A NOTE ON THE BIDUAL OF A C^{*}-CROSSED PRODUCT

By
Сно-Но Сни

(Received July 15, 1985)

Abstract

Let G be a locally compact group. We show that, for any C^{*}-dynamical system (A, G, α), the bidual $(G \times A)^{\prime \prime}$ of the C^{*}-crossed product $G \times A$ is canonically isomorphic to the von Neumann algebra generated by the regular representation of $G{ }_{\alpha} A$ if, and only if, G is amenable and the group C^{*}-algebra $C^{*}(G)$ is scattered.

1. Introduction

Let (A, G, α) be a C^{*}-dynamical system. In [4], we proved that if G is a discrete group which acts freely on A in a strong sense, then the bidual $\left(G \times{ }_{\alpha} A\right)^{\prime \prime}$ of the C^{*} crossed product $G \underset{\alpha}{\times} A$ is ${ }^{*}$-isomorphic to the W^{*}-crossed product $G \underset{\alpha^{\prime \prime}}{\times} A^{\prime \prime}$ of the W^{*} dynamical system ($A^{\prime \prime}, G, \alpha^{\prime \prime}$) where $\alpha^{\prime \prime}$ is the bitransposed action of α on the bidual $A^{\prime \prime}$ of A. As $G \times A^{\prime \prime}$ is just the von Neumann algebra M generated by the regular representation of $G \underset{\alpha}{\times} A$ when G is discrete, it is natural to ask under what circumstances such an isomorphism between $(G \times \underset{\alpha}{ } A)^{\prime \prime}$ and M still persists if G is nondiscrete. The purpose of this note is to show that, given any locally compact group G, the bidual $(G \times A)^{\prime \prime}$ is canonically isomorphic to M for any C^{*}-dynamical $\operatorname{system}(A, G, \alpha)$ if, and only if, G is amenable and the group C^{*}-algebra $C^{*}(G)$ is scattered which in turn, is equivalent to the condition that the Fourier algebra $A(G)$ of G coincides with the Fourier-Stieltjes algebra $B(G)$.

I wish to thank Professor M. Choda for a useful conversation which inspired this work.

As usual, we will identify the bidual $A^{\prime \prime}$ of a C^{*}-algebra A with its universal enveloping von Neumann algebra. A C^{*}-algebra A is called scattered [8] if every (nondegenerate) representation of A is a direct sum of its irreducible subrepresentations or equivalently, if its bidual $A^{\prime \prime}$ is a direct sum of type I factors. A separable C^{*}-algebra A is scattered if, and only if, its spectrum \hat{A} is countable. If G is a compact group, then every continuous unitary representation of G is a direct sum of
irreducible ones, so the group C^{*}-algebra $C^{*}(G)$ of G is scattered. On the other hand, the group C^{*}-algebra of the integers Z is not scattered. Fell (cf. [2; p. 142]) has given an example of a second countable noncompact amenable group with countable dual space and so its group C^{*}-algebra is scattered. It seems an interesting question to find intrinsic characterizations of G for $C^{*}(G)$ to be scattered. However, we will prove that the group C^{*}-algebra $C^{*}(G)$ of a discrete group G is scattered (if and) only if G is finite.

2. Fourier algebra

Let G be a locally compact group and let $\lambda_{0}: G \rightarrow B\left(L_{2}(G)\right)$ be the left regular representation which extends to a representation of the group C^{*}-algebra $C^{*}(G)$ of G. In the sequel, we will use the following commutative diagram:

where τ_{0} is the extension of λ_{0} on the bidual $G^{*}(G)^{\prime \prime}$ and $\lambda_{0}\left(C^{*}(G)\right)$ is the reduced group C^{*}-algebra of G. The weak closure $M(G)$ of $\lambda_{0}\left(C^{*}(G)\right)$ in $B\left(L_{2}(G)\right)$ is the group von Neumann algebra of G. It is well-known that the Banach dual $C^{*}(G)^{\prime}$ of $C^{*}(G)$ is linearly isomorphic to the (complex) linear span $B(G)$ of all continuous positive definite functions on G (cf. [10; 7.1.8, 7.1.10]) and if $B(G)$ is equipped with the pointwise multiplication and the norm inherited from $C^{*}(G)^{\prime}$, then it becomes a Banach algebra and is called the Fourier-Stieltjes algebra of G. Moreover, the closed subalgebra $A(G)$ of $B(G)$ generated by the positive definite functions with compact supports in G can be identified with the predual $M(G)_{*}$ of $M(G)$ and is known as the Fourier algebra of G. When G is abelian, $A(G)$ is the image of $L_{1}(\hat{G})$ under the Fourier transform, where \hat{G} is the Pontryagin dual of G. We refer to [1, 6] for other properties of $A(G)$. Recently, De Cannière and Rousseau [5] proved that $A(G)$ is the smallest (nonzero) closed order and algebra ideal of $B(G)$.

3. C^{*}-crossed products

We now consider the more general set-up of a C^{*}-dynamical system (A, G, α). We will denote by $K(G, A)$ the linear space of continuous functions from G to A with compact support. Let $\pi_{u}: A \rightarrow B\left(H_{u}\right)$ be the universal representation of A and let $\tilde{\pi}_{u}: A \rightarrow B\left(L_{2}\left(G, H_{u}\right)\right)$ and $\lambda: G \rightarrow B\left(L_{2}\left(G, H_{u}\right)\right)$ be the representations defined by

$$
\begin{aligned}
& \left(\tilde{\pi}_{u}(a) \xi\right)(t)=\pi_{u}\left(\alpha_{t-1}(a)\right) \xi(t) \\
& \left(\lambda_{s} \xi\right)(t)=\xi\left(s^{-1} t\right)
\end{aligned}
$$

for $a \in A, s, t \in G$ and $\xi \in L_{2}\left(G, H_{u}\right)$. As in [10; 7.7], we define the associated regular representation $\tilde{\pi}_{u} \times \lambda: G \times \underset{\alpha}{\times} \rightarrow B\left(L_{2}\left(G, H_{u}\right)\right)$ by

$$
\left(\left(\left(\tilde{\pi}_{u} \times \lambda\right) f\right) \xi(t)=\int_{G} \pi_{u}\left(\alpha_{t}-1(f(s))\right) \xi\left(s^{-1} t\right) d s\right.
$$

where $d s$ is the left Haar measure on $G, f \in K(G, A)$ and $\xi \in L_{2}\left(G, H_{u}\right)$. We have the following commutative diagram:

where π is the universal representation of $G \times A, \tau$ is the extension of $\tilde{\pi}_{u} \times \lambda$ on the bidual $(G \underset{\alpha}{\times} A)^{\prime \prime}$ and $\tau\left((G \underset{\alpha}{\times} A)^{\prime \prime}\right)$ is the weak closure of $\left(\tilde{\pi}_{u} \times \lambda\right)(G \underset{\alpha}{\times} A)$ in $B\left(L_{2}\left(G, H_{u}\right)\right)$. We will denote this weak closure by $M(A, G, \alpha)$. We note that the previous diagram is a special case of the above one in which $A=C, \alpha$ reduces to the trivial action, $G \times{ }_{\alpha} \boldsymbol{C}$ is the group C^{*}-algebra $C^{*}(G)$ and $M(C, G, \alpha)$ the group von Neumann algebra $M(G)$. We also note that $\left(\tilde{\pi}_{u} \times \lambda\right)(G \times \underset{\alpha}{\times})$ is the reduced C^{*}-crossed product $G \times \underset{\alpha r}{ } A$.

If G is discrete, then the bitransposed action $\alpha^{\prime \prime}: g \in G \rightarrow \alpha_{g}^{\prime \prime} \in \operatorname{Aut}\left(A^{\prime \prime}\right)$ on the bidual $A^{\prime \prime}$ induces a W^{*}-dynamical system ($A^{\prime \prime}, G, \alpha^{\prime \prime}$) and in this case, $M(A, G, \alpha)$ is just the W^{*}-crossed product $G \underset{\alpha^{\prime \prime}}{\times} A^{\prime \prime}$. We have shown in [4] that if α is a strongly centrally free action, then the map τ in the above diagram is faithful and so $\left(G \times{ }_{\alpha} A\right)^{\prime \prime}$ can be identified with $G \underset{\alpha^{\prime \prime}}{ } A^{\prime \prime}$. We now investigate the faithfulness of τ in the nondiscrete situation. We say that $(G \times A)^{\prime \prime}$ is canonically isomorphic to $M(A, G, \alpha)$ if τ is faithful.

We first observe that if B is any C^{*}-algebra and if $\phi: B \rightarrow M$ is a *-homomorphism into a von Neumann algebra M with predual M_{*}, then the extension ϕ of ϕ on the universal envelope $B^{\prime \prime}$ in the diagram

is faithful if, and only if, $\phi^{t}\left(M_{*}\right)=B^{\prime}$ where $\phi^{t}: M^{\prime} \rightarrow B^{\prime}$ is the transpose of ϕ. Note that $\bar{\phi}$ is the transpose of the restriction of ϕ^{t} to $M_{*} \subset M^{\prime}$ and if $\phi(B)$ is weakly dense in M, then ϕ^{t} is faithful on M_{*}.

Proposition 1. Let (A, G, α) be a C^{*}-dynamical system. Then the following
conditions are equivalent:
(i) $(G \underset{\alpha}{\times} A)^{\prime \prime}$ is canonically isomorphic to $M(A, G, \alpha)$;
(ii) For any $\psi \in(G \times A)^{\prime}$, there exist sequences $\left(\xi_{n}\right)$ and $\left(\eta_{n}\right)$ in $L_{2}\left(G, H_{u}\right)$ with $\sum_{n}\left\|\xi_{n}\right\|^{2}<\infty$ and $\sum_{n}\left\|\lambda_{n}\right\|^{2}<\infty$ such that

$$
\psi(y)=\sum_{n}\left\langle\left(\tilde{\pi}_{u} \times \lambda\right) y \xi_{n}, \eta_{n}\right\rangle \quad(y \in G \times A) .
$$

Proof. Let M_{*} be the predual of $M(A, G, \alpha)$. By the above remark, τ is faithful if and only if $\left(\tilde{\pi}_{u} \times \lambda\right)^{t}\left(M_{*}\right)=(G \underset{\alpha}{\times} A)^{\prime}$. But if $\psi \in(G \times A)^{\prime}$ is equal to $\left(\tilde{\pi}_{u} \times \lambda\right)^{t}(\omega)$ for some $\omega \in M_{*}$, then there exist sequences $\left(\xi_{n}\right)$ and $\left(\eta_{n}\right)$ in $L_{2}\left(G, H_{u}\right)$ with $\sum\left\|\xi_{n}\right\|^{2}<\infty$, $\Sigma\left\|\lambda_{n}\right\|^{2}<\infty$ and $\omega(\cdot)=\Sigma\left\langle\cdot \xi_{n}, \eta_{n}\right\rangle$ and so we have $\psi(y)=\left(\tilde{\pi}_{u} \times \lambda\right)^{t}(\omega)(y)=$ $\omega\left(\left(\tilde{\pi}_{u} \times \lambda\right)(y)\right)=\Sigma\left\langle\left(\tilde{\pi}_{u} \times \lambda\right) y \xi_{n}, \eta_{n}\right\rangle$.

Remark. The faithfulness of τ implies that of $\tilde{\pi}_{u} \times \lambda$ in which case $G \times A$ is isomorphic to the reduced C^{*}-crossed product $G \underset{\alpha r}{\times} A$. Therefore τ need not be faithful in general.

We write $A(G \times A)$ for $\left(\tilde{\pi}_{u} \times \lambda\right)^{t}\left(M_{*}\right)$ which is the norm-closed subspace of $(G \times A)^{\prime}$ consisting of functions of the form $\psi(y)=\Sigma\left\langle\left(\tilde{\pi}_{u} \times \lambda\right) y \xi_{n}, \eta_{n}\right\rangle$. Thus, $(G \times A)^{\prime \prime}$ is canonically isomorphic to $M(A, G, \alpha)$ if, and only if, $A(G \times \underset{\alpha}{\times} A)=\left(G \times{ }_{\alpha} A\right)^{\prime}$. Note that if $A=C$, then $A\left(G \times{ }_{\alpha} C\right)=\lambda_{0}^{t}\left(M(G)_{*}\right)$ which is just the Fourier algebra $A(G)$ and so the last condition is $A(G)=B(G)$.

As before, we can identify the Banach dual $\left(G \times{ }_{\alpha}\right)^{\prime}$ with the linear span $B(G \times \underset{\alpha}{ } A)$ of A^{\prime}-valued functions $\Phi: G \rightarrow A^{\prime}$ which are positive definite with respect to α (cf. [10; 7.6.10]). Moreover, if $\Phi \in B(G \times A)$ is positive definite, then $\|\Phi\|=\|\Phi(e)\|$ where e is the identity of G. Also, if $\psi \in A(G)$ is positive definite, then $\psi \cdot \Phi \in B(G \times A)$ is positive definite with respect to α and also $\|\psi \cdot \Phi\|=\|\psi(e) \Phi(e)\|=\|\psi\| \cdot\|\Phi\|$ (cf. [10; 7.6.9]). Hence for $\phi \in A(G)$ with positive decomposition $\phi=\phi_{1}-\phi_{2}$ where $\|\phi\|=\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|$, we have

$$
\phi \cdot \Phi=\phi_{1} \cdot \Phi-\phi_{2} \cdot \Phi \in B(G \underset{\alpha}{\times} A)
$$

and

$$
\begin{aligned}
\|\phi \cdot \Phi\| & =\left\|\phi_{1} \cdot \Phi-\phi_{2} \cdot \Phi\right\| \leqslant\left\|\phi_{1} \cdot \Phi\right\|+\left\|\phi_{2} \cdot \Phi\right\|=\left\|\phi_{1}\right\| \cdot\|\Phi\|+\left\|\phi_{2}\right\| \cdot\|\Phi\| \\
& =\left(\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|\right) \cdot\|\Phi\|=\|\phi\| \cdot\|\Phi\| .
\end{aligned}
$$

Lemma 2. Let A be a C^{*}-algebra and suppose that there is a minimal central projection p in $A^{\prime \prime}$. If z is a central projection in $A^{\prime \prime}$ with $p z=0$, then $A^{\prime} \cdot z$ is not w^{*}-dense in A^{\prime}, where we define as usual $(f \cdot z)(a)=f(a z)$ for $f \in A^{\prime}$ and $a \in A$.

Proof. We note that the split (invariant) faces of the state space of a unital C^{*} algebra B are in natural one-one correspondence with the central projections in $B^{\prime \prime}$ (cf. [11; III.6]).

Let A_{1} be the C^{*}-algebra obtained by adjunction of an identity to A. Let $Q=$ $\left\{f \in A_{+}^{\prime}:\|f\| \leqslant 1\right\}$ be the quasi-state space of A which is affine w^{*}-homeomorphic to the state space of A_{1} [11; p. 166]. Now $A_{1}^{\prime \prime}=A^{\prime \prime} \oplus C$ and p is a minimal central projection in $A_{1}^{\prime \prime}$. So $F=\{f \in Q: f(p)=0\}$ is a (proper) maximal split face of Q. But the w^{*}-closure \bar{F} of F is also a split face of Q and $\bar{F} \neq Q$. Hence $F=\bar{F}$ is w^{*}-closed. Now $V_{+}=\bigcup_{\lambda \geqslant 0} \lambda F$ is a hereditary subcone of A_{+}^{\prime} which is w^{*}-closed since F is the intersection of V_{+}with the closed unit ball of A^{\prime} [11; p. 146]. Therefore, by [11; Proposition III.4.13], $V_{+}=V \cap A_{+}^{\prime}$ for some proper w^{*}-closed (invariant) subspace V of A^{\prime}. It follows from $p z=0$ that $A^{\prime} \cdot z \subset V$ and so the w^{*}-closure of $A^{\prime} \cdot z$ is properly contained in A^{\prime}.

Now we prove the main result.
Theorem 3. Let G be a locally compact group. Then the following conditions are equivalent:
(i) G is amenable and $C^{*}(G)$ is a scattered C^{*}-algebra;
(ii) $A(G)=B(G)$;
(iii) For any C^{*}-dynamical system (A, G, α), the bidual $(G \underset{\alpha}{\times} A)^{\prime \prime}$ is canonically isomorphic to $M(A, G, \alpha)$.

Proof. (i) \Rightarrow (ii). We prove that $\cdot \lambda_{0}^{t}\left(M(G)_{*}\right)=C^{*}(G)^{\prime}$ since there is a linear isomorphism which identifies $A(G)$ with $\lambda_{0}^{t}\left(M(G)_{*}\right)$ and $B(G)$ with $C^{*}(G)^{\prime}$. As G is amenable, $\lambda_{0}^{t}\left(M(G)_{*}\right)$ is w^{*}-dense in $C^{*}(G)^{\prime}[10 ; 7.3 .9]$. To show that they are actually equal, we prove that τ_{0} is faithful. As $C^{*}(G)$ is scattered, there is a family $\left\{p_{j}\right\}$ of minimal central projections in $C^{*}(G)^{\prime \prime}$ with $\sum_{j} p_{j}=1$. Let z be a central projection in $C^{*}(G)^{\prime \prime}$ such that $\operatorname{ker} \tau_{0}=C^{*}(G)^{\prime \prime}(1-z)$. By minimality, we have either $p_{j} z=0$ or $p_{j} z=p_{j}$ for each j. Suppose $z \neq 1$, then $p_{j} z=0$ for some j. By Lemma 2, $C^{*}(G)^{\prime} \cdot z$ is not w^{*}-dense in $C^{*}(G)^{\prime}$. If $\omega \in M(G)_{*}$, then $(1-z)\left(\lambda_{0}^{t}(\omega)\right)=$ $\tau_{0}(1-z)(\omega)=0$. Therefore $\lambda_{0}^{t}\left(M(G)_{*}\right) \subset C^{*}(G)^{\prime} \cdot z$ which implies that $\lambda_{0}^{t}\left(M(G)_{*}\right)$ is not w^{*}-dense in $C^{*}(G)^{\prime}$. This is impossible. Hence $z=1$ and τ_{0} is faithful. So we have $A(G)=B(G)$.
(ii) \Rightarrow (iii). Let (A, G, α) be a C^{*}-dynamical system. By Proposition 1, the faithfulness of τ is equivalent to $A(G \times \underset{\alpha}{\times} A)=(G \times A)^{\prime}$. We prove the latter. It suffices to show that the positive definite A^{\prime}-valued functions Φ in $B(G \times \underset{\alpha}{ } A)$ are contained in $A(G \times \underset{\alpha}{\times})$. As $A(G)=B(G)$, the constant 1 -function on G is the norm-limit of a sequence (ϕ_{n}) of positive definite functions with compact supports in G [10; 7.2.5]. By $[10 ; 7.7 .6]$, we have $\phi_{n} \cdot \Phi \in A(G \underset{\alpha}{\times} A)$. Now $\left\|\Phi-\phi_{n} \cdot \Phi\right\|=\left\|\left(1-\phi_{n}\right) \cdot \Phi\right\| \leqslant$ $\left\|1-\phi_{n}\right\| \cdot\|\Phi\| \rightarrow 0$ as $n \rightarrow \infty$. Hence $\Phi \in A(G \underset{\alpha}{\times} A)$. This proves that $A(G \times \underset{\alpha}{ } A)=$
$B(G \times A)$ and so τ is an isomorphism from $(G \times A)^{\prime \prime}$ onto $M(A, G, \alpha)$.
(iii) \Rightarrow (i). First, by considering the trivial C^{*}-dynamical system (C, G, i), $\tau_{0}: C^{*}(G)^{\prime \prime} \rightarrow B\left(L_{2}(G)\right)$ is faithful and so is the regular representation $\lambda_{0}: C^{*}(G) \rightarrow B\left(L_{2}(G)\right)$. Therefore G is amenable. Let A be any C^{*}-algebra and consider the C^{*}-dynamical system (A, G, l) in which l is the trivral action. The bitranspose $\imath^{\prime \prime}$ of ι induces the W^{*}-dynamical system ($A^{\prime \prime}, G, \imath^{\prime \prime}$) and it is not difficult to verify that $M(A, G, \imath)$ is naturally isomorphic to the W^{*}-tensor product $A^{\prime \prime} \bar{\otimes} M(G)$. Also the C^{*}-crossed product $G \times A$ is naturally isomorphic to the projective C^{*}-tensor product $A \stackrel{v}{\otimes} C^{*}(G)$ where $C^{*}(G)^{\prime \prime}$ is isomorphic to $M(G)$ via τ_{0}. Therefore we have the following canonical isomorphisms

$$
\left(A \stackrel{v}{\otimes} C^{*}(G)\right)^{\prime \prime} \approx(G \times A)^{\prime \prime} \approx M(A, G, \imath) \approx A^{\prime \prime} \bar{\otimes} M(G) \approx A^{\prime \prime} \bar{\otimes} C^{*}(G)^{\prime \prime}
$$

As A was arbitrary, by a result of Huruya [7; p. 23], $C^{*}(G)$ is a scattered C^{*}-algebra. The proof is complete.

We conclude with two relevant results.
Proposition 4. Let G be a discrete group. Then the group C^{*}-algebra $C^{*}(G)$ is scattered if, and only if, G is finite.

Proof. We need only prove the sufficiency. As $C^{*}(G)$ is a type I C^{*}-algebra, by Thoma's characterization of type I groups [12], there is an abelian normal subgroup Δ of G with finite index. It suffices to show that Δ is finite. Since C^{*}-subalgebras of a scattered C^{*}-algebra are also scattered [3], the group C^{*}-algebra $C^{*}(\Delta)$ is also scattered. But $C^{*}(\Delta)$ is the C^{*}-algebra $C(\hat{\Delta})$ of continuous functions on the dual group $\hat{\Delta}$ which is compact and so has finite Haar measure μ. By scatteredness of $C(\hat{\Delta}), \mu$ must be atomic [8] and hence $\hat{\Delta}$ must be finite since μ is finite and invariant. It follows that Δ is finite by Pontryagin duality.

If G is discrete, then $A^{\prime \prime}$ can be embedded into $\left(G \times{ }_{\alpha} A\right)^{\prime \prime}$ as in $[3,4]$ where it has been shown that if the relative commutant of the centre of $A^{\prime \prime}$ in $(G \times A)^{\prime \prime}$ is contained in $A^{\prime \prime}$, then $(G \underset{\alpha}{\times} A)^{\prime \prime}$ is canonically isomorphic to the W^{*}-crossed product $G \underset{\alpha^{\prime \prime}}{\times} A^{\prime \prime}$. Conversely we have the following result.

Proposition 5. Let (A, G, α) be a C^{*}-dynamical system in which G is a discrete group. Then the following two conditions are equivalent:
(i) If $m \in(G \times A)^{\prime \prime}$ commutes with the centre of $A^{\prime \prime}$, then $m \in A^{\prime \prime}$;
(ii) The bitranspose $\alpha^{\prime \prime}$ acts freely on the centre of $A^{\prime \prime}$ and $\left(G \times{ }_{\alpha} A\right)^{\prime \prime}$ is canonically isomorphic to the W^{*}-crossed product $G \underset{\alpha^{\prime \prime}}{\times} A^{\prime \prime}$.

Proof. This follows readily from a result of Nakagami and Takesaki [9; p. 102] which states that $\alpha^{\prime \prime}$ acts freely on the centre of $A^{\prime \prime}$ if and only if the relative commutant of the centre of $A^{\prime \prime}$ in $G \times \alpha_{\alpha^{\prime \prime}}^{\prime \prime}$ is contained in $A^{\prime \prime}$.

References

[1] W. Arendt and J. De Cannière: Order isomorphisms of Fourier algebras, J. Funct. Anal., 50 (1983), 1-7.
[2] L. Baggett: A separable group having a discrete dual space is compact, J. Funct. Anal., 10 (1972), 131-148.
[3] C.-H. Chu: Crossed products of scattered C^{*}-algebras, J. London Math. Soc., 26 (1982), 317-324.
[4] C.-H. Chu: Shift automorphism groups of C^{*}-algebras, Yokohama Math. J., 32 (1984), 31-37.
[5] J. De Cannière and R. Rouseau: The Fourier algebra as an order ideal of the Fourier-Stieltjes algebra, Math. Z., 186 (1984), 501-507.
[6] P. Eymard: L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
[7] T. Huruya: A spectral characterization of a class of C^{*}-algebras, Sci. Reports, Niigata University, 15 (1978), 21-24.
[8] H. E. Jensen: Scattered C*-algebras, Math. Scand., 41 (1977), 308-314.
[9] Y. Nakagami and M. Takesaki: Duality for crossed products of von Neumann algebras, Lecture Notes in Math., Springer-Verlag, 1979.
[10] G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, 1979.
[11] M. Takesaki, The theory of operator algebras I, Springer-Verlag, 1979.
[12] E. Thoma, Eine Charakterisierung disketer Gruppen vom Typ I, Invent. Math., 6 (1968), 190-196.
Department of Mathematical Sciences Goldsmiths' College
London S.E. 14
England

