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Summary. It is well known that the holomorphic tangent bundle and normal
bundle of a complex submanifold of the complex Euclidean space are holo-
morphically isomorphic to pullbacks of the universal subbundle and quotient
bundle, respectively, over the complex Grassmannian by means of its Gauss
mapping. For a complex submanifold of the complex projective space, we
shall prove a result (Theorem 5.1) corresponding to this fact.

1. Preliminaries

1.1. Notations. Let C® be the complex vector space of n-dimensional
complex column vectors and M=M(n, m; C) the complex vector space of com-
plex matrices of type (n, m). Set gi(n, C)=M(n, n; C). Denote the n-dimen-
sional unitary group by U(n). For A= M(n, m; C), A* is a transposed-conjugate
matrix of A. For A=(a)eM(m, p; C) and B=(b,)EM(n, q; C), AQB means
a matrix

| eMimn, pq; C),

Where @ssby is the (m(p—1)+i, p(v—D)+ 7)-component of AQB. In particular,
we have bQacsC"™ for beC™ and a=C™. Hence we may identify the tensor
product C*®QC™ of complex vector spaces C* and C™ with the complex vector
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space C*™. Let u,, .-+, un be column vectors in C*. Then the correspondence

U
(ulr Tty um)}'-_> ‘
Um

define a linear C-isomorphism X: M(n, m; C)—»C"™. For BeM(g, n;C), Ac
M(p, m; C) and Z=M(n, m; C), the equality

(1.1) (BRQAX(Z)=X(BZ'A)

holds. In particular, we have the equality bQa=1X(b’a) for bC" and a=C™.

1.2. Complex derivatives. Let D be an open set in C™. For a C~-mapping
f: D—-C™, the derivative (df),: C™—C™ of f at z&D is a real linear mapping
defined by

(@f1a)=Sfetta)]| .

Now for the above mapping f, at z&€D, we define a complex linear mapping
(@f),: C™—C™", a conjugate linear mapping (df).: C™—C" by

(12) @)= (@@~ =T N Ta),
13 U= AEN@+VTTENY TTa),
respectively. Then we have
(1.4) (d£).:=@f):+@f).,

2 2 .
1.5 Onteo="L..  @Neo=rtr Asism)

for z=%z!, ---, z")eD, where e, is the i-th member of the canonical basis of
C™. It follows from these equalities that f is holomorphic in D if and only if
(3f),=0 or (df),=(df), for each point z&D. The following proposition is easily
shown.

Proposition 1.1. (Chain rule of complex derivatives) Let D, D’ be open sets
in C™, C*, respectively and f: D—C", g: D'-C? C=-mappings such that (D)
CD’, then the composed mapping g-f: D—C? is a C-mapping and equalities:

i (082 1):=(08)7>°(0f):+(08) s >°(0f )z

(i) (3(g° f)):=(08)s2>* (@S ).+08)r1>°(3S):
for z€D hold.
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2. Grassmannians and vector bundles over them

2.1. Grassmannians. Let Gy . be the complex Grassmannian of all linear
subspaces of complex dimension 2+1 in C¥*' (0<k<N). The Grassmannian
Gy.o is equal to the N-dimensional complex projective space Py. We may think
of Gu.» as the set of k-dimensional projective subspaces of Py. Set

V. n={XeMm+m, m; C)| X*X&GL(m, C)}.

The space V. . is called the complex Stiefel manifold of all m-frames in C™*",
For each (k+1)-frame X&V}_i.:+1, We denote a linear subspace of complex
dimension 2+1 in C¥*' spanned by all column vectors of the matrix X by [X]

» EGN,k. Set
M, .={P=giim+n, C)| P*=P, P*=P and trace P=m}.

We define a mapping p: Vi n—M,n by p(X)=X(X*X)"'X*. Moreover we
define a mapping §: Gwn.+—=My-s, 241 DY

@.1) HLXD)=p(X)=X(X*X)" X*

for each X&Vi_i.x+1. Then it is easily shown that § is bijective. We identify
Gy.r With My_s. 241 by . Now we shall introduce a holomorphic structure to
M, .. Let P.&M, . be an arbitrary point. There exists A€U(m+n) such

that
E. O\
Po =A( )A_1 N
O O

where E, is the unit matrix of degree m. We define an into-homeomorphism
$a: M(n, m; C)>My, n by

En En.
(2.2) ¢A(Z)=p(A( 7 ))=A( 7 )LE’(EmZ*)A" )

where Ly,=En+Z*Z for ZEMn, m; C). Set
Us=¢(M(n, m;C)), S4=¢a':Uy—> M(n, m;C).

Then we have

En
UA'—-{PEMn.m'(Em O)A“PA( o )EGL(m, C)} ,

En En\)-1
é4(P)=(0 E,,)A“‘PA( o ){(Em O)A"PA( 0 )} .

For A, BEU(m+n), homeomorphims ¢z-¢3': ¢ (U sNUp)—¢sUsNUB), Ga°P35':
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¢ 5(U 4NU p)—¢ 4(U 4NU 5) are described as
W=¢p¢p2(Z)=0b+dZXa+cZ)"

=—(d*— Zb*)N(c*—Za¥),

(2.3)
Z=0 4295 W)=(d*+c*W)a*+*W)™

=—(d—We)'(b—Wa),

respectively, where

b d

Hence ¢p-9a', dacds' are holomorphic. Therefore we regard M, » as a com-
plex manifold with a holomorphic structure

{Ua, g1 A€U(m+n)}.

a c
( ):B"AeU(m-’rm); acsglim, C)

For AcU(m-+n), the above mapping ¢4 is a local parame_trization near P,=
¢40) in My, n. Hereafter, as a complex manifold, we identify Gu.» Wwith

My_4, 241 DY B.

2.2. Universal bundles. Set
Tn.m={(P, a)EM, ., XC™*"|Pa=a},
(2.4) 7 a={(P, 0)EM; o XC™"| Pa=0},
7% a={(P, 0)EM, . XC™*"|*Pa=a}.

Define mappings T Tnm—Mnm, xti s a—Mu m, a* 1k m—Mun bY n(P; a)
=P, n*(P, a)=P, z*P, a)=P, respectively. Then 7a.m, T#.m, Th.m are holo-

morphic vector bundles over M, . of rank m, n, m with the following local
trivialities w,: U4 XC™—n~ (U 4), wi: U XCr—rt=Y(U,), o%: U XC™—a¥U 4) by

En
w (P, u)=(P, A( )u),
Z

— %
(2.5) wi(P, v)=(P, A( £ )Mz‘v),

n

: _(E.
oi(P, u) =(P, A( 7 )‘L}‘u) )

respectively, where Z=¢.(P), L;=E,+Z*Z and Mz=E,+ZZ*. 7Tnm and7zm
are called the universal subbundle and the universal quotient bundle, respectively.
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Transition functions gga: UsNUp—GL(m, C), gba: U.NUg—GL(n, C), g§4:
U,NUg—>GL(m, C) of Tu.m, T5.m, Tk m are given by
gssP)=a+cZ,
(2.6) gs4(P)=(d*—Zb*)",
giAP)=%a+cZ)?",

respectively, where Z=¢,(P) and
a ¢
=B-'AcU(m+n); asglim, C).
b d
Moreover we have the following holomorphic short exact sequence:

@.7) 0—>Tnm —> C™" —>Tim —0,

where €™+"=M, . XC™" (product bundle), « is a natural inclusion and B is
written as (P, a)=(P, (Emsn—P)a). 7% n is a dual bundle of 7..m and the
dual bundle of 74, » is described as 7:*n={(P, a)E Myn,» XC™*"|*Pa=0}. Further-
more, from the following holomorphic short exact sequence:

a* *
(2.8) Oc—7%m< 6m+n - T#fm <0

is obtained, where B* is a naturol inclusion and a* is given by a*(P, a)=(P, tPa).
Now we define a biholomorphic mapping 4: M,, n—Mn,» by

(2.9) A(P)=E nin—"P.
Then the local expression of 4 is an follows:
- - 0 ‘—Em
(2.10) Gicd-¢z(2)='Z; A=A )
E. (0]

where (U, 64), (Uz, ¢4) are local charts of My, n, Mn.n, respectively such that
AU )=Uj;. Then the following proposition is easily shown.

Proposition 2.1. The dual bundles 7% m, Ti'm 0f Ta.m, Th.m are holomor-
phically isomorphic to pull-backs 4-'T%.n, 4 Vm.n Of Th.n, Tm.n, respectively and
by the isomorphism, the following diagram:

a* R *
0 < Thm < Omtn i, «—0
! I
4-'8 4 'a

0« A‘lr;Ln.n — ém+n R Aqrm,n <0
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is commutative, where 4~*a, 4B are homomorphisms induced by a: ¥m,.—C™*",

0
B: C™+ "t

2.3. Holomorphic tangent bundles of Grassmannians. Let PEM, . be
arbitrary point and (U, ¢4) the local chart defined in 2.1 such that ¢.(P)=

OcM(n, m;C). Let ¢,=¢3'. Then we have
(2.11) (dSbA)z(Z):Xz(Z)"I"XZ(Z)*
(2.12) (asbA)z(Z):Xz(Z) ’ (3¢A)z(2)=Xz(2)* ’

where zeM(n, m; C),

—7*
(2.13) Xz(z)zA(

)Mz‘sz‘(Em Z¥A™,

(2.14) Ly;=En+Z*Z, M;=E.,+ZZ*.

It follows from that the real tangent space T(My, n)p Of M, » at P is

written as
T(M,, »)r={Xs glim+n, C)| X*=X, XP+XP=X}.

" Moreover the almost complex structure Ip: T(My, n)p—>T(Mn,n)p at PeM,, , is
given by Ip(X)=+/—1[X, P], where [X, P]=XP—PX. We may regard the
complexified tangent space T(Mn, »)% of M., » at P as

T(My, »)={XE gl(m+n, C)| XP+PX=X}.

Therefore the holomorphic tangent space T(M,,n)p, the antiholomorphic -tangent
space T(M,,n)} of M, » at P are given by

T(My, n)p={XEglim+n, C)| XP=X, PX=0},
T(Mn,m)l’é:{XEgl(m—i-n, C)|XP=O, PX———X},

respectively. Hence we may describe the holomorphic tangent bundle (M, n)
of M, as

(2015) T(Mn.m):'{(P’ X)eMn.ngl(m+n, C)\XP:X, PX:O}. ’
Complex derivatives
OPz: M —> T(Mn.n)o,  (OPa)z: M —> T(Mn,m)d

are a complex linear isomorphism, a conjugate linear isomorphism, respectiirely,
where M=M(n, m; C) and Q=¢(Z). By , the equality

(2.16) (0P )z(2))=X(X2(2))=J (P 1)z X(2)
follows from [(2.12) and [2.13), where
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—Z* _(En
2.17) J(ga)z=A E Mz'®A 7 tLz' (cf. (2.))

- [[(—Z* En
=(A®A)-(( )®( — ))’(M:;(Xﬂzz)'1 .
E Z

n

We think of the mapping J(¢4): M(n, m; C)=@ 4 U 4)—>Vim+n>®-mn.mn as a local
frame field on U, of the holomorphic tangent bundle 7(M,.»). The complex
derivative a(¢z-¢3')z: M(n, m; C)—M(n, m; C) of the holomorphic coordinate
transformation @¢z-g3! (cf. (2.3)) at Z&M(n, m; C) is given by

(0(@pePa')z(2)=(d*—Zb*)'z2(a+cZ)".
From this, by the equality
(2.18) X((0(gp° 91" )Nz(2)=](Pp¢1")z X(2)
follows, where

(2.19) J(@zedi)z=(d*—Zb*)*Qa+cZ)'=GL(mn, C).

Since ¢pegpz' is holomorphic and ¢, =¢g-(ds-¢1'), by (i) of Proposition 1.1, we
obtain (0¢4)z=(0¢s)w°(0(Pp-¢2"))z, Where W=¢,°¢3(Z). Hence, by and
the equality

(2.20) JPDz=J(Pp)w ] (P Pa')z
holds. From [(2.6) and [(2.19), the equality
(2.21) J(P92)z=854PAZ)NR8EAPAZ))

follows. Since the holomorphic mapping J(¢p°¢z'): ¢4(UNUg)—GL(mn, C) is
the transition function of the holomorphic tangent bundle z(M;, ), we have the
following proposition.

Propossition 2.2. The holomor phic tangent bundle ©(M,,») is holomorphically
isomorphic to the tensor product 173 nQr¥ m by the mapping X: T(My, n)p—EQEE
(glim4+n, C)»C™*"QC™*=C "+ where PEM,. ., be an arbitrary point and

Ei={besC™"|Pb=0},
E¥={acsC™"|*Pa=a}.

3. Pointed Grassmannians and vector bundles over them

3.1. Pointed Grassmannians. Set
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Fy.n={([x], [X)DEPyXGy,nlxEC"+'—{0},
XeViy-m.m+; [x]C[X]}
={(P, Q)EMy 1 XMy -m.m+| PQ=P}.
Then Fy.n is C?-diffeomorphic to the homogeneous space U(N+1)/(U(L)XU(m)
XU(N—m)). Fu.m is called the pointed Grassmannian (cf. [2]). Now we shall

introduce a holomorphic structure to Fy,n. For any point ([x,], [Xe])EF y.m,
we define a local parametrization $,: C¥ XM(N—m, m; C)—Fy, = near ([xo],

[X.]) by

1 1 0
o1 A ) e ol =)
§ § J

where zeC™, £=C¥-™, JeM(N-m,m;C) and A€U(N+1) such that
34((3) 0)=(xs], [XD. Set Uu=¢uCYxMN~m,m;C))and $,=¢3". Then
the coordinate transformation @z°@z': $4(0 N0 s)—3s(U.NU5) is given by

o

w— a+Sz+D*§ _¢c+Cz+T¢
T atb*z+d*e’ 1= atb*z4d*e’

&2 K={C+TJ]—n®*+d*)HS+D*]J—w(b*+d*])}~
C* -1 a*
=—{T*-—($—J2, ) (C*)} {D—(E—]Z, J )(S*)}'
a b* d*
where z, weC™; & nC¥-™; J, KEM(N—m, m; C) and B“A::(g % g*)e

U(N+1); acC; a,beC™ ¢, d=C™; C, DEMN—m, m;C); Segilim, C);
Tegl(N—m, C). We think of Fy » as a complex manifold with a holomorphic

structure
' {(U4 I ASUN+D)}.

For ((;), ])E@(U «NO3g), we set
hpi=a+b*z+d*¢=GL(1, C)=C—{0},
Pps=S+D*]J—wb*+d*/)eGL(m, C),

*
(3.3) QBA={T*_($—]Zn J )(

c -1 '
)} eGL(N-m, C),
C* ‘
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hga b*+d*]

GBA=( )EGL(m+1; C):

0 Psy

PBA D*—wd*
BA:( )EGL(N, C).

BA

3.2. Vector bundles over F Nm We define holomorphic mappings p: Fy.m
—Py=My,,, q: FN.m—*GN.m=MN-m,m+x_ by

(3.4) P, Q)=P, P, Q)=Q.

Then local expressions of p, ¢ are as follows:

09 puness((2)=( ) perio{ (o)
§ § 3

Set

| Er=0"Tw., Eb=D"Th1,
3.6) |

-1 — =lasL
TPrP=q " TN-m,m+1, TF=Q¢ ' IN-m.m+1 -

Then §r, &, 77, 7+ are holomorphic vector bundles over Fy . of rank 1, N,
m+1, N—m, respectively. Moreover they:are described as

r={(P, Q; a)=Fy,n XC¥*| Pa=a},
F={(P, Q; a)EF y,» XC¥*+'| Pa=0},
3.7
Tr={(P, Q; a)€Fy,nXC"*'|Qa=a},
17={(P, Q; )F 5y, nXC"*'|Qa=0}.
Now we define a vector bcndle 77} over Fy . of rank m by

3.8 77={(P, Q; )EF y, n XC"*'|Pa=0, Qa=a}

and its projection 7, : 9 r—Fy, n by (P, Q; a)=(P, Q). Then its local triviality
04: 04 xXC™—>n;' (U ,) is given by

3.9) 04(P, Q), u)=(P, Q;Y (2, &; Nu),
where (( ; ):7)=34P, Q) and

—zk g En
Y=Y (2, §; ])=A( E )A?e’( J )

N

| 0 N
@100 =XA<X:XA>-*(L>;Aze=E~+(5)<'Z*5*>;’—"M<z>’
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1 0
, En
X4=Xy2,&; N=Az En|, L=(En ]*)Aie‘( ] )
éJ

Y, =Y (2 &;]) gives a local frame field on U, of nr and for ((Z),])E
340 4NU ), the equality

3.11) ' Yuz, & N=Ys(w, 1; K)- P4
holds, where ((z), K):g‘i,,o ;;1((2 ) ]). It follows from this equality that Py,

gives a holomorphic transition function

UA('\UA 5&4((:), ]) e PBAEGL(m, C)

of nr. Hence 7r is a holomorphic vector bundle of rank m. For each
((Z) J)ECH X M(N—m, m; C), set
1
xa=x42, §)=Alz],

3

—zk g% En. O
xi=xj(z,$;])=/1( E. )A;g(] En),

1 0
X4=Xuz, §; N=Alz Ea|,

& J

—Z*
Xi=X4z§; ])=A( £

(3.12)

)M}‘ (cf. [2.5),,

where Z=(¢—Jz, ) M(N—m, m+1;C) and n=N—m. Then x,, xj, X, Xi
give local frame fields on U, of &, &5, Tr, T+, respectively. Moreover we have
the following equalities on ¢ U .,N05)

n

Xa=Xxp hpa, xi=xp Hpa,
3.13)
XA=XB'GBA; i-’:Xé'QaA;

where xp=x3w, 9), x3=xw, 1; K), Xeg=Xsg(w, 7; K), Xp=Xxw, n; K) and
((l;;), K)=¢Bo¢;1((§),j). Hence hg4, Hps, Gpa, @p4 give transition functions
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on U,N\Up of &r, &4, 75, T, respectively. By [2.7) - we have the following
holomorphic short exact sequences:

0 ‘SF CN+1 ‘Bi e.L 0

3.14)
a r
0—7rp—>Cr*'—S 71t —>0
where C¥+'=F ., XC¥* (product bundle). Furthermore, we have the follow-
ing short exact sequence:

’ ’

(3.15) 0—ér—>7r—>9r—0,

, a” B
(3.16) 0—> 9r £F TF 0,
where a’, a” are natural inclusions and
3.17) B'(P, Q; a)=(P, Q;(Ex+—P)a),
(3.18) B"(P, Q; a)=(P, Q; (Exti—Q)a).

Local expressions of a’, 8’, a”, B” are as follows:

1 e

ap, Q)(er)=XA( )e, B, Q)(XA( ))=Y4u
0 u
En u

aip, Q)(YAu):‘Xi u, ﬁl(/P, @ X% =Xiv,
(0] v

where P=x (x%x)7'x%, Q=X ,(X%¥X,)'X%; eeC, ucsC™, veC". Hence short
exact sequences [(3.15) and [3.16) are holomorphic. Moreover we have the_ fol-
lowing commutative diagram:

§r
a'
a
3.19) TF
e
B OO
/ - {ﬁeﬁ\: 1
7r > & > TP

3.3. Milnor manifolds. Set

H;piy=Hp i1, me1={([x], [y])EPn+1X Prs|txy=0}
={(P, Q)EMm-u.xXMmu.l!tPQ:O}- |
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H;psy=Hp41.m4: iS @ particular one of Milnor manifolds. Now we shall intro-
duce a holomorphic local chart near each point of Hypm4i. Let ([uol, [vo])E

H,+: be an arbitrary point. For some A€U(m+2), the mapping ¢,: C*™+'—
Em+1 deﬁned by ’

z 1\1 .1
. _ z,{eC™, é=C,
¢'A 5 = A 21l AU C ’
x=£&—%z
g 3 x
is a local parametrization near ([u,], [vo])=¢ 4(0), Where
0 0 -1
U=|0 —E, 0|l€U(im+2).
1 0 1

Set UJ,=§.C*™*") and $,=@z'. Then the coordinate transformation ¢pe@z’:
54(040U3)—>$3(ﬁ4n03) is given by

z w a b* 7
Jeda|é|=|n |; B'A=|la C d|€U(m+2),
¢ \w/ B c* &
 a+Cz+dé B+c*z+38
T atbrztre’ 7 atbrz+r’
—d+Cl+ax

O= 3 tt—fx ° x={—"Cz;

~a, B,7,0€C; a,b,¢c,deC™; Ccgiim, C). We think of H,n,, as a complex
manifold with a holomorphic structure ‘ R

{(U4, $01 ACU(M+2)}.
Define a biholomorphic mapping 4: Homsi1—Fmi1,m DY

(3.20). 4(P, Q)=(P, X4Q)=(P, En+:—*Q)

(cf. [2.9). Moreover we define holomorphic mappings $, §: Hem+1—Pn+: by

P(P, Q)=P, G(P, Q)=Q, respectively. Then we have the following commutative
diagrams: v

~ -~

4
Hlm+l '—’Fmﬂ m Hﬁm+l —_— Fm+l.m

(3.21) \{, /D lq. 1,,

Py o Mm+x=Pm+1 —Ls Grin=Mimn
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3.4. Vector bundles over H,n.i. Set £x=7 Tmir1, E4=D ki1, TE=
g hery, TH=G'7#%1... Then we have
§x={(P, Q; a)EHn+1 XC™*| Pa=a},
§a=1{(P, Q; a)EHypn+1XC™**| Pa=0},
75={(P, Q; 0)EH;n+1 XC™*|'Qa=a},
={(P, Q; a)EHzmﬂXC"‘”l‘Qa:O}.‘
Set pz=4"'nr. Then we have
(3.22) 2a={(P, @; 0)€ Hynss X C™**| Pa=0="Qa}.

It follows from [Proposition 2.1 that 7%, 74* are equal to 4-'r4, 477, respectively.
Moreover we have &y=4-¢r, &4=4-'¢t. Hence, by (3.19), we have the fol-
lowing commutative diagram: ' ’

En
a’
./ a
(3.23) Tf;*
: *= m+8 :
Iy e *
lﬁe
> eH B —> TH *

t

where a’, p are canonical inclusions and ﬁ' v are glven by
B(P, Q; a)= (P, @; (Emss—Pla), (P, Q; a)=(P, Q; ‘Qa).

Moreover (ag, Be), (a*, B™), (', B"), (p, y) are holomorphlc short exact sequences

4. Gauss mappings and pointed Gauss mappmgs

4.1. Local graph charts. Let M be a complex subrnamfold of the N-
dimensional complex projective space Py of complex dimension m. Let p,eM
be an arbitrary point. There exist a non-empty open set D, of C™, a holo-
morph1c mappmg g: D—-C¥ and some AcU(N+1) such that the mappxng

1
Dysw=%w?', -, w"‘)»——> [A( )]EM '
' . &(w)

is a holomorphic local parametrxzatlon of M near po and

Po=[ (g(C))] ((awf) )1si jsm GL(m C) g—‘(g, &h-
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Set tg(c)=(‘a, *b); acC™, beC¥-™. Then, by Inverse mapping theorem, there
exist an open neighborhood D of a in C™ and a holomorphic mapping f: D—»C¥-™
such that the mapping ¢4, : D—M defined by

1
4.1) ()= A ( )
. bas AR f(2)

f(2)
is a holomorphic local parametrization of M near p,, where p,=¢.s(a), b=/f(a).
Set Uur=¢as(D) and @ar=¢as: Uss—D. Then (Uus, day) is a holomorphic
local chart of M near p,. In this note, we call (Uyy, @ays), Pasr the local graph
chart, local graph parametrization, respectively.

4.2. Tangent projective spaces and Gauss mappings. Let M be an m-
dimensional complex submanifold of Py and Uy, @ay), Par=9ay: DU, CM
the local graph chart, local graph parametrization, respectively, where Ae
U(N+1), D is an open subset in C™ and f: D—C¥-™ is a holomorphic mapping.
Set

J,:=(%Jzi (Jacobian matrix of f).

We may regard J, as an M(N—m, m; C)-valued holomorphic function on D or
Ug.s. Then the tangent projective space P(M), of M at p is written as

1 0
4.2) P(M),={| Alz En |z |ePxy|xcC™'—{0}},
fJs

where p= ¢v,4f(z), f=f(2), Jy=Js(z) for z=D. Hence the Gauss mapping I'y:
MGy, n=My_m.n+ is given by

_ 1 O
4.3) Tu(p)=|Alz En||=¢f@)—Ji(2)-2, Js2)),
f I/l o

where we think of Gy.n as a set of all m-dimensional prbjective subspaces of

Py and ¢4 is the local parametrization defined in 2.1 (cf. (2.9)). Since Ppa=

M,.., is biholomorphic t0 Gn+1i.m=Mim+ by 4, if M=V is a non-singular
complex hypersurface of Pn.,, we may think of the Gauss mapping I'y as a
mapping of V into P, Then it is given by

1

_ Y
4.9) I'v(p)y=| AU ‘Js :Sbiup(f“; -z)’
o f=Jsz -
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where p=¢.,(2), f=f(2)€C, J;=]i(2)=(0f/02"),, ---, (0f/0z™).)EM(, m; C)
for zeD and U,cU(m+2) is defined in 3.3. For the above non-singular com-
plex hypersurface V, there exists a homogeneous polynomial ¥(x)=%(x,, x,, -,
Xm, Xm+1) Of degree d such that

V=Vn(d)={[x]EPns|xC™**—{0} ; ¥(x)=0} ;

v

-é-; I_—_(wo(x), WI(x), e, Wm(x), Wm.._l(x)):#OEM(l, m+2; C)

for x=%xo, 1, -, Xm, Xms1)EC™*—{0}, where
T v ] .
,(x)=(67) (homogeneous polynomial of degree d—1, 0<i<m-+1).
i/ }

Then V=V,(d) is called of degree d. By Euler’s 1dent1ty and 1mp11c1t function
theorem, we obtain the following proposition.

Proposition 4.1. For the above V=V,(d), the Gauss mapping I'y: V=Vn(d)
— P, .y is described as

ra=['&).]-

4.3. Pointed Gauss mappings. Let M be an m-dimensional complex sub-
manifold of Py. Then the pointed Gauss mapping [y : M—Fy.n is defined by

4.5 Fu([xD=(x], Tu((x])  (see [2D.

In particular, if M=V is a non-singular complex hypersurface of Pn+, the
Gauss mapping I'y: V—H,n., is defined by

(4.6) - PuCxD=(x], TW([xD).

Then we have the following commutative diagrams:

~

Py “"“2— Fy.m Ppyy «——H,yp 1y
@.7) \t I lq (v lq
o | 'y Iy

M'——’Gu,g, vV Pusr.

5. Results and proofs

Let M be an m-dimensional complex submanifold of Py and V a non-singular
complex hypersurface of P,.;. We denote the holomorphic tangent bundles of
M, V by (M), =(V), respectively and the holomorphic normal bundles of M, V
by v(M), »(V), respectively. We prove the following theorem.
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Theorem 5.1. i) (M), ©(V) are holomorphically isomorphic to
Fa'(nrQeH=Ta' nr)Q0%. 11 1),

ﬁ?l(ﬂa®5§)=(f7'!77H)®(T’fn+1.1IV) ’

respectively. ii) v(M), w(V) are holomorphically isomorphic to
Tt =T "1 -m.m+1)QT %1 | x0) 5

TP i) =7 1% 1. )R ka1 lv),
respectively.

Proof. We prove i), ii) only on M. On V, their proofs are analogous.
Let (U4y, pas) be an arbitrary local graph chart and ¢, ,=¢3%: D-U,, the
local graph parametrization associated with (Uy, ¢4s), where AcU(N+1), D
is an open subset of C™ and f: D—C%¥-™ is a holomorphic mapping. Then we
have

Em
(a¢Af)z(u)=(a¢A)(})(( 7

S
A(—z* ' "‘f*)A-l(Em L 2+ A
- Ey “\Js )u I

(cf. K2.12$| and K2.13)), where usC™, zeD, p=¢.s(2), 2,f=1+z*z+f*f=L(})
(cf. (2.14), f=f(2), Jr=Js(2z). By [L.I), from this equality, we obtain

(0P ag)u))=JPas)su

)u)eT'(M),,cT'(PN),,

(5.1) . ‘
K Par)=Y &2, [; ] )Qx¥(z, f) (cf. [3.10)),
where :
1
x¥(z, /)=AZ K} (cf. [2.5).
f | ;

J@ar)s Y a2, £ 3 J1), x4z, f) give local frame fields on U 4, of 7(M), Fa'ne, 151 x
respectively. Moreover, on U, N\Ug,#@, from (0¢.s):=@se)w>(0(@zs°Pa}))s
((3.11), [2.5) and [2.6), we obtain

.,(¢Af)t=.,(¢83)w * j(¢81 ° ¢2_lf)z ’

(5.2) .
J(PrgoPay):= %"lg“)"—‘Pm/ﬁBm

where (Ug,, ¢5,) is another local graph chart,
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5 z
(( ) Je)=(¢33°952‘)(( ) Jf) (cf. 3.2,
g f

 — a+Sz+D¥f(2)
Ta+b*z+d*f(2)

=(@peoPay)z) (cf. 3.2)),

7
g=ew), J=Jw=(5%)
and |
Ppi=S+D*](2)—w(b*+d*],(2)) (ct. (33D,
hgi=a+b*z+d*f(z) (cf. [@D

(5.1) and (5.2) show that z(M) is holomorphically isomorphic to (Fg*n )R %.1] x)
by the holomorphic isomorphism

X2 o(Pw)lu —> (& @150 u=Ti" (6+QEF)

(cf. Proposition 2.2). Thus i) has been proved.‘ The above fact shows also that
the following diagram is commutative:

) oPwla

111 a’®1 11
iR (  IRERED.

It follows from that the sequence:

0 —> Fit*(n rQE¥) —> [ (6% —> L' 71pREE) — 0

is holomorphically exact. On the other hand, we have the holomorphic short
exact sequence:

0 — t(M) —> t(Py)|y —> v(M) —> 0.,
Therefore y(M) is holomorphically isomorphic to [i'(7 5Q&¥%) by the homdmorphism
that X: o(Py)| x— i’ (6#®¢€¥) induces. Thus ii) has been shown. q.e.d.

Remark. The holomorphic local frame field e r: U= Vinint-v-m) ¥-m
defined by ‘ :
1y
—7* '
eA,(p)=A( E )M3‘®Z Z |4} (cf. and (3.12)).

=.[(¢A)(zf)'Azfllf( E ?)(le,f)'l

n
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of (Fig'7%-m.m+1)®(%.11x) is regarded as holomorphic normal frame field on
Uu of M in Py (cf. Theorem 2.1 of [1]), where n=N—m, z=¢.,(p), Z=

(f(2)—J1(2)-2, Je(2)),

—J(2)*
Mz=(—Js(2) En)Azf( ) (cf. (2.14))
1
—z* —f(2)* |
](¢A)(?)=A( E )A;}@A z |4} (cf. (2.17)) .
N -
f(2)

By the short exact sequences and

al ’

0—éy—> 78 —>u—>0,
we have the following corollary (cf. (1.11) Proposition of [2]).

Corollary 5.2. (Euler sequence)
0—>rnalue—> 't y-m.me1 —> t(M)QT N1 | 4) —> 0,
0 —> Tmer1ly —> 3750 —> t(V)QT m4ralv) —> 0

are holomorphic short exact sequences of vector bundles over M, V, respectively.

If the non-singular complex hypersurface V is of degree d, then it follows
from [Proposition 4.1 that I'3'7%... is holomorphically isomorphic to rz'%;P v,
where 772... is a p-fold tensor product of 7%.,,. for any non-negative integer p.
Hence we have the following well-known fact.

Corollary 5.3. If V is of degree d, then y(V) is holomorphically isomorphic

to ratialy.

Example 1. (Tangent bundles of m-dimensioual complex quadric hypersur-
faces) Let : ‘ ' ‘

Q_,,.-—-’-{[x]‘EPm;llxeCmH—{o} ; txx=0}

, o ={QEMn+1..:|'QR=0}. _

By [Proposition 4.1, the Gauss mapping I'q, : Qu—>Pn+ is given by o, (Q)=
(Q, Q). Hence we have "

nm =Dt na=1{(Q, b)E@nX C™**|Qb=0="Qb}.

By i) of the holomorphic tangent bundle 7(Qz)={(Q, X)EQn X
giim+2, )| XQ=X, QX=0=*'QX} is holomorphically isomorphic to n @73k by
the homomorphism %, where g}, =7rh+1.1lop ' .
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Example 2. (Normal bundles of the Segre embeddings) The holomorphic
normal bundle v(M') of the Segre embedding ¢ : PnXPr—Prinimn defined by
a([x], [¥])=[x*®y] is holomorphically isomorphic to 7(P»)Qr(P,), where M=
o(Pn, X P,). In fact, since 7(P.), ©(P,) are holomorphically isomorphic to
r: Q1% L, 7L.Q1% ., respectively, by ii) of [Theorem 5.1, we have only to show
that ['u'7hn.men+1, TE+n+mn,1|a are holomorphically isomorphic to (77, @77 x,
(r%. Q1% Dl u, respectively. But since the proofs of these facts are elementary,
we omit them.
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