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1. Introduction

It is an interesting problem to investigate relations between Ricci curvature and
topology of Riemannian manifolds. S. B. Myers proved in [16] that if the Ricci
curvature of a connected complete Riemannian manifold $M$ of dimension $n,$ $n\geqq 2$ , is
bounded from below by a positive constant $(n-1)\lambda^{2}(\lambda>0)$ , then the diameter of $M$ is
not greater than $\pi/\lambda$ , and hence $M$ is compact and the fundamental group of $M$ is
finite. Until now, several extensions for Myers’ theorem have been done from various
points of view ([1], [2], [5], [7], [9], [21]). In the present paper we will give a certain
extension of Myers’ theorem. The method of our extension is different from ones in
the papers quoted above. For this purpose, on a connected complete Riemannian
manifold $M$, we introduce a function $\alpha_{M}$ : $M\rightarrow R^{+}\cup\{+\infty\}$ . The definition will be
given in Section 2. Making use of this function we can give an extension of Myers’
theorem.

Let $M$ denote a connected complete Riemannian manifold of dimension $n,$ $n\geqq 2$ .
We will show that if $M$ is of nonnegative Ricci curvature and if there are distinct
points $p$ and $q$ of $M$ such that $\alpha_{M}(p)+\alpha_{M}(q)\leqq d_{M}(p, q),$ $d_{M}(p, q)$ is the distance
between $p$ and $q$, then $M$ is homeomorphic to a standard n-sphere (see Theorem 3.1).
From this we obtain that if $M$ is of nonnegative Ricci curvature and $\alpha(M)=\sup\alpha_{M}$ is
finite, then $M$ is compact and its fundamental group is finite (see Theorem 3.3). If $M$

is of positive Ricci curvature, then $M$ is compact if and only if there exists a point $p$ of
$M$ such that $\alpha_{M}(p)$ is finite. We will show that if the Ricci curvature $Ric_{M}$ of $M$

satisfies $Ric_{M}\geqq(n-1)\lambda^{2}$ for a positive constant $\lambda$ , then $ d(M)\leqq 2\alpha(M)\leqq\pi/\lambda$ where
$d(M)$ denotes the diameter of $M$ (see Theorem 3.5). It should be noted that there is an
n-dimensional $(n\geqq 4)$ compact Riemannian manifold $M$ satisfying $Ric_{M}\geqq(n-1)\lambda^{2},$ $\lambda$

is a positive constant, and $ 2\alpha(M)<\pi/\lambda$ (see Remark 3.2). Making use of the same way
as in the proof of Theorem 3.1 of this paper, we can give a proof of the so called
maximal diameter theorem due to Cheng [8] which is a generalization of
Toponogov’s theorem [23]. Theorem 3.1 can be viewed as an extension of the
maximal diameter theorem.

In the last section of this paper, for a compact, non-simply connected
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Riemannian manifold $M$ of positive Ricci curvature, we investigate the relation
between the injectivity radius $i(M)$ of $M$ and $\alpha(M)$ . We will show that for such an
$Mi(M)\leqq\alpha(M)$ holds and equality holds if and only if $M$ is isometric to a real
projective space of constant curvature.

2. Notations and preliminaries

Throughout the present paper we always assume that manifolds and apparatus
on them are of class $C^{\infty}$ unless otherwise stated.

In this section let $M$ denote a connected complete Riemannian manifold of
dimension $n,$ $n\geqq 2$ , with Riemannian metric $g$ . Let $d_{M}$ be the distance function on $M$

induced from $g$ . We denote by $d(M)$ the diameter of $M$, and denote by $K_{M}$ (resp.
$Ric_{M})$ the sectional curvature (resp. Ricci curvature) of $M$, respectively. For a point $p$

of $M$ and a positive $t$ , we put $B(p, t)=\{q\in M;d_{M}(p, q)<t\},$ $S(p, t)=\{q\in M$;
$d_{M}(p, q)=t\},$ $B(0_{p}, t)=\{X\in T_{p}M;\Vert X\Vert<t\}$ and $S(0_{p}, t)=\{X\in T_{p}M;\Vert X\Vert=t\}$ where
$T_{p}M$ denotes the tangent vector space at $p$ and $\Vert X\Vert$ stands for the length of $X$. For
each point $p$ of $M$, we denote by $\tilde{C}_{M}(p)$ the tangent cut locus of $p$ in $T_{p}M$ and by
$C_{M}(p)$ the cut locus of $p$ in $M$.

For a point $p$ of $M$ let $\exp_{p}$ denote the exponential map from the tangent space
$T_{p}M$ at $p$ onto $M$. For each $p\in M$ and each $X\in S(0_{p}, 1)$ let $c_{p,X}$ : $[0, +\infty$ ) $\rightarrow M$ denote
the geodesic emanating from $p$ with initial velocity vector $X$. When $c_{p,X}(t),$ $t>0$ , is the
first conjugate point to $p$ along $c_{p,X}$ , we denote by $r(p, X)$ the parameter value $t$ . If
$c_{p,X}$ has no conjugate points to $p$ , then we put $ r(p, X)=+\infty$ .

For a $p\in M$ we now take an $X\in S(0_{p},1)$ and an $r$ such that $0<r<r(p, X)$ . The
geodesic sphere $S_{p}(r)=\exp_{p}(S(0_{p}, r))$ with center $p$ and radius $r$ is a regular
hypersurface in a neighborhood of $c_{p,X}(r)$ because $\exp_{p}$ has the maximal rank at $rX$.
Let $H_{p}(X, r)$ be the mean curvature of the geodesic sphere $S_{p}(r)$ at $c_{p,X}(r)$ with respect
to the velocity vector $c_{p,X}^{\prime}(r)$ . Let $\{e_{1}, \cdots, e_{n-1}\}$ be an orthonormal basis in the
tangent space to $S_{p}(r)$ at $c_{p,X}(r)$ . Then $H_{p}(X, r)$ is given by $H_{p}(X, r)=$

$(1/n-1)\sum_{j=1}^{n-1}g(\nabla_{e_{i}}(-\xi), e_{i})$ where $\nabla$ is the Riemannian connection of $M$ and $\xi$ is the
unit normal vector field to $S_{p}(r)$ on a neighborhood of $c_{p,X}(r)$ in $S_{p}(r)$ such that
$\xi(c_{p,X}(r))=c_{p,X}^{\prime}(r)$ .

We can easily show the following.

Lemma 2.1. For each $p\in M$ and each $X\in S(0_{p}, 1)$ ,

$(n-1)\frac{d}{dt}H_{p}(X, t)=Ric_{M}(c_{p,X}^{\prime}(t))+\Vert A_{t}\Vert^{2}$ , $0<t<r(p, X)$ ,

where $\Vert A_{t}\Vert$ is the length of the secondfundamental form $A_{t}$ of $S_{p}(t)$ at $c_{p,X}(t)$ .

Let $p$ be a point of $M$ and $X$ a unit tangent vector at $p$ . Let $Y(t)$ be a vector fields
along $c_{p,X}|[0, r],$ $0<r<r(p, X)$ . We put $I_{0}^{r}(Y)=\int_{0}^{r}\{\Vert Y^{\prime}\Vert^{2}-g(R_{t}(Y), Y)\}dt$ where $Y^{\prime}$

is the covariant derivative of Yalong $c_{p,X}$ and $R_{t}(Y)=R(Y(t), c_{p,X}^{\prime}(t))c_{p,X}^{\prime}(t)$ , here $R$ is
the Riemannian curvature tensor of $M$. Let $e_{1},$ $\cdots,$ $e_{n-1}$ be unit tangent vectors at $p$
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such that $\{e_{1}, \cdots, e_{n-1}, X\}$ is an orthonormal basis in $T_{p}M$. We extend them to
$parall\dot{e}1$ vector fields $e_{1}(t),$ $\cdots,$ $e_{n-1}(t)$ along $c_{p,X}|[0, r]$ . There exist Jacobi fields
$Y_{1}(t),$ $\cdots,$ $Y_{n-1}(t)$ along $c_{p,X}|[0, r]$ such that $Y_{i}(0)=0_{p}$ and $Y_{i}(r)=e_{i}(r),$ $1\leqq i\leqq n-1$ .
Since $\{Y_{1}(r), \cdots, Y_{n-1}(r)\}$ is an orthonormal basis in the tangent space to $S_{p}(r)$ at
$c_{p,X}(r)$ , using the second variation formula, we get $(n-1)H_{p}(X, r)=-\sum_{i=1}^{n-1}J_{0}^{r}(Y_{i})$ .
Suppose now $Ric_{M}(c_{p,X}^{\prime}(t))\geqq(n-1)\lambda^{2},0\leqq t\leqq r$, for a positive constant $\lambda$ . Let $Z_{i}(t)$ ,
$1\leqq i\leqq n-1$ , be vector fields along $c_{p,X}|[0, r]$ defined by $Z_{i}(t)=(\sin\lambda t/\sin\lambda r)e_{i}(t)$ ,
$1\leqq i\leqq n-1$ . As is well known, $I_{0}^{r}(Y_{i})\leqq I_{0}^{r}(Z_{i})$ holds and equality holds if and only if
$Y_{i}(t)=Z_{i}(t)(0\leqq t\leqq r)$ .

Using the above fact we obtain the following.
Lemma 2.2. Let $p$ be a point of $M$ and $X$ a unit tangent vector at $p$ . Suppose

$Ric_{M}(c_{p,X}^{\prime}(t))\geqq(n-1)\lambda^{2},0\leqq t\leqq r(p, X)$ , for a positive constant $\lambda$ . Then $ H_{p}(X, r)\geqq-\lambda$

cot $\lambda r,$ $0<r<\min\{r(p, X), \pi/\lambda\}$ . If equality holds, then $K_{M}(P(t))=\lambda^{2}$ for all plane
sections $P(t)$ containing $c_{p,X}^{\prime}(t),$ $0\leqq t\leqq r$ .

It is easy to see that if $M$ is the euclidean sphere of constant curvature $\lambda^{2},$ $\lambda>0$ ,
then $ H_{p}(X, r)=-\lambda$ cot $\lambda r,$ $ 0<r<\pi/\lambda$ .

We shall give the definition of the function $\alpha_{M}$ : $M\rightarrow R^{+}\cup\{+\infty\}$ mentioned
in the introduction. For each $p\in M$ and each $X\in S(0_{p}, 1)$ we define $\alpha_{M}(p, X)\in$

$R^{+}\cup\{+\infty\},$ $R^{+}$ is the set of all positive real numbers, as follows: $\alpha_{M}(p, X)=$

$\inf\{t>0;H_{p}(X, t)\geqq 0\}$ if there exists an $r$ such that $0<r<r(p, X)$ and $H_{p}(X, r)\geqq 0$ ,
and $\alpha_{M}(p, X)=r(p, X)$ if $H_{p}(X, t)<0$ for any $t$ such that $0<t<r(p, X)$ . Then
$\alpha_{M}$ : $M\rightarrow R^{+}\cup\{+\infty\}$ is defined by $\alpha_{M}(p)=\sup\{\alpha_{M}(p, X);X\in S(0_{p}, 1)\},$ $p\in M$. We
put $\alpha(M)=\sup\alpha_{M}$ . By the definition, if $\tilde{M}$ is a Riemannian covering manifold of $M$

with covering map $\pi$ , then $\alpha_{\Pi}=\alpha_{M}\circ\pi$ .
Proposition 2.1. Let $M$ be a connected complete Riemannian manifold of

dimension $n,$ $n\geqq 2$ . Suppose $Ric_{M}\geqq(n-1)\lambda^{2}$ for a positive constant $\lambda$ . Then we have
$\alpha(M)\leqq\pi/2\lambda$ .

Proof. Let $p$ be a point of $M$. Let $X$ be an arbitrary unit tangent vector at $p$ . If
$ r(p, X)>\pi/2\lambda$ , then we have $H_{p}(X, \pi/2\lambda)\geqq 0$ by Lemma 2.2. This implies
$\alpha_{M}(p, X)\leqq\pi/2\lambda$ . If $ r(p, X)\leqq\pi/2\lambda$ , then $\alpha_{M}(p, X)\leqq\pi/2\lambda$ by the, definition of $\alpha_{M}(p, X)$ .
Thus we obtain $\alpha_{M}(p, X)\leqq\pi/2\lambda$ for any $X\in S(0_{p}, 1)$ , which implies $\alpha_{M}(p)\leqq\pi/2\lambda$ .
Hence we have $\alpha(M)\leqq\pi/2\lambda$ .

Proposition 2.2. Let $M$ be an n-dimensional $(n\geqq 2)$ connected compact
Riemannian manifold ofconstant curvature $\lambda^{2},$ $\lambda>0$ . Then $\alpha_{M}(p)=\pi/2\lambda$ for any point $p$

of $M$ .

3. Extension of Myers’theorem

In this section we give a certain extension of Myers’theorem from our point of
view.
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The following lemma will be useful for the proof of Theorem 3.1.

Lemma 3.1 ([10]). Let $M$ be an n-dimensional $(n\geqq 2)$ connected Riemannian
manifold ofnonnegative Ricci curvature. Let $W_{1}$ and $W_{2}$ be hypersurfaces embedded in
$M$ with unit normal vectorfields $\xi_{1}$ and $\xi_{2}$ , respectively. Let $H_{1}$ (resp. $H_{2}$) be the mean
curvature of $W_{1}$ (resp. $W_{2}$) with respect to $\xi_{1}$ (resp. $\xi_{2}$ ). Suppose that $W_{1}$ and $W_{2}$ have a
common point $p\in M$ satisfying the following conditions: (1) $\xi_{1}(p)=\xi_{2}(p);(2)A$

neighborhood of$p$ in $W_{2}$ lies in the same side as the direction of $\xi_{1}$ with respect $otW_{1}$ .
Moreover assume that $H_{1}\geqq 0$ on $W_{1}$ and $H_{2}\leqq 0$ on $W_{2}$ . Then there exists a minimal
hypersurface $W$ embedded in $M$ such that $p\in W\subset W_{1}\cap W_{2}$ .

For the proof of this lemma, see Lemma 1.3 in the author’s paper [10].

Theorem 3.1. Let $M$ be an n-dimensional $(n\geqq 2)$ connected complete Riemannian
manifold ofnonnegative Ricci curvature. Suppose that there are distinct points $p$ and $q$

of $M$ such that $\alpha_{M}(p)+\alpha_{M}(q)\leqq d_{M}(p, q)$ . Then $M$ is homeomorphic to a standard
n-sphere.

Proof. Letp andq be distinct points ofMsuch that $\alpha_{M}(p)+\alpha_{M}(q)\leqq d_{M}(p, q)$ .
Let us consider the subset $A=\{X\in S(0_{p}, 1);\exp_{p}dX=q\},$ $d=d_{M}(p, q)$ , in the unit
(n-l)-sphere $S(0_{p}, 1)$ . By completeness of $M$ and by continuity of $\exp_{p},$

$A$ is a
nonempty closed subset in $S(0_{p}, 1)$ . We shall show that $A$ is open in $S(0_{p}, 1)$ . Take an
$X\in A$ . For simplicity, we put $2r=d-\alpha_{M}(p)-\alpha_{M}(q),$ $r_{1}=\alpha_{M}(p)+r$ and $r_{2}=\alpha_{M}(q)+r$ .
Since $c_{p,X}|[0, d]$ is a minimal geodesic segment from $p$ to $q,$ $r(p, X)\geqq d$. We can
choose a connected neighborhood $U_{X}$ of $X$ in $S(0_{p}, 1)$ such that $\exp_{p}|CU_{X},$ $CU_{X}=$

$\{tZ\in T_{p}M; 0\leqq t\leqq r_{1}, Z\in U_{X}\}$ , is a diffeomorphism. Since $\alpha_{M}(p, Z)\leqq r_{1}$ and
$H_{p}(Z, \alpha_{M}(p))\geqq 0$ for any $Z\in U_{X}$ , by Lemma 2.1 $H_{p}(Z, r_{1})\geqq 0$ for any $Z\in U_{X}$ . Hence
the mean curvature of the hypersurface $W_{1}=\exp_{p}(r_{1}U_{X}),$ $r_{1}U_{X}=\{r_{1}Z\in T_{p}M$;
$Z\in U_{X}\}$ , with respect to the unit nomal vector field $\xi_{1}$ to $W_{1}$ , which is defined by
$\xi_{1}(c_{p,Z}(r_{1}))=c_{p,Z}^{\prime}(r_{1})(Z\in U_{X})$ , is nonnegative. By the same argument as in the above,
we can take a connected neighborhood $U_{Y}$ of $Y,$ $Y=-c_{p,X}^{\prime}(d)$ , in $S(0_{q}, 1)$ such that
$W_{2}=\exp_{q}(r_{2}U_{Y})$ is a hypersurface embedded in $M$ and such that the mean curvature
of $W_{2}$ with respect to the unit nomal vector field $\xi_{2}$ to $W_{2}$ , which is defined by
$\xi_{2}(c_{q,Z}(r_{2}))=-c_{q,Z}^{\prime}(r_{2})(Z\in U_{Y})$ , is nonpositive. Note that both open metric balls
$B(p, r_{1})$ and $B(q, r_{2})$ have no common points and that $c_{p,X}(r_{1})=c_{q,Y}(r_{2})\in W_{1}\cap W_{2}$ ,
$W_{1}\subset\overline{B}(p, r_{1})$ and $W_{2}\subset\overline{B}(q, r_{2})$ . Thus we can apply Lemma 3.1 to the present
situation. Therefore there exists a minimal hypersurface $W$ embedded in $M$ such that
$c_{p,X}(r_{1})\in W\subset W_{1}\cap W_{2}$ . From this we see that there are neighborhoods $V_{X}$ of $X$ in
$S(0_{p}, 1)$ and $V_{Y}$ of Yin $S(0_{q}, 1)$ such that $\exp_{p}(r_{1}V_{X})=\exp_{q}(r_{2}V_{Y})\subset W$. Hence $V_{X}\subset A$ .
We have proved that $A$ is open in $S(0_{p}, 1)$ , which implies $A=S(0_{p}, 1)$ . Since for each
$X\in S(0_{p}, 1)$ $c_{p,X}|[0, d]$ is a minimal geodesic segment from $p$ to $q$ ,
$\exp_{p}$ : $B(0_{p},d)\rightarrow B(p, d)$ is a diffeomorphism and $\exp_{p}(S(0_{p}, d))=\{q\}$ . Hence $M$ is
homeomorphic to a standard n-sphere. We complete the proof.

From the proof of the above theorem we have the following.
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Corollary 3.1. Let $M$ be as in Theorem 3.1. Suppose that there are distinct points
$p$ and $q$ of $M$ such that $\alpha_{M}(p)+\alpha_{M}(q)\leqq d_{M}(p, q)$ . Then $\tilde{C}_{M}(p)=S(0_{p}, d_{M}(p, q))$ and
$C_{M}(p)=\{q\}$ . The same property also holds for $q$ .

Remark 3.1. Let $M$ be as in Theorem 3.1. Suppose that there are distinct
pointsp andq ofMsuch that $\alpha_{M}(p)+\alpha_{M}(q)<d_{M}(p, q)$ . Letr be the positive number
defined by $2r=d_{M}(p, q)-\alpha_{M}(p)-\alpha_{M}(q)$ . From the proof of Theorem 3. 1 we see that
$\exp_{p}$ : $B(0_{p}, d)\rightarrow B(p, d)$ is a diffeomorphism and $\exp_{p}(S(0_{p},d))=\{q\},$ $d=d_{M}(p, q)$ ,
and that $S(p, t)=S(q,d-t)$ for any $t,$ $0<t<d$. We note that both mean curvatures of
$S(p, \alpha_{M}(p))$ and $S(q, \alpha_{M}(q))$ with respect to the outer nomal direction are non-
negative. Making use of Lemma 2.1 we can show that $S(p, t)$ is totally geodesic for
each $t,$ $\alpha_{M}(p)\leqq t\leqq\alpha_{M}(p)+2r$ . From this $M\backslash (B(p, \alpha_{M}(p))\cup B(q, \alpha_{M}(q)))$ is isometric
to the Riemannian product manifold $S(p, \alpha_{M}(p))\times[0,2r]$ .

The proof of Theorem 3.1 and Remark 3.1 imply the following.

Theorem 3.2. Let $M$ be an n-dimensional $(n\geqq 2)$ connected complete Riemannian
manifold ofpositive Ricci curvature. Then $d_{M}(p, q)\leqq\alpha_{M}(p)+\alpha_{M}(q)$ for any points $p$ and
$q$ of M. If equality holds for some points $p$ and $q$ of $M$, then the following properties
hold:

(1) $\tilde{C}_{M}(p)=S(0_{p}, d_{M}(p, q))$ and $C_{M}(p)=\{q\}$ . The same property also holdsfor $q$ .
(2) $S(p, \alpha_{M}(p))=S(q, \alpha_{M}(q))$ .
(3) $S(p, \alpha_{M}(p))$ isa minimal hypersurface embedded in M.
(4) $M$ is homeomorphic to a standard n-shpere.

Theorem 3.3. Let $M$ be an n-dimensional $(n\geqq 2)$ connected complete Riemannian
manifold of nonnegative Ricci curvature. If $\alpha(M)$ is finite, then $M$ is compact and its
fundamental group is finite. Moreover, if $\alpha(M)$ is finite and $d(M)\geqq 2\alpha(M)$ , then $M$ is
homeomorphic to a standard n-sphere.

Proof. Let $\tilde{M}$ be the universal Riemannian covering manifold of $M$ with
covenng map $\pi$ . Since $\alpha_{\hslash}=\alpha_{M}\circ\pi,$

$\alpha(\tilde{M})$ is finite by the hypothesis. We shall show
that $\tilde{M}$ is compact. Suppose $\tilde{M}$ is noncompact. Then we can choose distinct points $x$

and $y$ of $\tilde{M}$ such that $\alpha_{R}(x)+\alpha_{\hslash}(y)<d_{\hslash}(x, y)$ . It follows from Theorem 3.1 that $\tilde{M}$ is
homeomorphic to a standard n-sphere. This is a contradiction. Hence $\tilde{M}$ is compact.
This implies that $M$ is compact and its fundamental group is finite. The later part
follows from Theorem 3.1.

By the same way as in the proof of Theorem 3.3 we can easily show the
following.

Theorem 3.4. Let $M$ be an n-dimensional $(n\geqq 2)$ connected complete Riemannian
manifold ofnonnegative Ricci curvature. Ifthere exists a point $p$ of $M$ such that $\alpha_{M}(p)$ is
finite, then the fundamental group of $M$ is finite.

Theorem 3.5. Let $M$ be an n-dimensional $(n\geqq 2)$ connected complete Riemannian
manifold ofpositive Ricci curvature. Then $M$ is compact $\iota f$ and only if there exists a
pcint $p$ of $M$ such that $\alpha_{M}(p)$ is finite.
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Proof. We first assume that $M$ is compact. Then $Ric_{M}\geqq(n-1)\lambda^{2}$ holds for
some positive constant $\lambda$ . By Proposition 2.1 $\alpha_{M}(p)\leqq\pi/2$ holds for any $p\in M$.
Conversely, assume that there exists a point $p$ of $M$ such that $\alpha_{M}(p)$ is finite. Suppose
$M$ is noncompact. Then we can choose a unit tangent vector $X$ at $p$ so that
$c_{p,X}$ : $[0, +\infty$ ) $\rightarrow M$ is minimal, that is, $d_{M}(p, c_{p,.X}(t))=t$ holds for any $t>0$ . For
simplicity, we put $c(t)=c_{p,X}(t),$ $t\geqq 0$ . Sinoe $\alpha_{M}(p)_{1}s$ finite and there are no conjugate
points to $p$ along $c$ , using Lemma 2.1 and the hypothesis $Ric_{M}>0$ , we have
$H_{p}(X, t)>0$ for any $t>\alpha_{M}(p)$ . We now take a positive $r>\alpha_{M}(p)$ . Then
$H_{p}(X, r)\leqq-H_{c\langle t)}(-c^{\prime}(t), t-r)<1/(t-r)$ for any $t>r$ . From this we get $H_{p}(X, r)=0$

as $ t\rightarrow+\infty$ , which is a contradiction. Hence $M$ is compact. We complete the proof.
From the proof of the above theorem we obtain the following.

Corollary 3.2. Let $M$ be as in Theorem 3.5. If there is a point $p$ of $M$ such that
$\alpha_{M}(p)$ is finite, then $\alpha(M)\leqq\pi/2\lambda$ where $\lambda$ is the positive constant defined by $\lambda^{2}=$

$\inf\{Ric_{M}(X)/(n-1);\Vert X\Vert=1\}$ .
Summing up the results obtained above, we have the following.

Theorem 3.6. Let $M$ be an n-dimensional $(n\geqq 2)$ connected complete Riemannian
manifold ofpositive Ricci curvature. If there exists a point $p$ of $M$ such that $\alpha_{M}(p)$ is
finite, then $\alpha(M)$ isfinite and $ d(M)\leqq 2\alpha(M)\leqq\pi/\lambda$ where is a positive constant such that
$\lambda^{2}=\inf\{Ric_{M}(X)/(n-1);\Vert X\Vert=1\}$ , and the fundamental group is finite. If $Ric_{M}\geqq$

$(n-1)\lambda^{2}$ for a positive constant $\lambda$ , then $ d(M)\leqq 2\alpha(M)\leqq\pi/\lambda$ . The equality $d(M)=$
$2\alpha(M)$ implies that $M$ is homeomorphic to a standard n-sphere.

Remark 3.2. There are n-dimensional $(n\geqq 4)$ compact connected Riemannian
manifolds satisfying $Ric_{M}\geqq(n-1)\lambda^{2},$ $\lambda$ is a positive constant, and $ 2\alpha(M)<\pi/\lambda$ . For
example, the complex projective space $CP^{n}$ with $1/4\leqq K_{M}\leqq 1$ and the Riemannian
product manifold $S^{k}(1)\times S^{m}(1)(k>4(m-1), m\geqq 2)$ satisfy such conditions where
$S^{k}(1)$ is the euclidean unit sphere of dimension $k$ .

Making use of the same way as in the proof of Theorem 3.1 we can give a proof
of the maximal diameter theorem due to Cheng.

Theorem ([8]). Let $M$ be an n-dimensional $(n\geqq 2)$ complete connected
Riemannian manifold with $Ric_{M}\geqq(n-1)\lambda^{2},$ $\lambda$ is a positive constant. If $ d(M)=\pi/\lambda$ , then
$M$ is isometric to the standard n-sphere of curvature $\lambda^{2}$ .

Proof. Since $M$ is compact, we can choose points $p$ and $q$ such that $d(M)=$

$d_{M}(p, q)$ . Theorem 3.2 and 3.6 imply $\alpha_{M}(p)=\alpha_{M}(q)=\pi/2\lambda$ . Using the same argu-
ment as in the proof of Theorem 3.1, we can show that $M=$

$B(p, \pi/2\lambda)\cup B(q, \pi/2\lambda)\cup S(p, \pi/2\lambda)$ and $S(p, \pi/2\lambda)=S(q, \pi/2\lambda)$ and that $S(p, \pi/2\lambda)$

is a minimal hypersurface embedded in $M$. By Lemma 2.1, for each $X\in S(0_{p}, 1)$

$\alpha_{M}(p, X)=\alpha_{M}(q, Y)=\pi/2\lambda,$ $Y=-c_{p,X}^{\prime}(\pi/\lambda)$ . It follows from Lemma 2.2 that for any
$X\in S(0_{p}, 1)$ (resp. $S(0_{q},$ $1)$) $K_{M}(P(t))=\lambda^{2}$ where $P(t)$ is any plane section containing
$c_{p,X}^{\prime}(t)$ (resp. $c_{q,X}^{\prime}(t)$), $ 0\leqq t\leqq\pi/2\lambda$ . By virt\‘ue of E. Cartan’s theorem ([6], p. 38), both
closed balls $\overline{B}(p, \pi/2\lambda)$ and $\overline{B}(q, \pi/2\lambda)$ are isometric to a closed ball with radius $\pi/2\lambda$ in
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the standard n-sphere of curvature $\lambda^{2}$ . Therefore $M$ is isometric to the standard n-
sphere of curvature $\lambda^{2}$ .

Remark 3.3. We note that there are different proofs for the maximal diameter
theorem ([12], [13], [19], [22]).

4. Non-simply connected manifolds

In this section we investigate topological and geometrical properties of compact,
non-simply connected Riemannian manifolds of nonnegative Ricci curvature. Let $M$

be a connected, non-simply connected, complete Riemannian manifold and $\tilde{M}$ the
universal Riemannian covering manifold of $M$ with covering map $\pi.\tilde{M}$ is complete.
For a $p\in M$ and a $\gamma\in\pi_{1}(M,p)$ , we put $\Vert\gamma\Vert(p)=\inf\{L(c);c$ is a geodesic loop at $p$

$belo_{\sim}nging$ in $\gamma$ } where $L(c)$ is the length of $c$ . Let $\Gamma$ be the deck transformation group
of $M$ corresponding to the fundamental group of $M$. Each element of $\Gamma$ is an isometry
on $\tilde{M}$ and $\Gamma$ acts freely on $\tilde{M}$. For each $\gamma\in\pi_{1}(M,p)$ , the element of $\Gamma$ corresponding to
$\gamma$ will be denoted by $T_{\gamma}$ . Then for each $\gamma\in\pi_{1}(M,p)\Vert\gamma\Vert(p)=d_{R}(x, T_{\gamma}(x)),$ $x\in\pi^{-1}(p)$ .

Proposition 4.1. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, non-simply
connected, complete Riemannian manifold of nonnegative Ricci curvature. Suppose
$\Vert\gamma\Vert(p)\geqq 2\alpha_{M}(p)$ for a $p\in M$ and a $\gamma\in\pi_{1}(M, p)$ . Then the universal covering mamfold of
$M$ is homeomorphic to a standard n-sphere, and hence $M$ is compact and its funda-
mental group is finite. Moreover the number of elements of the fundamental group is
even.

Proof. Suppose $\Vert\gamma\Vert(p)\geqq 2\alpha_{M}(p)$ for a $p\in M$ and a $\gamma\in\pi_{1}(M,p)$ . Let $\tilde{M}$ be the
universal Riemannian covering manifold of $M$ with covering map $\pi$ and $\Gamma$ the deck
transformation group of $\tilde{M}$ corresponding to the fundamental group of $M$. Take an
$x\in\pi^{-1}(p)$ . Since $\alpha_{\hslash}=\alpha_{M}\circ\pi$ and $\Vert\gamma\Vert(p)\geqq 2\alpha_{M}(p)$ , we have $\alpha_{R}(x)+\alpha_{\hslash}(y)\leqq d_{\hslash}(x, y)$ ,
$y=T_{\gamma}(x)$ . It follows from Theorem 3.1 that $\tilde{M}$ is homeomorphic to a standard n-
sphere. Hence the fundamental group of $M$ is finite. By Corollary 3.1, $C_{\hslash}(x)=\{y\}$

and $C_{\Pi}(y)=\{x\}$ . From this we see $T_{\gamma}^{2}(x)=x$ , which implies that $T_{\gamma}$ is an involu-
tion because $\Gamma$ acts freely on $\tilde{M}$ . Hence the number of elements of the fundamental
group is even.

CoroMary 4.1. Let $M$ be as in Proposltion 4.1. Let $\gamma$ and $\delta$ be elements of
$\pi_{1}(M,p)$ . If $\Vert\gamma\Vert(p)$ and $\Vert\delta\Vert(p)$ are not less than $2\alpha_{M}(p)$ , then $\gamma=\delta$ .

Proof. Let $\tilde{M}$ be the universal Riemannian covering manifold of $M$ with
covering map $\pi$ . Take an $x\in\pi^{-1}(p)$ . From the proof of Proposition 4.1 we see
$C_{\hslash}(x)=\{T_{\gamma}(x)\}=\{T_{\delta}(x)\}$ . This implies $\gamma=\delta$ .

Theorem 4.1. Let $M$ be an n-dimensional $(n\geqq 2)$ compact, connected, non-simply
connected Riemannian manifold ofpositive Ricci curvature. Then $\Vert\gamma\Vert(p)\leqq 2\alpha_{M}(p)$ holds
for any $p\in M$ andfor any $\gamma\in\pi_{1}(M,p)$ . If equality holds for a $p\in M$ and a $\gamma\in\pi_{1}(M,p)$ ,
then the universal covering manifold of $M$ is homeomorphic to a standard n-sphere and
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the number of elements of $\pi_{1}(M,p)$ is even.

Proof. Suppose $\Vert\gamma\Vert(p)>2\alpha_{M}(p)$ for a $p\in M$ and a $\gamma\in\pi_{1}(M,p)$ . Let $\tilde{M}$ be the
universal Riemannian covering manifold with covering map $\pi$ . Since $\alpha_{\Pi}=\alpha_{M}\circ\pi$ ,
$\alpha_{\hslash}(x)+\alpha_{\Pi}(y)>d_{\hslash}(x, y)$ where $x\in\pi^{-1}(p)$ and $y=T_{\gamma}(x)$ . This is a contradiction (see

Theorem 3.2). The other assertions follow from Proposition 4.1.

Theorem 4.2. Let $M$ be an n-dimensional $(n\geqq 2)$ compact, connected, non-simply
connected Riemannian manifold ofpositive Ricci curvature. Then $i_{M}(p)\leqq\alpha_{M}(p)$ holds
for any $p\in M$ where $i_{M}(p)$ denotes the injectivity radius of $\exp_{p}$ at $p$ . Ifequality holds at
some $p\in M$, then the universal covering manifold of$M$ is homeomorphic to a standard n-
sphere and the following properties hold:

(1) $\pi_{1}(M,p)\cong Z_{2}$ .
(2) $\tilde{C}_{M}(p)=S(0_{p}, \alpha_{M}(p)),$ $C_{M}(p)=S(p, \alpha_{M}(p))$ .
(3) $C_{M}(p)$ is a minimal hypersurface embedded in $M$.
(4) $\exp_{p}$ : $\tilde{C}_{M}(p)\rightarrow C_{M}(p)$ is a twofold covering map.
(5) For each $X\in S(0_{p}, 1),$ $c_{p,X}|[0,2\alpha_{M}(p)]$ is asimple geodesic loop at $p$ .

Proof. The inequality follows from Theorem 4.1. Suppose there exists a $p\in M$

such that $i_{M}(p)=\alpha_{M}(p)$ . Then $\Vert\gamma\Vert(p)=2\alpha_{M}(p)$ holds for any $\gamma\in\pi_{1}(M,p),$ $\gamma\neq 1$ . By
Proposition 4.1 the universal covering manifold of $M$ is homeomorphic to a standard
n-sphere. Corollary 4.1 implies $\pi_{1}(M,p)\cong Z_{2}$ . Let $\tilde{M}$ be the universal Riemannian
$vering$ manifold of $M$ with covering map $\pi$ and $\Gamma=\{1, T\}$ the deck transformation
group of $\tilde{M}$ corresponding to the fundamental group of $M$. Take an $x\in\pi^{-1}(p)$ . Since
$\alpha_{\hslash}=\alpha_{M}\circ\pi$ and $\alpha_{\hslash}(x)+\alpha_{\hslash}(T(x))=d_{\hslash}(x, T(x))$ , all properties in Theorem 3.2 hold for
$x$ and $T(x)$ . Hence $\tilde{M}=B(x, \alpha_{M}(p))\cup T(B(x, \alpha_{M}(p)))\cup S(x, \alpha_{M}(p))$ and $S(x, \alpha_{M}(p))$ is
invariant by $T$. From this we see that other assertions of the theorem hold.

Remark 4.1. Let $M$ be an n-dimensional $(n\geqq 2)$ compact, connected, non-
simply connected Riemannian manifold of positive Ricci curvature having a point $p$

at which $i_{M}(p)=\alpha_{M}(p)$ holds. By the above theorem $M$ is homeomorphic to a
quotient manifold $ S^{n}(1)/\Gamma$ where $\Gamma=\{1, T\},$ $T$ is a homeomorphic involution on
$S^{n}(1)$ without fixed points. Then $M$ has the homotopy type of the real projective
spaoe of dimensionn(see [15], p. 43).

Theorem 4.3. Let $M$ be an n-dimensional $(n\geqq 2)$ compact, connected, non-simply
connected Riemannian manifold ofpositive Ricci curvature. Then the injectivity radius
$i(M)$ of $M$ satisfies $i(M)\leqq\alpha(M)$ . Moreover, equality holds ifand only if $M$ is isometric
to an n-dimensional real projective space of constant curvature.

Proof. Since, by definition, $i(M)=\inf\{i_{M}(p);p\in M\}$ and $\alpha(M)=\sup\alpha_{M}$ , the
inequality $i(M)\leqq\alpha(M)$ follows from Theorem 4.2. Suppose $ i(M)=\alpha(M)\sim$ . Then
$i_{M}(p)=\alpha_{M}(p)$ holds for any $p\in M$ . By Theorem 4.2, $\pi_{1}(M)\cong Z_{2}$ . Let $M$ be the
universal Riemannian covering manifold of $M$ with covering map $\pi$ and $\Gamma=\{1, l\}$

the deck transformation group of $\tilde{M}$ corresponding to $\pi_{1}(M)$ . From the proof of
Theorem 4.2 we see that for each $p\in MCffi(x)=\{T(x)\},$ $x\in\pi^{-1}(p)$ . This implies that
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$\tilde{M}$ is a Wiedersehen manifold. Thus $\tilde{M}$ is isometric to a standard n-sphere of constant
curvature (see Appendix $D$ in [3]). Since $\pi_{1}(M)\cong Z_{2},$ $M$ is isometric to an n-
dimensional real projective space of constant curvature. The converse follows from
Proposition 2.2.
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