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1.

The orbit spaces of a free involution on S’X $S^{2}$ were first classified by Tao
[T]. Tollefson [To] classified orbit spaces of connected sums of 3-manifolds
where each factor is irreducible. In [K-T] a general structure theorem was
found for nonprime 3-manifolds admitting involutions, with applications to non-
prime manifolds with no 2-sphere bundle summands. In this paper we describe
the orbit spaces of free involutions on connected sums of 2-sphere bundles
(Theorem 4) and on connected sums of 3-manifolds where each summand is a
2-sphere bundle or irreducible with finite fundamental group (Theorem 5).

Let $T:N\rightarrow N$ be a free involution. The orbit space $N/T$ is denoted by $N^{*}$ .
A 2-sphere $S$ in $N$ is equivariant if $T(S)=S$ or $ T(S)\cap S=\emptyset$ ; and $S$ is invariant
if $T(S)=S$ . The complement of the interior of a regular neighborhood of $S$ in
$N$ is the manifold $N$ cut along $S$ . A punctured 3-cell is obtained from the 3-cell
$B^{3}$ by removing open cells from Int $B^{3}$ . By $P^{n}$ we denote real projective $n_{-}$

space (for $n=2,3$). By $H$ we denote an $S^{2}$-bundle over $S^{1}$ .
Given a 3-manifold $M$, denote by $M^{\prime}$ (resp. $M^{\chi}$ ) the 3-manifold obtained

by deleting one (resp. two) open 3-balls from $IntM$, and call the resulting
boundary spheres of $M$ the distinguished 2-spheres. Recall that $M_{1}\# M_{g}=$

$M_{1}^{\prime}\cup M_{2}^{\prime}$ where the union is along a sphere of $\partial M_{\ell}^{\prime}$ and that $M\# H$ is obtained
from $M^{\prime\prime}$ by identifying its distinguished spheres (see $e.g$ . [He]). Note that
if the free involution $T:M^{\prime\prime}\rightarrow M^{\prime\prime}$ interchanges the two distinguished spheres
then $T$ can be extended to a free involution $M\rightarrow M$ and $(M^{t})^{*}=(M^{*})^{\prime}$ .

2.

Lemma 1. Let $N$ be a 3-manifold that contains a 2-sphere not bounding a
punctured 3-cell in N. Let $T$ be a free involution. Then $N$ contains an equi-
variant 2-sphere $S$ not bounding a punctured 3-cell. Furthermore, if $N$ contains
a nonseparating 2-sphere then $N$ contains an equivariant nonseparating 2-sphere.

This is a generalization of Lemma 1 of [To]. The proof is similar to the
proof in [To] and the proof of Lemma 4 of [H].
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Proposition 2. Let $N$ be a 3-manifold that contains a nonseparating2-sphere
and let $T;N\rightarrow N$ be a free involution. Let $H$ denote a $S^{2}$-bundle over $S^{1}$ . Then
$N$ and $N^{*}$ admit one of the structures $(a)-(e)$ .

(a) $N=M\# H$ and $N^{*}=M^{*}\# P^{3}$ .
(b) $N=M\# M\# H$ and $N^{*}=M\# H$ .
(c) $N=M_{1}\# M_{2}\# H$ and $N^{*}=M_{1}^{*}\# M_{2}^{*}$

(d) $N=M\# H\# H$ and $N^{*}=M^{*}\# H$

(e) $N=M\# H$, the two distinguished boundary spheres of $M^{\prime\prime}$ are invariant
under $T$, and $N^{*}$ is obtained from $(M^{\prime\prime})^{*}$ by identifying the two projective planes

of $\partial(M^{\prime\prime})^{*}$ .

Proof. By Lemma 1 there is a nonseparating equivariant 2-sphere $S$ .
Case (1). $ S\cap T(S)=\emptyset$ .
(i) Suppose $S\cup T(S)$ bounds a submanifold $Q\approx S^{2}\times I$ in $N$. Let $M^{\prime\prime}=$

$N-IntQ$ . Then $N\approx M\# H$. If $T(M^{\prime\prime})=M^{\prime\prime}$ then $(M^{\prime\prime})^{*}=(M^{*})^{\prime}$ and by filling .
in the boundary spheres of $Q$ with 3-balls we can extend $T$ to a free involution
on $S^{3}$ . Hence $Q^{*}\approx(P^{3})^{\prime}$ and $N^{*}=(M^{*})^{\prime}\cup(P^{3})^{\prime}=M^{*}\# P^{s}$ . This is case (a) of
the Proposition. If $T$ interchanges $Q$ and $M^{\prime\prime}$ then $N\approx H$ and $N^{*}$ is obtained
from $Q$ by identifying $S$ and $T(S)$ . Thus $N^{*}\approx H$, which is case (b) with $M=S^{3}$ .

(ii) Suppose $S$ is not parallel to $T(S)$ and $S\cup T(S)$ separates $N$ into $M_{1}^{\prime\prime}$

and $M_{2}^{\prime\prime}$ . Identifying $M_{1}^{\prime\prime}$ and $M_{2}^{\prime\prime}$ along $S$ we obtain $N_{1}^{\prime\prime}\approx M_{1}^{\prime}\# M_{2}^{\prime}$ and identify-

ing $M_{1}^{\prime}$ and $M_{2}^{\prime}$ along $T(S)$ we obtain $N\approx N_{1}\# H\approx M_{1}\# M_{2}\# H$. If $ T(M_{i}^{\prime\prime}\rangle$ $=M_{\ell}^{\prime\prime}$

then $N^{*}=(M_{1}^{\prime\prime})^{*}\cup(M_{l}^{\prime\prime})^{*}=(M_{1}^{*})^{\prime}\cup(M_{2}^{*})^{\prime}=M_{1}^{*}\# M_{2}^{*}$ and we get case (c). If
$T(M_{1}^{\prime\prime})=M_{2}^{\prime\prime}$ then $N^{*}$ is obtained from $M_{1}^{\prime\prime}$ by identifying the two boundary

spheres $S$ and $T(S)$ of $M_{1}^{\prime\prime}$ . Hence $N^{*}\approx M_{1}\# H$, which is case (b).

(iii) Suppose $S$ is not parallel to $T(S)$ and $S\cup T(S)$ does not separate $N$.
Let $M^{\prime\prime\prime\prime}$ be $N$ cut along $S\cup T(S)$ . Then $N\approx M\# H\# H$ and $N^{*}$ is obtained from
\langle $M^{*})^{\prime\prime}$ by identifying the two copies of $S^{*}=p(S\cup T(S))$ in $\partial(M^{*})$“. Hence
$N^{*}=M^{*}\# H$ which gives (d) of the Proposition.

Case (2). $S=T(S)$ .
Let $U$ be a regular invariant neighborhood of $S$ and let $M^{\prime\prime}=N-$-Int $U$ . If

$T$ interchanges the components of $\partial U$ we get case l(i). Otherwise $U^{*}\approx P^{2}\times I$

and we get $N^{*}$ as in (e).

Remark. In case (b) the $S^{2}$-bundles $H$ need not be the same, $e.g$ . it could
mean the orientable one in $N$ and the nonorientable one in $N^{*}$ .

Applying this proposition to the connected sum of $S^{2}$-bundles we obtain
the following lemma.
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Lemma 3. Let $M_{n}$ be a connected sum of $nS^{2}$-bundles over $S^{1}$ and let
$T:M_{n}\rightarrow M_{n}$ be a free involution. Let $H$ denote a $S^{2}$-bundle over $S^{1}$ . Then for
$n\geqq 2$ one of $(a)-(d)$ below holds:

(a) $M_{n}=M_{n-1}\# H$ and $M_{n}^{*}=M_{n-1}^{*}\# P^{3}$ .
(b) $M_{n}=M_{n-1}\# H$ and $M_{n}^{*}=M_{k+1}$ , where $2k=n-1$ .
(b) $M_{n}=M_{i}\#\Lambda f_{j}\# H$ and $M_{n}^{*}=M_{i}^{*}\# M_{j}^{*}$ with $i+j=n-1$ .
(d) $M_{n}=M_{n-2}\# H\# H$ and $M_{n}^{*}=M_{n-2}^{*}\# H$ .

Proof. By uniqueness of the number of $S^{2}$-bundle factors of $M_{n}$ , cases
$(a)-(d)$ of Prop. 2 yield $(a)-(d)$ of the lemma. In case (e) of Prop. 2 the mani-
fold $M_{n}$ is obtained from $M_{n-1}^{\prime\prime}$ by identifying the two boundary spheres and
$(M^{\prime\prime}|n-1)^{*}$ by identifying the two projective plane boundaries. Since $n\geqq 2$ there
is an equivariant nonseparating 2-sphere $S$ in $M_{n-1}^{\prime\prime}$ , by Lemma 1. If $ T(S)\cap S=\emptyset$

or if $S$ is invariant and interchanges the boundary components of a regular
neighborhood $U$ of $S$ then cases $(a)-(d)$ of Prop. 2 (and hence of the lemma)

apply. Thus assume $T(S)=S$ and $S$ does not interchange $\partial U$ . Then $M_{n-1}^{\prime\prime}$ cut
along $S$ is $(M_{n-2}^{\prime\prime})^{\prime\prime}$ which is invariant under $T$ . Proceeding in this way we
either obtain cases $(a)-(d)$ or we end up with an invariant submanifold $M_{0}$

which is obtained by cutting $M_{n}$ along $n$ mutually disjoint non-separating
spheres and $\hat{M}_{0}\approx S^{3}$ . Since each of the $2n$ boundary spheres of $M_{0}$ is invariant,
$M_{0}$ covers a nonorientable 3-manifold with fundamental group $Z_{2}$ and $2n$ pro-
jective planes as boundary. This cannot happen for $n>1$ , by [E].

We now adopt the following notational convention. $K$ denotes either an
$S^{2}$-bundle over $S^{1}$ or $P^{2}\times S^{1}$ . The symbol $\# P^{3}\# Kmn$ denotes a connected sum of

$m$ factors of $P^{3}$ and $n$ factors each of which is a $S^{2}$-bundle or $P^{2}\times S^{1}$ .

Theorem 4. Let $M_{n}$ be a connected sum of $nS^{2}$-bundles over $S^{1}$ and let
$T:M_{n}\rightarrow M_{n}$ be a free involution. Then $M_{n}^{*}=_{n+1-2kk}\# P^{3}\# K$ for some $k$ , with

$0\leqq k\leqq\frac{n}{2}$ for $n$ even and $0\leqq k\leqq\frac{n+1}{2}$ for $n$ odd.

Proof. For $n=1,$ $M_{1}^{*}$ is $\#_{2}P^{3}$ or $K$, by [T]. For $n=2$ we apply Lemma3

to obtain $M_{2}^{*}=M_{1}^{*}\# P^{3}$ (hence $M_{2}^{*}=\# P^{3}s$ or $M_{2}^{*}=P^{3}\# K$ ).

The general case follows from Lemma 3 by straight forward induction.
We illustrate the case when $n+1=m$ is even and Lemma 3(c) applies:
$M_{m}^{*}=M_{i}^{*}\# M_{j}^{*}$ with $i+j=n$ and we can assume that $i$ is odd, $0<i\leqq n$ , and $j$

is even, $0\leqq j<n$ . By induction $M_{i}^{*}=\# P^{s}\# Ki+1-2kk$ for some $k$ with $0\leqq k\leqq\frac{i+1}{2}$
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and $Mf=\# P^{3}\# Kj+1-8ll$ for some $l$ with $0\leqq l\leqq\frac{j}{2}$ . Thus $ M_{m^{=\#}}^{*}P^{3}\# K=\ell+f+2-2k-2lk+\ell$

$m+1-2*l\# P^{s}\# K$ for $s$ with $0\leqq s\leqq\frac{m}{2}$ .
It is clear that conversely any (orientable) 2-fold covering of the manifold

$M_{n}^{*}$ given by the Theorem is homeomorphic to $M_{n}$ .

3.

Now let $\# Hn$ denote a connected sum of $n$ factors, each homeomorphic to

an $S^{2}$-bundle over $S^{1}$ .

Theorem 5. Let $N$ be a closed 3-manifold that contains no fake 3-cells and
such that every irreducible factor of the prime decomposition of $N$ has finite
fundamental group $\cdot$ Let $T:N\rightarrow N$ be a free involution. Then there are prjme

manifolds $A_{i},$ $B_{j}$ such that

$N\approx(A_{1}\#\cdots\# A_{f})\#(B_{1}\#\cdots\# B_{\iota}\# H)\#(A_{1}\#\cdots\# A_{r})*-1$ and

$N^{*}\approx(A_{1}\#\cdots\# A_{r})\#(B_{1}^{*}\#\cdots\# B_{l}^{*})$

Remark. Some of the $B_{\ell}’ s$ may be homeomorphic to $S^{3}$ (in which case
$B_{i}^{*}\approx P^{3})$ .

Proof. Let $k$ be the number of 2-spheres of a complete system of pairwise
disjoint incompressible 2-spheres in $N$ (see [Ha]). If $N$ contains no nonseparat-

ing 2-sphere then the Theorem follows from the Theorem of [To] (with $s=1$).

Thus we assume that $N$ contains nonseparating 2-spheres and proceed by

induction on $k$ . (For $k=0$ we have $r=0$ and $s=1$ ). Denote $A_{1}\#\cdots\# A_{r}$ by
$A(r),$ $B_{1}\#\cdots\# B$ . by $B(s)$ and $B_{1}^{*}\#\cdots\# B_{\epsilon}^{*}$ by $B_{*}(s)$ . Consider the cases of
Prop. 2:

(a) $N\approx M\# H,$ $N^{*}\approx M^{*}\# P^{3}$ . Applying induction to $M$ and $M^{*}$ we obtain
$N\approx A(r)\#(B(s)\# S^{3}\# H)\# A(r)l$ and $N^{*}\approx A(r)\# B_{*}(s+1)$ .

(b) $N\approx M\# M\# H,$ $N^{*}=M\# H$. Write $N\approx A(r)\# H\# A(r)$ and $N^{*}\approx A(r)\# H^{*}$ .
(c) and (d) follow similarly.
(e) $N$ is obtained from a manifold $M_{1}$ by identifying its two invariant

boundary spheres $S_{11},$ $S_{12}$ and $N^{*}$ is obtained by identifying the two boundary

projection planes of $M_{1}^{*}$ . If $\hat{M}_{1}$ is irreducible then since $\pi_{1}(\hat{M}_{1})$ is finite, it
follows from [E] that $M_{1}^{*}\approx P^{g}\times I$ and $N\approx H$. If $\hat{M}_{1}$ is not irreducible there is
by Lemma 1 an equivariant 2-sphere $S$ that does not bound a punctured 3-cell
in $M_{1}$ .

(i) $S$ separates $M_{1}$ and $ T(S)\cap S=\emptyset$ . $M_{1}$ cut along $S\cup T(S)$ consists of 3
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components $Q_{1},$ $Q_{2},$ $Q_{3}$ with $S\cup T(S)$ in $Q_{3}$ . Then $S_{11},$ $S_{12}$ are in $Q_{3},$ $T$ leaves
$Q_{3}$ invariant and interchanges $Q_{1}$ and $Q_{2}$ . Thus $N\approx N_{1}\# N_{2}\# N_{1}$ , where $N_{1}\approx\hat{Q}_{1}$ ,
$N_{2}\approx\hat{Q}_{s}\# H$, and $N^{*}\approx N_{1}\# N_{2}^{*}$ . Every irreducible factor of $N_{2}$ has finite funda-
mental group and the Theorem follows by induction applied to $N_{2}$ .

(ii) $S$ separates $M_{1},$ $T(S)=S$ , and $T$ interchanges the boundary components
of an invariant neighborhood of $S$ . This case cannot occur since $M_{1}$ contains
invariant spheres $S_{11},$ $S_{12}$ .

(iii) $T(S)=S$ and either $S$ does not separate $M_{1}$ or $S$ separates $M_{1}$ and $T$

does not interchange sides of $S$ . Let $M_{2}$ denote either component of $M_{1}$ cut
along $S$ . If $\hat{M}_{2}$ is irreducible then since $\pi_{1}(\hat{M}_{2})$ is finite, it follows from [E]
that $M_{2}\approx S\times l$ hence $S$ separates $M_{1}$ and bounds a punctured 3-cell in $M_{1}$ which
is not true. Thus $\hat{M}_{2}$ is not irreducible. Continuing this process of cutting
along equivariant 2-spheres we eventually must get case (i) for $M_{n}$ which is a
component of $N$ cut along $n$ essential 2-spheres. Thus there is a separating $S$

in $M_{n},$ $ S\cap T(S)=\emptyset$ , and all boundary spheres of $M_{n}$ are invariant. So $S\cup T(S)$

separates $M_{n}$ into $Q_{1},$ $Q_{2},$ $Q_{8}$ where $Q_{3}$ is invariant, $T$ interchanges $Q_{1}$ and $Q_{2}$ ,
and $\partial M_{n}\subset Q_{s}$ . Thus $N\approx N_{1}\# N_{2}\# N_{1}$ with $N_{1}\approx Q_{1}$ and $N_{2}$ is obtained from $Q_{s}$

and other components of $N$ cut along 2-spheres by identifying invariant boundary
components in pairs; and $N^{*}\approx N_{1}\# N_{2}^{*}$ . As before the Theorem follows by
induction.

As an example note that Theorem 5 applies to a connected sum of lens spaces
(including $S^{1}\times S^{2}$). In [M] it was shown that the orbit space of a free involution
$T$ on a lens space (different from $S^{1}\times S^{2}$) is a Seifert fiber space.
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