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Summary Size distributions of fractions generated by random subdivision
of the unit interval and their approximation method using gamma distributions
are studied.

1. Introduction

Pyke [1] showed that the normalized empirical distribution function of the
$n+1$ spacings, random subdivision of the unit interval $(0,1)$ generated by the
first $n$ variables of a sequence of random variables $\{x_{m} ; m\geqq 1\}$ under the Kaku-
tani’s model, converges uniformly to the uniform distribution over the interval
$(0, 2)$–this result is partially dependent on the idea of van Zwet [3] on the
same problem. On the other hand, Blum showed in 1955 that the normalized
empirical distribution of the $n+1$ spacings, the random subdivision of the unit
interval by $n$ independent uniform random variables $x_{\ell}’ s$ over $(0,1)$ , converges
in probability to the exponential distribution $H(x)=1-e^{-x}(x>0)$ .

In this paper si$ze$ distributions of fractions, generated by the random sequ-
ential bisection, and their tail probabilities are studied, where “random sequential
bisection” means random sequential subdivision of the unit interval $(0,1)$ into
2, $2^{g},$ $\cdots$ , $2^{m}(m=1, 2, )$ fractions based on some $p.d.f$ . $1/lf(x/l)$ over each
subinterval of length $l$ .

In the so-called “fractal theory”, the upper tail probabilities of size distri-
butions of fractions having length larger than $x$ have been observed in various
real situations as $O(x^{-a})(\alpha>0)$ . We are also interested in evaluating the upper
tail probabilities and their approximation methods, if the above observation or
conjecture on the upper tail probabilities could be found through our method.

Let $X_{1},$ $X_{l},$ $\cdots$ , $X_{n}$ be mutually independent and identically distributed ac-
cording to a probability density function $f(x)$ symmetric over the interval $(0,1)$,
$i.e$ . satisfying $f(1-x)=f(x)$ , and define $Z$ by

(1.1) $Z=X_{1}X_{l}\cdots X_{n}$ .
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Then $Z$ may be regarded as a random variable representing the length of
one of fractional subintervals generated by the n-times bisection procedures of
the initial interval $(0,1)$ . Since $X_{k}$ and $1-X_{k}$ are identically distributed, every
subinterval among $2^{n}$ subintervals has the same distribution as $Z$ .

Taking logarithm of $Z$

(1.2) log $Z=\sum_{\ell=1}^{n}\log X_{i}$ ,

and we can represent the distribution function $G(y)$ of $Z$ such that

(1.3) $G(y)=P\{Z\leqq y\}=P\{-\sum_{\ell=1}^{n}\log X_{i}\geqq-$ log $y\}$ .

Now the moment generating function $M(t)$ of $(-\log Z)$ is expressed as

$M(t)=E$ { $\exp(-t$ log $Z)$ }

(1.4)
$=E\{(X_{1}X_{2}\cdots X_{n})^{-t}\}=\prod_{i\Rightarrow 1}^{n}E\{X_{i}^{-}\}=(E\{X_{1}^{-t}\})^{n}$ .

Each term $E\{X_{i}^{-t}\}$ in (1.4) is the moment generating function of $(-\log X_{i})$

for $i=1,2,$ $\cdots$ , $n$ .
For a while let us cosider the case where each $X_{\ell}$ follows the beta distri-

bution (not necessarily symmetric), with parameters $p$ and $q$ . Then we can get
$E\{X_{i}^{-t}\}$ in the following way.

$E(X_{i}^{-t}\}=\int_{0}^{1}\frac{1}{B(p,q)}x^{p-t-1}(1-x)^{q-1}dx$

(1.5)

$=B(P-t, q)/B(p, q)$ .

If $p\geqq 1$ and $q$ is a positive integer, it is easily seen that $E\{X_{i}^{-t}\}$ is expressed

as

(1.6) $E\{X_{i}^{-t}\}=\prod_{k\approx 1}^{q}(1-\frac{1}{p+q-k}t)^{-1}$ ,

which is the product of $q$ moment generating functions of the exponential dis-
tribution with parameters $(p+q-k)^{-1},$ $i.e$ . the distribution with $p.d.f$ .

(1.7) $\frac{1}{p+q-k}e^{-x/(p+q-k)}$ , $x>0,$ $(k=1, 2, q)$ .

Substituting (1.6) into (1.4) we can get $M(t)$ as

(1.8) $M(t)=\prod_{k=1}^{q}(1-\frac{1}{p+q-k}t)^{-n}$

From (1.8) $M(t)$ is regarded as the product of $q$ moment generating func-
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tions of gamma distributions with parameters $n$ and $(p+q-k)^{-1},$ $i$ . $e$ . the dis-
tribution with $p$ . $d$ . $f$ .

(1.9) $\overline{(p}+\frac{1}{q-k)^{n}\Gamma(n)}u^{n-1}e^{-u/(p+q-k)}$ , $(u>0)$ ,

for $k=1,2,$ $\cdots$ , $q$ .
Accordingly the distribution of $(-\log Z)$ is regrded as the q-th convolution

of gamma distributions given in (1.9).

2. Main Results

First let us consider the case where $f(x)$ is uniform over the interval $(0,1)$ .
In this case, from (1.8), the moment generating function $M(t)$ of $(-\log Z)$ is
given by

(2.1) $M(t)=(1-t)^{-n}$ ,

and then $(-\log Z)$ has the gamma density

(2.2) $\frac{1}{\Gamma(n)}u^{n-1}e^{-u}$ ,

Therefore the upper tail probability of $Z$ is obtained in the following way.

(2.3) $P\{Z>y\}=P${ $-$ log $Z<-$ log $y$ }

$=\int_{0}^{-\log y}\frac{1}{\Gamma(n)}t^{n-1}e^{-t}dt$ .

Therefore, if $y$ is sufficiently near to 1, the above tail probability is evalu-
ated such that

(2.4) $P\{Z>y\}=\int_{0}^{-\log y}\frac{1}{(n-1)!}t^{n-1}e^{-t}dt=\sum_{k=n}^{\infty}\frac{(-\log y)^{k}}{k!}y=\frac{(-\log y)^{n}}{n!}$ .

In the similar way we can get tail probability for $y=1$ in the case where
the initial interval is of length $x(>1)$ :

(2.5) $P\{xZ>1\}=P${ $-$ log $Z<\log x$ }

$=\int_{0}^{\log x}\frac{1}{\Gamma(n)}t^{n-1}e^{-t}dt$

$=z_{=n}^{\infty}\frac{(\log X)^{k}}{k1}\frac{1}{x}$ .

This result is identical to the proportion of the expected number of “internal
nodes” obtained by Sibuya and Itoh [1]. Besides the orders of upper tail prob-
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abilities given in (2.4) and (2.5) is somewhat different from those as conjectured
in “fractal theory” as stated in Introduction.

Let $f(x)$ be

(2.6) $f(x)=\frac{1}{B(p,q)}x^{p-1}(1-x)^{q-1}$ $(p, q\geqq 1)$

then it can be shown after some calculations that

(2.7) $E\{-\log X_{\ell}\}=\sum_{k=1}^{q}\frac{1}{p+q-k}$

and

(2.8) $V[(-\log X_{\ell})]=\sum_{k\leftarrow 1}^{q}(\frac{1}{p+q-k})^{2}$

From (2.7) and (2.8) the expectation and variance of $(-\log Z)$ is expressed
as

(2.9) $E\{-\log Z\}=nE\{-\log X_{\ell}\}$

and

(2.10) $V$(-log $Z$)$=nV$( $-$ log $X_{\ell}$).

Using (2.8) and (2.9) we could get the approximate distribution of $(-\log Z)$

by a suitable gamma distribution through the moment method. We shall show
such an approximation in the case where $p=q=2$ .

From (2.9) and (2.10) we can get easily

(2.11) $E\{-\log Z\}=\frac{5}{6}n$

and

(2.12) $V$( $-$ log $Z$ ) $=\overline{\frac{13}{36}}n$ .
By the moment method, parameters $\theta$ and $\nu$ of a suitable gamma distribu-

tion for approximating the distribution of $(-\log Z)$ can be obtained such that

$\theta=V$( $-$ log $Z$)$/E\{-\log Z\}=\frac{13}{30}=0.4333$

and

$\nu=[E\{-\log Z\}]^{2}/V$( $-$ log $Z$) $=\frac{25}{13}n\doteqdot 1.9231n$ .

Hence we could get the approximate value of the upper tail probability for
$p=q=2,$ $n=2$ and $y=0.8$ such that
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(2.13) $P\{Z>y\}=P\{-\frac{2}{\theta}$ log $Z<-\frac{2}{\theta}$ log $y\}\doteqdot 0.0022$ .

On the other hand, the exact value of the upper tail probability above can
be obtained by calculating the following double integral directly, $i.e$ .
(2.14) $P\{Z>y\}=p\{X_{1}X_{2}>y\}$

$=\int\int_{y<x_{1}x_{2<1}}36x_{1}(1-x_{1})x_{2}(1-x_{2})dx_{1}dx_{2}$

$=1+27y^{2}+18y^{2}$ log $y-28y^{S}+12y^{s}$ log $y$ .
Putting $y=0.8$ we can get the exact tail probability $P\{Z>y\}=0.0024$ , which

is quite near to the approximate value of it given in (2.13).

3. Concluding Remarks

We shall study to extend the results stated in the section 2 as follows.
1) To remove the restriction of symmetry of the basic distribution $f(x)$ ,

$i.e$ . the beta distribution with parameters $p\neq q$ .
2) To evaluate the uPper tail probability as given in (2.14) by the Monte-

Carlo method as correctly as desired.
3) To exammine the goodness of approximation method as shown in $(2.11)\sim$

(2.14) using the gamma distribution in the general case.
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