is a
fixed point of all $\tau\in B$ and then $S^{2}/B$ is an elliptic 2-orbifold with elliptic points.
The underlying space of such 2-orbifolds is homeomorphic to $D^{2}$ or $S^{2}$ and so
$G_{2}$ is planar.

(2) When $U=\{u, v\}$ and $\tau(u)\neq v$ for all $\tau\in A$ , let $K^{\prime}=K+uv$ and $G_{2}=$

$p(K)+p(u)p(v)$ . Then $p^{\prime}=p|_{K^{\prime}}$ : $K^{\prime}\rightarrow G_{2}$ is a branched covering with the cover-
ing translation group $B=\{\tau|_{K^{\prime}} : \tau(K)=K, \tau\in A\}$ . By Lemma 2.1, $K^{\prime}$ is 3-
connected and so $K^{\prime}$ can be faithfully embedded in the sphere $S^{2}$ by Theorem
3.1. Since $\tau(u)\not\in S$ for each $\tau\in B,$ $uv$ is a set of fixed points with respect to $B$

and then $S^{2}/B$ is an elliptic 2-orbifold with a mirror. The underlying space of
such 2-orbifolds is homeomorphic to $D^{2}$ and so $G_{2}$ is planar.

(3) When $U=\{u, v\}$ and $\tau(u)=v$ for some $\tau\in A$ and $\tau(u)\neq v$ for all $\tau\in B$ ,
let $K^{\prime}=K+uv$ and $G_{2}$ be the graph obtained from $p(K)$ by splitting the vertex
$p(u)(=p(v))$ . (Fig. 3.3 shows an example of splitting a vertex.) Then $P^{\prime}=$

$p|_{K^{\prime}}$ : $K^{\prime}\rightarrow G_{2}$ is a branched covering with the covering translation group $B=$

$\{\tau|_{K^{\prime}}|\tau(K)=K, \tau\in A\}$ . By Lemma 2.1, $K^{\prime}$ is 3-connected and so $K^{\prime}$ can be
faithfully embedded in the sphere $S^{2}$ by Theorem 3.1. Since $\tau(u)\not\in S$ for each
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$\tau\in B,$ $uv$ is a set of fixed points with respect to $B$ and then $S^{2}/B$ is an elliptic
2-orbifold with a mirror. The underlying space of such 2-orbifolds is homeo-
morphic to $D^{2}$ and so $G_{2}$ is planar. Since $G_{2}$ was obtained from $p(K)$ by split-
ting the vertex $p(u),$ $p(K)$ is clearly planar.

Fig. 3.3.

(4) When $U=\{u, v\}$ and $\tau(u)=v$ for some $\tau\in B$ , let $G_{2}=p(K)$ . Then $P^{\prime}=$

$p|_{K}$ : $K\rightarrow G_{2}$ is a branched covering with the covering translation group $B=$

$\{\tau|_{K} : \tau(K)=K, \tau\in A\}$ . By Lemma 2.1, $K+uv$ is 3-connected and $B$ is still an
automorphism group of $K+uv$ , so we embed $K+uv$ faithfully in the sphere $S^{2}$ .
Since $\tau(u)\not\in S$ for each $\tau\in B$ , the middle point of $uv$ is the only fixed point on
$uv$ . In the same manner as the case (1), $(K+uv)/B$ is planar. Then clearly $G_{2}$

is planar.
In any case $G_{2}$ is planar. Let $G_{1}=G-p(S)+p(u)p(v)$ . If $p(u)=p(v)$ , let

$G_{1}=G-p(S)$ . Then $G=G_{1}\cup G_{2}$ or $G_{1}\cup G_{2}-p(u)p(v)$ .
By induction hypothesis, $G_{1}$ is either planar or projective-planar. Therefore

we can easily embed $G$ in a plane or projective plane.

This completes the proof when $\delta(\tilde{G})\geqq 3$ .

When $\tilde{G}$ is not 3-connected and $\delta(\tilde{G})<3$ , we will show that if a planar
graph $\tilde{G}$ is a regular branched covering of $G$ , the graph $\tilde{G}^{\prime}$ , which is obtained
from $\tilde{G}$ by deleting all the vertices that have degree 1 or 2 in $\tilde{G}$ , is also a
regular branched covering of $G^{\prime}$ which is obtained from $G$ by deleting all the
images of the deleted vertices of $\tilde{G}$ . Then we can reduce this case to the pre-
VIOUS case.

Let $ p^{\prime}=p|\delta$ , and $A^{\prime}=\{\tau|_{G^{\prime}}\sim : \tau\in A\}$ in the following arguments (1) and (2),

and we show how to get $\tilde{G}^{\prime}$ and $G^{\prime}$ .
(1) Suppose that $deg_{0}^{\sim}(u)=1$ for some vertex $u\in V(\tilde{G})$ .
Let $\tilde{G}^{\prime}$ be

$\tilde{G}-^{\prime}\tau(u)\tau\in A$

and $G^{\prime}$ be $G-p(u)$ . Then $\tilde{G}^{\prime}$ is planar and is a regular branched covering of
$G^{\prime}=\tilde{G}^{\prime}/A$ as depicted.
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Fig. 3.4.

(2) Suppose that $deg_{G}^{\sim}(u)=2$ and $u$ is adjacent to $x$ and $y$ .
a) If $x$ is not adjacent to $y$ and if $\tau(x)\neq y$ for any $\tau\in A$ , let $\tilde{G}^{\prime}$ be

$\tilde{G}-\bigcup_{\tau\in A}\tau(u)+U_{A}\tau(x)\tau(y)\tau\in$

and $G^{\prime}$ be $G-p(u)+p(x)p(y)$ .

$p$

$f_{f}$

Fig. 3.5.

b) If $x$ is not adjacent to $y$ and if $\tau(x)=y$ for some $\tau\in A$ , let $\tilde{G}^{\prime}$ and $G^{\prime}$

be the same as (1).

$p$ $p(u)|$

$p(x)=p(y)$

$x$ $y$

ff
$p(x)=p(y)’’’$

’

Fig. 3.6.
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c) If $x$ is adjacent to $y$ , let $\tilde{G}^{\prime}$ and $G^{\prime}$ be also the same as (1).

$p$

$\underline{\oint}$

$\overline{xy}$ $p(\overline{x)p(}y)$

Fig. 3.7.

In each case of a), b), and c), $\tilde{G}^{\prime}$ is a regular branched covering of $G^{\prime}$ .
By induction hypothesis $G^{\prime}$ is either planar or Projective-planar. Clearly we

can get a planar or projective-planar embedding of $G$ by adding the vertex
$p(u)$ , which has degree at most 2.

This completes the proof when $\delta(\tilde{G})<3$ .
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