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Abstract. Let a probability space and a 1-1 bimeasurable and measure pre-
serving transformation be given. For a measurable function $f$, the process
$(f\circ T^{\ell})$ is strictly stationary. Let us consider $L^{p}$ spaces of functions $f$ and
their subsets which are determined by the limit behavior of the process $(f\circ T^{i})$

from the point of view of the central limit problem and the speed of con-
vergence in the Ergodic Theorem. It is shown that the set of processes
(functions f) with highly irregular behavior is of second category.

Introduction and results. Given a dynamical system $(\Omega, A, T, \mu)$ where
$(\Omega, \iota A, \mu)$ is a probability space and $T$ is a 1-1 bimeasurable and measure
preserving mapping of $\Omega$ onto itself we are often interested in limit behavior
of the process $(f\circ T^{i}, i\in Z),$ $f$ measurable. Each sequence of functions $f\circ T^{i}$ ,
$i\in Z$ is strictly stationary and each strictly stationary sequence of random
variables can be represented in this way.

The laws of large numbers and the central limit theorem belong to the
most important limit theorems in probability theory. In 1932 and 1931 J. von
Neumann’s and G. Birkhoff’s ergodic theorems were proved (see [1]): For $f$

integrable,

1 $n$

$\overline{n}^{\sum_{f=1}fT^{j}}0\rightarrow E(f|q)$

almost surely, and in $L^{1}$ ; if $f$ is square integrable then the convergence holds
in $L^{2}$ , too. By $q$ we denote the $\sigma$ -algebra of all invariant sets $A\in d,$ $i.e$ .
such that $T^{-1}A=A$ . If each element of $\xi\Gamma$ has measure $0$ or 1, we say that $\mu$

is ergodic.
In the last three decades an increasing attention has been devoted to the

central limit theorem for stationary processes. By the central limit theorem we
understand weak convergence of distributions of
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1 $n$

$-\Sigma foT^{j}$ , $a_{n^{\rightarrow\infty}}$

$a_{n^{f=1}}$

to a probability law. From the ergodic theorems it follows that if lim $infa_{n}/n>0$,
the problem is trivial. In the sequel we shall suppose that $a_{n}/n\rightarrow 0$ holds.
From the ergodic theorem and from $ a_{n}\rightarrow\infty$ it follows that for almost every
$\omega\in\{|E(f|q)|>0\}$ , $|(a_{n}/n)\Sigma_{j=1}^{n}f(T^{j}\omega)|\rightarrow\infty$ . So, we shall restrict ourselves to
the Hilbert space $3f$ of all square integrable functions $f$ for which $E(f|g)=0$

$a.s.,$ $i.e$ . to the orthocomplement of the subspace of invariant functions in $L^{2}$ .
In the central limit problem, many results concerning special processes have
been reached. In 1987, R. Burton and M. Denker ([4]) proved that for $\mu$

aperiodic and ergodic, the set of $f$ such that for $(foT^{i})$ the central limit theorem
holds is dense in $\ovalbox{\tt\small REJECT}$ . (We say that $\mu$ is aperiodic if for each positive integer $n$

and set $A\in tA$ of positive measure there exists a measurable set $B\subset A$ with
$\mu(B\cap T^{-n}B)<\mu(B).)$ Unlike the strong law of large numbers the central limit
theorem does not hold for stationary processes generally. R. C. Bradley even
showed that the set of limit points of distributions of $(a_{n}/n)\Sigma_{j=1}^{n}f\circ T^{j}$ can
comprise the set of all infinitely divisible laws for a process which satisfies
rather strong mixing conditions ([3]). We shall see that the set of $f\in\ovalbox{\tt\small REJECT}$ such
that for the sequence $(f\circ T^{i})$ the central limit theorem does not hold, is of
second category.

It is well known that the central limit problem is related to the rate of
convergence in the law of large numbers. In 1978 U. Krengel showed that in
von Neumann’s and Birkhoff’s ergodic theorems the rate of convergence can be
arbitrarily slow. Using the results in the central limit problem we shall show
that the slow rate is in some sense typical (see also [5]).

Let us formulate the results exactly.

Theorem 1. Let $\mu$ be an aperiodic measure and $ a_{n}\rightarrow\infty$ , $a_{n}/n\rightarrow 0$ . Then
there exists a dense $G_{\delta}$ set of functions $f\in\ovalbox{\tt\small REJECT}$ with the Property that for each
prObabiljty distribution $\nu$ on the real line there exists an increasing sequence of
positive integers $n_{k}$ such that the distributions of

$\frac{1}{a_{n_{k}}}\sum_{f=1}^{n_{k}}f\circ T^{j}$

weakly converge to $\nu$ .

In the central limit thecrem we often normalize the sums by $\Vert\Sigma_{j=1}^{n}f\circ T^{j}\Vert_{2}$

where $\Vert f\Vert_{2}=(Ef^{2})^{1/2}$ ; in this setting we have:

Theorem 2. Under the assumptions of Theorem 1 for each $f$ from a dens$e$

$G_{\delta}$ subset of $\ovalbox{\tt\small REJECT}$ the set of all weak limit pOints of distributions of
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$\sum_{j=1}^{n}foT^{j}/\Vert\sum_{j=1}^{n}f\circ T^{j}\Vert_{2}$

is equal to the set of all probability measures $\nu$ on the real line such that
$\int x^{2}d\nu(x)\leqq 1$ and $\int xd\nu(x)=0$ .

Theorem 3. Let $\mu$ be an aperiodic measure, $\alpha_{n}\rightarrow\infty$ . Then for each $f$ from
a dense $G_{\delta}$ subset of $3f$

(1) $\lim_{n\rightarrow}\sup_{\infty}\alpha_{n}|\frac{1}{n}\sum_{j=1}^{n}f\circ T^{j}|=\infty$ $a.s$ .
and

(2) $\lim_{n\rightarrow}\sup_{\infty}\alpha_{n}\Vert\frac{1}{n}\sum_{j=1}^{n}f\circ T^{j}\Vert_{2}=\infty$ .

Remark. Let $ 1\leqq P<\infty$ . If we define $\ovalbox{\tt\small REJECT}$ as the Banach space of functions
$f\in L^{p}$ with $E(f|q)=0a.s$ . and use $L^{p}$ -norm instead of $L^{2}$-norm, Theorem 1
and Theorem 3 would remain valid. In Theorem 2 we would have to consider

the set of probability measures $\nu$ with $\int|x|^{p}d\nu(x)\leqq 1,$ $\int xd\nu(x)=0$ . The proofs

remain almost the same as in the $L^{2}$ case. An $L^{\infty}$ version of Theorem 3 can
be found in [11] (see also [5]).

Proofs. First, we shall prove a simple lemma.

Lemma. Let $U$ be an operator on St defined by $Uf=f\circ T,$ I be the identity
operatOr. Then the image of $I-U$ is dense in $\mathscr{H}$ .

Proof. Can be found $e.g$ . in [8], p. 40. We shall give it for $L^{p}$ spaces
where $ 1\leqq p<\infty$ . Clearly, $(I-U)3f$ is a linear space. Let there exist $f\in 3f$

which does not belong to the closure of $(I-U)\ovalbox{\tt\small REJECT}$ . Then there exists a function

$g\in L^{q},$ $\frac{1}{p}+\frac{1}{q}=1$ , such that $\int g\cdot(U-I)hd\mu=0$ for each $h\in\ovalbox{\tt\small REJECT}$ and $\int gfd\mu\neq 0$ .
From the first property it follows that $g=U^{-1}g$ , hence $g$ is S-measurable (see

[1]). As $E(f|q)=0a.s.$ , we have $\int fgd\mu=0$ which contradicts our supposition,
$q.e.d$ .

The Lemma does not hold in $L^{\infty}$ . There exists a finitely additive invariant
measure $\nu$ which is zero on the sets of $\mu$-measure zero and which is not count-
ably additive. In the ergodic case this follows from [12], Theorem 11.8; the
general aperiodic case can be derived in the same way with the help of
Lebesgue measure space techniques given in [9], [10]. (We have to use a
nonergodic version of a result of del Junco and Rosenblatt; it is proved in [11].)
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For $g=f-Uf$ where $f\in L^{\infty}$ we have $\int gd\nu=0$ and there exists $h\in L^{\infty}$ with

$0=Eh=E(h|q),$ $\int hd\nu\neq 0$ .

Proof of Theorem 1. We shall find a countable dense subset $\Gamma$ of the
space of all probability measures on the real line with the topology of weak
convergence such that for each $\nu\in\Gamma$ and for each $f\in 3l$ up to a set of the first

category it holds:

(3) In the sequence of distribu tions of $\frac{1}{a_{n}}S_{n}(f)$ there exists a subsequence

weakly converging to $\nu;S_{n}$ denotes $\Sigma_{j=1}^{n}f\circ T^{j}$ .
For any fixed function $f\in\ovalbox{\tt\small REJECT}$ the set of distributions $\nu$ such that (3) holds

is closed with respect to the weak convergence. Thus, it is sufficient to prove

that for each $\nu\in\Gamma$ the set of functions $f\in\ovalbox{\tt\small REJECT}$ satisfying (3) is residual in $\ovalbox{\tt\small REJECT}$ .
First, we shall find $\Gamma$ . Measure $\mu$ is nonatomic, hence for each probability

distribution on $R$ there exists a measurable function $h$ on $\Omega$ such that $\nu=\mu\circ h^{-1}$ .
The space of all probability distributions on $R$ is separable so we need only

countably many functions $h$ . For each measurable function $h$ there exists a
sequence $h_{1},$ $h_{2},$ $\cdots$ of functions from YC such that $h_{n}\rightarrow ha.s$ . The measures
$\mu\circ h_{n}^{-1}$ then weakly converge to $\mu\circ h^{-1}$ . For $\Gamma$ we can thus choose a countable
set of measures $\mu\circ g^{-1}$ where functions $g$ form a dense subset of $\mathscr{H}$ .

Let $\nu\in\Gamma$ be given, $g\in\ovalbox{\tt\small REJECT},$ $\nu=\mu\circ g^{-1}$ . We can assume that $\Vert g\Vert_{2}>0$ . We

shall prove that the set of functions $f\in\ovalbox{\tt\small REJECT}$ which satisfy (3), is a dense $G_{\delta}$ .
Following [6], p. 200, for each $\epsilon>0$ and a positive integer $k$ there exists a

Rohlin tower $(F, n, \epsilon)$ where $F\in d$ , the sets $F,$ $T^{-1}F,$ $\cdots$ , $T^{-n+1}F$ are mutually

disjoint, and
$ n\mu(F)>1-\epsilon$ , $k<n$ , $ k\mu(F)<\epsilon$ .

Let us denote $\mu_{F}=\mu(\cdot|F)$ . There exists a rieasurable function $f$ on $\Omega$ such that

$\mu_{F}(mf)^{-1}=\nu$ where $m=\frac{k}{a_{k}}$ ,

$f(\omega)=f(T^{j}\omega)$ for $\omega\in T^{-j}F$ , $1\leqq j\leqq n-1$ ,

$f(\omega)=0$ for $\omega\in\Omega\backslash \bigcup_{t=0}^{n-1}T^{-i}F$ .

On $\Omega\backslash G$ where $G=\Omega\backslash \bigcup_{j=k}^{n-1}T^{-j}F$ it holds $S_{k}(f)=kf$ hence for $k\leqq j\leqq n-1$ we
have

$\int_{\tau-j_{F}}\exp(\frac{it}{a_{k}}S_{k}(f))d\mu=\int_{r-J_{F}}\exp(itmf)d\mu=\mu(F)E\exp(itg)$
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Therefore,

$E\exp(\frac{it}{a_{k}}S_{k}(f))=\int_{\sigma}\exp(\frac{it}{a_{k}}S_{k}(f))d\mu+(n-k)\mu(F)E\exp(itg)$

hence

$|E\exp(\frac{it}{a_{k}}S_{k}(f))-E\exp(itg)|<4\epsilon$

as $ 1-(n-k+1)\mu(F)<2\epsilon$ .
In this way we can find a sequence of functions $f_{k}\in 3f$ sucn that

$|E$ exp $((it/a_{k})S_{k}(f_{k}))-\int e^{itx}d\nu(x)|<4\epsilon_{k},$ $\epsilon_{k}\rightarrow 0$ . From the definition of $f$ it follows

that $E(mf)^{2}=n\mu(F)Eg^{2}$ , hence $\Vert f\Vert_{2}<(1/m)\Vert g\Vert_{2}$ . As $(k/a_{k})\rightarrow\infty$ , it holds $\Vert f_{k}\Vert_{2}\rightarrow 0$ .
For each $k=1,2,$ $\cdots$ there exists a neighborhood $ql(f_{k})$ of $f_{k}$ such that for each
$h\in q](f_{k})$ it is $\Vert h-f_{k}\Vert_{2}<1$ and $|E_{\mu}\exp((it/a_{k})S_{k}(f_{k}))-E_{\mu}\exp((it/a_{k})S_{k}(h))|<$

$(1/k)$ for $t\in[-k, k]$ . Thus, there exists an open ball $(\chi=\{h\in\ovalbox{\tt\small REJECT}:\Vert h\Vert_{2}<r\}$ ,
$ r<\infty$ , $qJ(f_{k})\subset X$ for each $k$ . Let $c_{1},$ $c_{2},$ $\cdots$ be positive reals, $ c_{k}\rightarrow\infty$ and
$(c_{k}/a_{k})\downarrow 0$ . For each $k$ we define $qJ_{k}=\{h\in\ovalbox{\tt\small REJECT}:\Vert h\Vert_{2}\leqq c_{k}\}$ . For $k=1,2,$ $\cdots$ we
define

$H_{k}=\bigcup_{n=k}^{\infty}\{V(f_{n})+(U-I)v_{n}\}$

where $U$ is defined by $Uf=f\circ T$ and we put

$H=\bigcap_{k=1}^{\infty}H_{k}$ .

The sets $qJ(f_{n})+(U-I)V_{n}$ consist of functions $h=h^{\prime}+h^{\prime\prime}$ where $h^{\prime}\in qJ(f_{n})$,
$h^{\prime\prime}=Ug-g$ for some $g\in V_{n}$ . Hence, each $H_{k}$ is an open set. According to
the Lemma the image of $U-I$ is dense in $\ovalbox{\tt\small REJECT}$ . As $V(f_{n})\subset JC$ and $(U-I)qJ_{n}\uparrow$

$(U-I)\ovalbox{\tt\small REJECT}$ , each $H_{k}$ is dense in $\ovalbox{\tt\small REJECT}$ . Hence, $H$ is a dense $G_{\delta}$ set.
Let $f\in H$. From $f\in H_{k}$ it follows that there exists $n\geqq k$ and functions

$h_{n}^{\prime}\in V(f_{n}),$ $g_{n}\in qJ_{n}$ such that $f=h_{n}^{\prime}+Ug_{n}-g_{n}$ . It holds

$\Vert S_{n}(Ug_{n}-g_{n})/a_{n}\Vert_{2}=\frac{1}{a_{n}}\Vert\sum_{j=1}^{n}U^{f}(Ug_{n}-g_{n})\Vert_{2}$

$=\frac{1}{a_{n}}\Vert U^{n}g_{n}-g_{n}\Vert_{2}\leqq 2c_{k}/a_{k}\rightarrow 0$ ,

$|E\exp(\frac{lt}{a_{n}}S_{n}(h_{n}^{\prime}))-\int e^{itx}d\nu(x)|<4\epsilon_{n}+\frac{1}{n}$

for $t\in[-n, n]$ . Thus there exists a sequence of positive integers $ n_{k}\rightarrow\infty$ such
that for each $k,$ $f=h_{n_{k}}^{\prime}+h_{n_{k}}^{\prime\prime},$ $\mu((1/a_{n_{k}})S_{n_{k}}(h_{n_{k}}^{\prime}))^{-1}\rightarrow\nu$ weakly, $\Vert(1/a_{n_{k}})S_{n_{k}}(h_{n_{k}}^{\prime\prime})\Vert_{a}$

$\rightarrow 0$ . According to [2], Theorem 4.4, the distributions of $(1/a_{n_{k}})S_{n_{k}}(f)$ weakly
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converge to $\nu,$ $q.e.d$ .

Proof of Theorem 2. Let $G$ denote the set of all probability measures $\nu$

on the real line such that $\int xd\nu(x)=0,$ $\int x^{2}d\nu(x)=1$ . Using the same approach as
in the proof of Theorem 1 we can see that for all $f$ from a dense $G_{\delta}$ subset
of St, the set of the weak limit points of distributions of $\Sigma_{f=1}^{n}f\circ T^{f}/\Vert\Sigma_{f=1}^{n}f\circ T^{j}\Vert_{2}$

contains $G$ . It remains to show that a probability measure $\nu$ belongs to the

weak closure of $G$ if and only if $\int xd\nu(x)=0,$ $\int x^{2}d\nu(x)\leqq 1$ (the distributions of
$\Sigma_{j=1}^{n}f\circ T^{j}/\Vert\Sigma_{j=1}^{n}f\circ T^{j}\Vert_{2}$ belong to $G$ ).

Let $\nu_{n}\in G,$ $\nu_{n}\rightarrow\nu$ weakly. For each bounded continuous function $h$ it holds
$Jhd\nu_{n^{-}}\rightarrow\int hd\nu$ ; from this we can easily derive that $\int x^{2}d\nu(x)$ cannot exceed 1. Let

us suppose that $\int xd\nu(x)=a,$ $a\neq 0$ . Without loss of generality we can assume
$a>0$ . For each $a>\epsilon>0$ there exist numbers $m\in N$ and $N>1/(a-\epsilon)$ such that
$\ddagger_{-N}^{N}xd\nu_{m}(x)\in(a-\epsilon, a+\epsilon)$ . As $\int xd\nu_{m}(x)=0$, it $holds\int_{-\infty}^{-N}|x|d\nu_{m}(x)>a-\epsilon$ . Hence,

$\int x^{2}d\nu_{m}(x)>N(a-\epsilon)>1$ , which contradicts $\nu_{m}\in G$ . Thus, $\int xd\nu(x)=0$ .
Let $\nu$ be a probability distribution on $R,$ $\int xd\nu(x)$ and $\int x^{2}d\nu(x)\leqq 1$ . For every

natural number $k$ we can easily find a measure $\nu_{k}\in G$ and a Borel set $A_{k}$ such
that $\nu(A_{k})>1-1/k$ and $\nu_{k}(B)=\nu(B)$ for each Borel set $B\subseteqq A$ . Measures $\nu_{k}$

weakly converge to $\nu$ , which finishes the proof.

Proof of Theorem 3. Let $(\alpha_{n})$ be a sequence of positive real numbers,
$ a_{n}\rightarrow\infty$ . Without loss of generality we can restrict ourselves to sequences which
are increasing ”sufficiently slowly”, so we can assume that $\alpha_{n}/n\rightarrow 0$ . Let us
put $a_{n}=n/\alpha_{n}$ . From Theorem 1 it follows that for each $f$ from a dense $G_{\delta}$

subset of $\ovalbox{\tt\small REJECT}$ and real number $K$ there exist positive integers $ n_{k}\uparrow\infty$ ,

$\frac{1}{a_{n_{k}}}$
$\sum_{=,j1}^{n_{k}}fQT^{j}\rightarrow K$ $a.s$ .

From this we get the statement of the theorem.
The author thanks Professor Anzelm Iwanik from Technical University

Wroclaw and Professor Ivan Netuka from Charler University Prague for their
kind and helpful advices.
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