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Absﬂ;ract: A graph G is called a branched covering of G with a projection
p: G—G if there is a surjection p: V(G)—V(G) such that Pluesy: N@)—-N®@)
is surjective for any vertex v V(G) and #<p~1(v). It is said to be regular
if there is a subgroup A of Aut(@) such that for any two vertices u, ve&
V(G), p(u)=p (v) if and only if z(x)=v for some r=A. In this paper we
show that G has a planar and finite regular branched covering if and only if
G is either planar or projective-planar.

1. Introduction

Let G be a simple, connected, finite graph and let V(G) and E(G) denote
the vertex set and the edge set of G respectively. We call the set of vertices
adjacent to a vertex vEV(G) the neighborhood of v and denote it by N(v).

A graph G is called a branched covering of G with a projection p: G—G if
there is a surjection p: V(G)—V(G) such that p|xes»: N@#)—N@) is a surjection
for any vertex veV(G) and d=p~'(v). G is called a covering (or an unbranched
covering) of G if p|wes: N@®)—N(@) is in particular a bijection. A branched
covering is possibly infinite but is assumed to be connected throughout this
paper. _

A branched covering p: G—G is called regular if there is a subgroug A of
Aut(&), the automorphism group of G, such that two vertices u, vEV(G) pro-
ject to the same vertex p(u)=p(v)) of G if and only if some automorphism
TEA carries u to v (r(u)=v). This group A is called the covering translation
group of p: G—G and each element of A is called a covering translation. Note
that the covering translations of a regular unbranched covering, except the
identical translation, have no fixed point in V(CN}).

Our main result is the following.

Theorem 1.1. A graph G has a regular branched covering G which is a
Sfinite planar graph if and only if G is either planar or project«ive-planar’.

This is motivated by a theorem recently proved by Negami [3].
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Theorem 1.2 (Negami [3]). A graph G has a regular covering G which is
a fiinte planar graph if and only if G is either planar or projective-planar.

If a graph G has a regular covering G, G isalso a regular branched cover-
ing of G by definition. So is an extension of [Theorem 1.2. Com-
bining this theorem with Corollary 2 in [2], we have the following.

Corollary 1.3. If a graph G has a regular branched covering G which is a
finite and planar graph, then G has a 2-fold planar unbranched covering.

After some preliminaries in the next section, we prove the theorem, using
Whitney’s theorem and the property of 2-orbifolds which can be found in
Thurstom [4, Chap. 13].

2. Lemmas

Denote the minimal degree of a graph G by &G). Assuming 8(G)=3, we
discuss the situation for a while. Let ¢ be any automorphism which belongs
to a subset A of Aut(@). Suppose G is n-connected and U is an n-cut of G.
A subset S of V(G) is called a fragment for U if the induced subgraph <S) of
G is a component of G—U. A fragment S is called an A-equivariant fragment
if either 7(S)NS=@ or 7(S)=S.

The following lemmas are useful to prove the theorem when G is not 3-
connected.

Lemma 2.1. Let G be a connected, but not 3-connected, graph and 6(6);3.
If p: G—G isa finite regular branched covering with covering translation group
A of order =2, then the following three hold:

(1) The inclusion minimal fragment S for a 1- or 2-cut U of G is an A-
equivariant fragment.

(2) If K=(SUU) is not 3-connected, then U is a 2-cut, say {u, v}, and K+uv
is 3-connected,

(3) If pU) s not a cutset of G, V(G)=p(S)Jpl).

Proof. Choose a 1- or 2-cut U of G and the fragment S for U such that
S is minimal with respect to inclusion among all the fragments of G. Note
that S contains neither a l-cut nor a vertex of any 2-cut of G.

Let 7= A be any covering translation. Since r is an automorphism of G,
z(U) is also a cutset of G and jU|=|zU)|. So we consider how U and z(U)

are placed in G. Considering the minimality of S and the property of U, as
mentioned above, we can decide the location of the vertices and we get seven

cases shown in Fig. 2.1. For example, in the first case, that is, when U is a
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l-cut and z(U)+# U, v(S)"\S={ because G is connected.

U s
(5) // 0 // 0 0 // 0 //
)| - . . .
// . //1 0 A2 // (3 // 04
Uu s
7(S) // 0 // 0 '/ 0
#(U) | e e | . .
A ds UA-tde LA AT
Fig. 2.1.

In each of there cases either 7(S)NS=@ or 7(S)=S. Thus (1) follows.
Note that neither of the vertices in 7#(U) lies in S.

Let K=(SUU) with S being the same minimal fragment as chosen above
and suppose K has either a 1- or 2-cut Ug.

If U={u}, Ug is also a cutset of G. This contradicts the minimality of
S. So U must be a 2-cut {u,v}. Let Us=SN\Ug. Since <S) is connected,
Us# @ and Ug is not a cutset of G by the minimality of S. If Ug is a 1l-cut
u’, {u, '} is a 2-cut of G. This contradicts the minimality of S, so Ug=Uk.

Let the components of <S—Ug)> be W,, W,, -+, W,. Then for i=1, 2, ---, &,
W, has at least one vertex which belongs to either N(x) or N(v) in K because
of the minimality of S. So Ug is not a cutset of K+uv. Thus (2) follows.

Choose a vertex j=S and fix it. Set y=p(§). Assume that G—p(U) is
connected. Then there is y—x path Q. in G—p(U) for any vertex xV(G)
—p(U). Starting from 7 and naturally tracing edges in G which project to the
edges on Q,, we can get the path lift §, of Q, and its terminal vertex ¥ pro-
jects to x. Since Q. does not meet p(u) and p(v), its lift O, is a path in <SD.
Therefore, for any vertex xV(G)—p(U), there is a vertex #&S such that
p(X)=x. This implies that V(G)=p(S)Up(U). Thus (3) follows. [J

Lemma 2.2. Let G, b, and U be as in Lemma 2.1. If G is a planar branched
covering with |V(G)| minimal, p(U) must be a cutset of G.

Proof. Suppose p(UU) is not a conset of G by Lemma 2.1, G has an A-
equivariant fragment S and V(G)=p(S)UpU).

Here we consider a subgroup B of A which acts as an automorphism group
of K=(SUU), that is, ADB={r|t(K)=K}.

1) When U={u}, let K'=K.

2) When U={u, v} and 7(u)=v for some r<B, let K'=K.
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3) When U={u, v} and z(u)=v for some r=A—B, let K’ be the graph
obtained from K by identifying u with v.

4) When U={u, v} and r(u)#v for all €A and uve;éE(@) and p(u)pv)e
E(G), let K'=K+4uv.

5) When U={u, v} and z(u)+#v for all r=A4 and ungE(é) and p(u)p(v)e&
E(G), let K'=K.

6) When U={u, v} and z(x)#v for all r€A and weE(G) and p(u)p(v)E
E(G), let K'=K. ’

In each case of 1)~6), it is clear that we still have the same quotient
K'/B=G. So K’ is a regular branched covering of G, which contradicts the
minimality of |V(G)|. O

3. Proof of the theorem

Suppose that G is a finite regular branched covering of G and that G is
planar. Let p: G—G be the branched covering projection and ACAut(é) the
covering translation group.

When G is 3-connected, the theorem follows fairly immediately from Whit-
ney’s theorem [5]:

Theorem 3.1 (Whitney [5]). A 3-comnected planar graph can be embedded

in a sphere such that each automorphism of the graph extends to a homeomorphism
of the sphere onto itself.

We call this embedding a fasthful embedding [1].

Embed G faithfully in a sphere S? and the translation group ACAut(@)
can be regarded as a group consisting of some self-homeomorphism A : S*—S?
such that h(5)=(~;. Thus we can embed 5/A in S%/A.

So the following diagram holds.

& faithful embedding 52
G/A=G embedding S’/Ai
Fig. 3.1.

S?/A is the quotient of S by the action of A, called an elliptic 2-orbifold
in [4], and its underlying space is homeomorphic to S% D* or P: Since G=
G/A, G can be embedded in a sphere or a projective plane.

This completes the proof when G is 3-connected.
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The rest of this paper is for the proof when G is not 3-connected. We
use induction on the number of vertices of G.

When |V(G)|<6, G is either planar or projective-planar. For the complete
graph K, can be embedded in a projective plane, as depicted in Fig. 3.2.

5

5
Fig. 3.2.

Next we divide the case into two; when &(G)=3 and when otherwise.
When §(G)=3, we suppose any graph with finite planar branched covering that
has fewer vertices than G is either planar or projective-planar.

First we modify K=<S\UU) and p(K) to prove that p(K) is planar.

(1) When U={u}, let K’=K and G,=p(K). Then p'=p|g : K'—G, is a
branched covering with the covering translation group B={r| : 7(K)=K, t€ A}.
By Lemma 2.1, K’ is 3-connected and so K’ can be faithfully embedded in the
sphere S* by [Theorem 3l1. Since r(U)N\S=@ for each r<B (this is obvious
when we check the shape of G described in the proof of Lemma 2.1), = is a
fixed point of all r€B and then S?/B is an elliptic 2-orbifold with elliptic points.
The underlying space of such 2-orbifolds is homeomorphic to D? or S? and so
G, is planar.

(2) When U={u, v} and z(u)#v for all r€A, let K'=K+4uv and G,=
p(K)+p(u)p(v). Then p’=p|k : K'—G, is a branched covering with the cover-
ing translation group B=/{r|x :7(K)=K, rA}). By Lemma 2.1, K’ is 3-
connected and so K’ can be faithfully embedded in the sphere S? by
3.1. Since 7(u)¢&S for each 7B, uv is a set of fixed points with respect to B
and then S?/B is an elliptic 2-orbifold with a mirror. The underlying space of
such 2-orbifolds is homeomorphic to D? and so G, is planar.

(3) When U={u, v} and z(u)=v for some r=A and =(u)*v for all 7B,
let K’=K+uv and G, be the graph obtained from p(K) by splitting the vertex
p(uX=pw)). (Fig. 3.3 shows an example of splitting a vertex.) Then p'=
Plk : K'—G, is a branched covering with the covering translation group B=
{tlx |7(K)=K, r€A}. By [Lemma 21, K’ is 3-connected and so K’ can be
faithfully embedded in the sphere S? by [Theorem 3.1. Since r(u)&S for each
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r&B, uv is a set of fixed points with respect to B and then S?/B is an elliptic
2-orbifold with a mirror. The underlying space of such 2-orbifolds is homeo-
morphic to D? and so G, is planar. Since G, was obtained from p(XK) by split-
ting the vertex p(u), p(K) is clearly planar.

><_~

Fig. 3.3.

(4) When U={u, v} and v(u)=v for some r<B, let G,=p(K). Then p'=
plx: K—G, is a branched covering with the covering translation group B=
{rlx:7(K)=K, r=A}. By Lemma 2.1, K+4uv is 3-connected and B is still an
automorphism group of K+4uv, so we embed K+uv faithfully in the sphere S*.
Since 7(u)é& S for each r<B, the middle point of uv is the only fixed point on
uv. In the same manner as the case (1), (K+4wv)/B is planar. Then clearly G,
is planar.

In any case G, is planar. Let G,=G—p(S)+p(w)pw). If p(u)=p), let
G,=G—p(S). Then G=G, UG, or G,\UG— p(u)p(v).

By induction hypothesis, G, is either planar or projective-planar. Therefore
we can easily embed G in a plane or projective plane.

This completes the proof when 6(5)23.

When G is not 3-connected and 6(5)<3 we will show that if a planar
graph Gis a regular branched covering of G, the graph G’, which is obtained
from G by deleting all the vertices that have degree 1 or 2 in G, is also a
regular branched covering of G’ which is obtained from G by deleting all the
images of the deleted vertices of G. Then we can reduce this case to the pre-
vious case.

Let p’=plz, and A’={r|z : <A} in the following arguments (1) and (2),
and we show how to get G’ and G'.

(1) Suppose that deggz(u)=1 for some vertex ueV(C~}).

Let G’ be

G— U z(u)
TE4A

and G’ be G—p(u). Then G’ is planar and is a regular branched covering of
G'=G’/A as depicted.
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7(u) p(v)

%(u) u
G L G
Os——O

Fig. 3.4.

(2) Suppose that degz(u)=2 and u is adjacent to x and jy.
a) If x is not adjacent to y and if z(x)#y for any € A4, let G’ be

G—\Jr(w)+ \Ur(x)(y)
€A T€E4A

and G’ be G—p(u)+p(x)p(¥).

u P(u)
AN 7
z y »(z) p(y)
R 2
z y p(z) p(y)

Fig. 3.5.

b) If x is not adjacent to y and if z(x)=y for some v A, let G’ and G’
be the same as (1).

u P(“)
N\ -
z y ?(z) = p(y)
r :
: 9§ p(z) = p(y)

Fig. 3.6.
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¢) It x is adjacent to y, let G’ and G’ be also the same as 1.

u p p(u)
z y »z) p(y)
#~
z y »(z) »p(y)
Fig. 3.7.

In each case of a), b), and ¢), G’ is a regular branched covering of G’.
By induction hypothesis G’ is either planar or projective-planar. Clearly we
get a planar or projective-planar embedding of G by adding the vertex

p(u), which has degree at most 2.

[1]
[2]
£3]
(4]
[5]

This completes the proof when 6(5)<3.
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