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Summary The local existence of a hyperfunction solution $u$ to a linear partial
differential equation $Pu=f$ is proved for any hyperfunction $f$ when $P$ is a
degenerate elliptic operator of the Fuchs type.

1. Introduction

This paper is concerned with the local solvability of some degenerate linear
elliptic partial differential equations for hyperfunctions. The local solvability
at a point $x^{0}$ of $R^{n}$ of the linear partial differential equation $Pu=f$ for hyper-

functions means that, for any hyperfunction $f$ defined on a neighborhood of $x^{0}$ ,

there exists a hyperfunction $u$ on a (possibly smaller) neighborhood of $x^{0}$ satis-
fying $Pu=f$ .

Local solvability for hyperfunctions is known in various cases: As the
simplest case, the local solvability holds if $P$ is elliptic. In fact, the fundamental
theorem of Sato assures that the sheaf homomorphism

$P;\ovalbox{\tt\small REJECT}/d\rightarrow B/\mathcal{A}$

is an isomorphism, where a and $B$ denote the sheaf on $R^{n}$ of real analytic
functions and that of hyperfunctions respectively. On the other hand, the homo-
morphism

$P:\cup l_{x^{0}}\rightarrow\Lambda_{x^{0}}$

is surjective by virtue of the Cauchy-Kowalewsky theorem, where $\llcorner 4_{x^{0}}$ denotes
the stalk at $x^{0}$ of the sheaf $d$ . Hence we get the surjectivity of the homo-
morphism

$P:\ovalbox{\tt\small REJECT}_{x}0\rightarrow B_{x^{0}}$ ,

which means the local solvability of $Pu=f$ for hyperfunctions.
A more general result has been obtained by Kashiwara-Kawai (Theorem 6.5

of [5]): Assume that, for any point $x^{*}=(x^{0}, \sqrt{-1}\xi)$ of the purely imaginary
cosphere bundle $\sqrt{-1}S^{*}R^{n}$ , there exists $\eta\in R^{n}$ such that $P$ is partially micro-
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hyperbolic in the direction $\langle\eta, dx\rangle$ (in the sense of [5]). Then the equation
$Pu=f$ for hyperfunctions is locally solvable at $x^{0}$ .

This condition of Kashiwara-Kawai does not hold for degenerate equations
such as Fuchsian equations in the sense of Baouendi-Goulaouic [1] (we shall
recall the definition of Fuchsian equations in Section 2). The local solvability
of Fuchsian hyperbolic equations for hyperfunctions was obtained by Tahara as
a consequence of his extensive and elaborate work on Fuchsian equations (Theo-

rem 2.3.6 of [7]). It seems, however, that the local solvability of Fuchsian
elliptic equations has not been proved yet, which is our main aim.

The motivation of this paper comes from the stimulus discussion with Prof.
C. Parenti and Prof. H. Tahara.

2. Main results.

Let $P$ be a linear partial differential operator of order $m$ with real analytic
coefficients defined on an open neighborhood $U$ of a point $x^{0}$ of $R^{n}$ . We assume
that there exists a real-valued real analytic function $\varphi$ on $U$ with $\varphi(x^{0})=0$ and
$d\varphi\neq 0$ such that the principal symbol $\sigma_{m}(P)$ of $P$ is written in the form

$\sigma_{m}(P)(x, \xi)=\varphi(x)^{k}p_{m}(x, \xi)$

with an integer $k\geqq 1$ , where $p_{m}(x, \xi)$ is a real analytic function on $U\times R^{n}$ such
that $p_{m}(x, \xi)\neq 0$ for any $x\in U$ and $\xi\in R^{n}-\{0\}$ .

Theorem 1. Under the above assumptions, the homomorphism

$P:(B/\Lambda)_{x^{0}}\rightarrow(B/\mathcal{A})_{x^{0}}$

is surjective; $i.e.,$ $Pu=f$ is locally solvable for the sheaf $B/\iota A$ .

We shall prove this theorem in Section 3. As an immediate consequence
of this theorem and the exact sequence

$0\rightarrow d\rightarrow B\rightarrow B/d\rightarrow 0$ ,

we get the following:

Corollary. Under the same assumptions as Theorem 1, the homomorphism

$P;B_{x^{0}}\rightarrow B_{x}o$

is surjective if so is the homomorphism

$P:d_{x^{0}}\rightarrow A_{x^{0}}$ .
Now we recall the definition of Fuchsian partial differential operator after
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Baouendi-Goulaouic [1]. Let $S$ be the hypersurface in $U$ defined by $\varphi=0$ . Let
$x=(x_{1}, \cdots , x_{n})$ be a real analytic local coordinate system around $x^{0}$ such that
$ x_{1}=\varphi$ and $x=0$ at $x^{0}$ . We use the notation $x^{\prime}=(x_{2}, \cdots, x_{n}),$ $D_{j}=\partial/\partial x_{j}(j=1$ ,

, $n$ ), $D^{\prime}=(D_{2}, \cdots , D_{n})$ . Then $P$ is said to be a Fuchsian operator of weight
$m-k$ with respect to $S$ (around $x^{0}$ ) if $k\leqq m$ and if, on a neighborhood of $x^{0}$ ,
$P$ is written in the form

$ P=a(x)(x_{1}^{k}D_{1}^{m}+A_{1}(x, D^{\prime})x_{1}^{k-1}D_{1}^{m-1}+\cdots$

$+A_{k}(x, D^{\prime})D_{1}^{7n-k}+\cdots+A_{m}(x, D^{\prime}))$ ,

where $A_{j}(x, D^{\prime})$ is a linear partial differential operator of order at most $j$ for
$j=1,$ $\cdots$ , $m;A_{j}(0, x^{\prime}, D^{\prime})$ is of order $0,$ $i$ . $e$ . equals a function $a_{j}(x^{\prime})$ for $j=1$ ,

, $k;a(x^{\prime})$ is a real analytic function with $a(x^{0})\neq 0$ . Then the non-trivial
characteristic exponents $\lambda_{j}(x^{0})$ ($j=1,$ $\cdots$ , k) of $P$ at $x^{0}$ are defined as the roots
of the equation in $\lambda$ :

$(\lambda-m+k)(\lambda-m+k-1)\cdots(\lambda-m+1)+a_{1}(0)(\lambda-m+k)(\lambda-m+k-1)$

$(\lambda-m+2)+\cdots+a_{k-1}(0)(\lambda-m+k)+a_{k}(0)=0$ .

Note that the condition of Fuchsian operator and the non-trivial characteristic
exponents are independent of the choice of the defining function $\varphi$ of $S$ .

Theorem 2. Assume $P$ satisfies the same assumptjons as Theorem 1. Assume
moreover that $P$ is a Fuchsian operator of weight $m-k$ with respect to $S$ , and
that $\lambda_{j}(x^{0})$ is not equal to an integer $\geqq m-k$ for $j=1,$ $\cdots$ , $k$ . Then the homo-
morphism

$P:B_{x^{0}}\rightarrow 9_{x}0$

is surjective.

Proof. Under these conditions, by Theorem 1 of [1], $Pu=f$ is locally
solvable at $x^{0}$ for real analytic functions. Hence we get the local solvability
for hyperfunctions from Corollary.

3. Proof of Theorem 1

In this section we always assume the assumptions of Theorem 1. We may
also assume $\varphi=x_{1}$ and $x^{0}=0$ since we are concerned with local properties. We
investigate the equation $Pu=f$ for microfunctions. For this purpose we use the
language of the sheaf cohomology theory systematically (see, $e.g.$ , Bredon [3]).

We denote by $C$ the sheaf of microfunctions on the purely imaginary co-
sphere bundle $\sqrt{-1}S^{*}R^{n}=R^{n}\times\sqrt{-1}S^{n-1}(S^{n-1}$ denotes the $(n-1)$-dimensional
unit sphere), and by $\pi$ the natural projection of $\sqrt{-}1S^{*}R^{n}$ to $R^{n}$ . We use the
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notation $\xi^{\prime}=(\xi_{2}, \cdots , \xi_{n})$ for $\xi=(\xi_{1}, \xi,, \cdots , \xi_{n})$ and put

$\Xi=\{(x, \sqrt{-}1\xi)\in\sqrt{-1}S^{*}U;\xi^{\prime}\neq 0\}$ ,

$\Xi_{0}=\{(x, \sqrt{-1}\xi)\in\Xi;x_{1}=0\}$ .

Then $P$ is an operator of constant multiplicity and its bicharacteristics are the

fibers of the map

$\rho:\Xi_{0}\rightarrow\sqrt{-1}S^{*}U_{0}=U_{0}\times\sqrt{-1}S^{n-2}$

defined by $\rho(0, x^{\prime}, \sqrt{-1}\xi)=(x^{\prime}, \sqrt{-1}\xi^{\prime}/|\xi^{\prime} )$ , where $U_{0}=\{x\in U;x_{1}=0\}$ . Hence

$Pu=f$ is equivalent to a partial de Rham system (see Sato-Kawai-Kashiwara [6]).

Let us denote by $S$ the sheaf of the microfunction solutions of the equation

$Pu=0$ . Then in view of [6, Chapater III] we have an exact sequence of sheaves

$0\rightarrow s\rightarrow c\rightarrow^{P}c\rightarrow 0$

(1)

on $\Xi$ , which means that the equation $Pu=f$ is (micro-)locally solvable for micro-

functions. Moreover, $S$ is supported by $\Xi_{0}$ and is isomorphic to the inverse

image $\rho^{-1}C^{\prime}$ of the sheaf $C^{\prime}$ of microfunctions on $\sqrt{-1}S^{*}U_{0}$ .

Lemma. Let $V$ be an open subset of $\Xi$ . Then the homomorPhism
$P;C(V)\rightarrow C(V)$

is surjective if and only if the l-st cohomology group $H^{1}(V, S)$ vanishies.

Proof. From the short exact sequence (1), we get the long exact sequence
$P$

$0\rightarrow S(V)\rightarrow C(V)\rightarrow C(V)\rightarrow H^{1}(V, S)\rightarrow H^{1}(V, C)=0$

since $C$ is a flabby sheaf. This completes the proof.

For $r>0$ , put $K_{r}=\{(x, \sqrt{-1}\xi)\in\Xi;|\xi_{1}|\leqq r|\xi^{\prime} \}$ . Then we first show the
following

Proposition. For any $r>0$ and for any open subset $U^{\prime}$ of $U$, the homo-
morphism

$P:C(K_{r}\cap\pi^{-1}(U^{\prime}))\rightarrow C(K_{r}\cap\pi^{-1}(U^{\prime}))$

is surjective.

Proof. First note that we may assume $U^{\prime}=U$ . We use the notion and the
notation of derived categories (cf. Hartshorne [4]). We denote by $\Gamma the$ functor
taking the global sections of sheaves, and by $ R\Gamma$ its derived functor. Then we
get quasi-isomorphisms
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(2) $R\Gamma(K_{r}, s)=R\Gamma(K_{r}, \rho^{-1}C^{\prime})=R\Gamma(\rho(K_{r}\cap\Xi_{0}), R\rho*\rho^{-1}C^{\prime})$ ,

where we denote the restriction of $\rho$ to $K_{r}\cap\Xi_{0}$ by the same letter $\rho$ , denote
by $\rho*the$ functor of direct image, and by $R\rho*$ its derived functor. Since the
map $\rho$ restricted to $K_{r}\cap\Xi_{0}$ is a proper map with contractible fibers, we have

$(R^{j}\rho*\rho^{-1}C^{\prime})_{y}.=H^{j}(\rho^{-1}(y^{*}), \rho^{-1}C^{\prime})=0$

for any $j\geqq 1$ and $y^{*}\in\sqrt{-1}S^{*}U_{0}$ since, restricted to $\rho^{-1}(y^{*}),$ $\rho^{-1}C^{\prime}$ is a constant
sheaf (cf. [3]). Hence we get

(3) $R\rho*\rho^{-1}C^{\prime}=\rho*\rho^{-1}C^{\prime}=C^{\prime}$

Combining (2) and (3) we have

$H^{1}(K_{r}, S)=H^{1}(\rho(K_{r}\cap\Xi_{0}), C^{\prime})=0$

since $C^{\prime}$ is flabby. In view of Lemma, this completes the proof of Proposition.

Now let us prove Theorem 1. Let $f$ be a section of $B/\cup l=\pi_{*}C$ on a neigh-
borhood of $x^{0}$ . We may assume that $f$ is defined on $U$ . Hence $f$ can be
regarded as a section of $C$ on $\sqrt{-S}*U$ . In view of Proposition, there exists a
section $u$ of $C$ on a neighborhood of $K=K_{1}$ satisfying $Pu=f$ there.

Since $C$ is flabby we can find a section $\tilde{u}$ of $C$ on $\sqrt{-1}S^{*}U$ which coincides
with $u$ on a neighborhood of $K$. Then $g=P\tilde{u}-f$ is a section of $C$ on $\sqrt{-1}S^{*}U$

whose support does not meet $K$.
There exist a complex neighborhood $O$ of $U$ in $C^{n}$ and holomorphic func-

tions $G_{+}$ and G. defined on $\Gamma_{+}\cap O$ and on $r_{-}\cap O$ respectively such that

$g(x)=sp(G_{+}(x+\sqrt{-1}\Gamma_{+}0))+sp(G_{-}(x+\sqrt{-1}\Gamma_{-}0))$ .
Here $\Gamma_{\pm}=\{y=(y_{1}, \cdots , y_{n})\in R^{n} ; \pm y_{1}>|y^{\prime} \}$ ; $G_{+}(x+\sqrt{-1}\Gamma_{+}0)$ means the hyper-
function defined as the boundary value of $G_{+}$ as $y={\rm Im} z$ tends to $0$ with $y\in\Gamma_{+};$

sp denotes the spectral map of $\ovalbox{\tt\small REJECT}$ to $\pi_{*}C$ .
Since $p_{m}(x^{0}, \xi)\neq 0$ for any $\xi\in R^{n}-\{0\}$ , we can take a sufficiently small $\epsilon>0$

so that $p_{m}(z, \xi)\neq 0$ if $z\in C^{n},$ $|z|<\epsilon$ and $\xi\in R^{n}-\{0\}$ . Note that the polar of the
cone $R^{n}+\sqrt{-}1\Gamma_{+}$ satisfies

$(R^{n}+\sqrt{-1}\Gamma_{+})^{0}=$ { $\zeta\in C^{n}$ ; ${\rm Re}\langle z,$ $\zeta\rangle\leqq 0$ if ${\rm Im} z\in\Gamma_{+}$ }

$\subset\{\sqrt{-1}\eta;\eta=(\eta_{1}, \eta^{\prime})\in R^{n}, \eta_{1}\geqq|\eta^{\prime} \}$ .
Then by Th\’eor\‘eme 2.1 and the proof of Lemma 3.2 of Bony-Schapira [2], we
can find holomorphic functions $F_{\pm}$ on $\{z\in C^{n} ; |z|<\delta, {\rm Im} z\in\Gamma_{\pm}\}$ with some $\delta>0$

smaller than $\epsilon$ such that $PF_{\pm}=G_{\pm}$ . (Although $P$ itself does not satisfy the
assumption of Lemme 3.2 of [2], it is easy to verify the existence of $F_{\pm}$ by
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the same argument using Th\’eor\‘eme 2.1 of [2] noting that $z_{1}\neq 0$ if ${\rm Im} z\in\Gamma.$ .
This fact was pointed out by H. Tahara in his master’s thesis, University of
Tokyo, 1975.) Put

$v=sp(F_{+}(x+\sqrt{-1}\Gamma_{+}0))+sp(F_{-}(x+\sqrt{-1}\Gamma_{-}0))$ .

Then $u=\tilde{u}-v$ is a section of $C$ on $\{(x, \sqrt{-1}\xi)\in S^{*}U;|x|<\delta\}$ and satisfies

$Pu=P\tilde{u}-Pv=(f+g)-g=f$ .

This completes the proof of Theorem 1.
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