A NOTE ON THE BIDUAL OF A C*-CROSSED PRODUCT

Ву Сно-Но Сни

(Received July 15, 1985)

ABSTRACT. Let G be a locally compact group. We show that, for any C^* -dynamical system (A, G, α) , the bidual $(G \times A)''$ of the C^* -crossed product $G \times A$ is canonically isomorphic to the von Neumann algebra generated by the regular representation of $G \times A$ if, and only if, G is amenable and the group C^* -algebra $C^*(G)$ is scattered.

1. Introduction

Let (A, G, α) be a C^* -dynamical system. In [4], we proved that if G is a discrete group which acts freely on A in a strong sense, then the bidual $(G \underset{\alpha}{\times} A)''$ of the C^* -crossed product $G \underset{\alpha}{\times} A$ is *-isomorphic to the W^* -crossed product $G \underset{\alpha}{\times} A''$ of the W^* -dynamical system (A'', G, α'') where α'' is the bitransposed action of α on the bidual A'' of A. As $G \underset{\alpha''}{\times} A''$ is just the von Neumann algebra M generated by the regular representation of $G \underset{\alpha}{\times} A$ when G is discrete, it is natural to ask under what circumstances such an isomorphism between $(G \underset{\alpha}{\times} A)''$ and M still persists if G is nondiscrete. The purpose of this note is to show that, given any locally compact group G, the bidual $(G \underset{\alpha}{\times} A)''$ is canonically isomorphic to M for any C^* -dynamical system (A, G, α) if, and only if, G is amenable and the group C^* -algebra $C^*(G)$ is scattered which in turn, is equivalent to the condition that the Fourier algebra A(G) of G coincides with the Fourier-Stieltjes algebra B(G).

I wish to thank Professor M. Choda for a useful conversation which inspired this work.

As usual, we will identify the bidual A'' of a C^* -algebra A with its universal enveloping von Neumann algebra. A C^* -algebra A is called scattered [8] if every (nondegenerate) representation of A is a direct sum of its irreducible subrepresentations or equivalently, if its bidual A'' is a direct sum of type I factors. A separable C^* -algebra A is scattered if, and only if, its spectrum \hat{A} is countable. If G is a compact group, then every continuous unitary representation of G is a direct sum of

16 C.-H. CHU

irreducible ones, so the group C^* -algebra $C^*(G)$ of G is scattered. On the other hand, the group C^* -algebra of the integers Z is not scattered. Fell (cf. [2; p. 142]) has given an example of a second countable noncompact amenable group with countable dual space and so its group C^* -algebra is scattered. It seems an interesting question to find intrinsic characterizations of G for $C^*(G)$ to be scattered. However, we will prove that the group C^* -algebra $C^*(G)$ of a discrete group G is scattered (if and) only if G is finite.

2. Fourier algebra

Let G be a locally compact group and let $\lambda_0: G \to B(L_2(G))$ be the left regular representation which extends to a representation of the group C^* -algebra $C^*(G)$ of G. In the sequel, we will use the following commutative diagram:

where τ_0 is the extension of λ_0 on the bidual $G^*(G)''$ and $\lambda_0(C^*(G))$ is the reduced group C^* -algebra of G. The weak closure M(G) of $\lambda_0(C^*(G))$ in $B(L_2(G))$ is the group von Neumann algebra of G. It is well-known that the Banach dual $C^*(G)'$ of $C^*(G)$ is linearly isomorphic to the (complex) linear span B(G) of all continuous positive definite functions on G (cf. [10; 7.1.8, 7.1.10]) and if B(G) is equipped with the pointwise multiplication and the norm inherited from $C^*(G)'$, then it becomes a Banach algebra and is called the Fourier-Stieltjes algebra of G. Moreover, the closed subalgebra A(G) of B(G) generated by the positive definite functions with compact supports in G can be identified with the predual $M(G)_*$ of M(G) and is known as the Fourier algebra of G. When G is abelian, A(G) is the image of $L_1(\hat{G})$ under the Fourier transform, where \hat{G} is the Pontryagin dual of G. We refer to [1, 6] for other properties of A(G). Recently, De Cannière and Rousseau [5] proved that A(G) is the smallest (nonzero) closed order and algebra ideal of B(G).

3. C*-crossed products

We now consider the more general set-up of a C^* -dynamical system (A, G, α) . We will denote by K(G, A) the linear space of continuous functions from G to A with compact support. Let $\pi_u: A \to B(H_u)$ be the universal representation of A and let $\tilde{\pi}_u: A \to B(L_2(G, H_u))$ and $\lambda: G \to B(L_2(G, H_u))$ be the representations defined by

$$(\tilde{\pi}_{u}(a)\xi)(t) = \pi_{u}(\alpha_{t-1}(a))\xi(t)$$
$$(\lambda_{s}\xi)(t) = \xi(s^{-1}t)$$

for $a \in A$, $s, t \in G$ and $\xi \in L_2(G, H_u)$. As in [10, 7.7], we define the associated regular representation $\tilde{\pi}_u \times \lambda : G \times A \to B(L_2(G, H_u))$ by

$$(((\tilde{\pi}_{u} \times \lambda)f)\xi)(t) = \int_{G} \pi_{u}(\alpha_{t-1}(f(s)))\xi(s^{-1}t)ds$$

where ds is the left Haar measure on $G, f \in K(G, A)$ and $\xi \in L_2(G, H_u)$. We have the following commutative diagram:

where π is the universal representation of $G \underset{\alpha}{\times} A$, τ is the extension of $\tilde{\pi}_u \times \lambda$ on the bidual $(G \underset{\alpha}{\times} A)''$ and $\tau((G \underset{\alpha}{\times} A)'')$ is the weak closure of $(\tilde{\pi}_u \times \lambda)(G \underset{\alpha}{\times} A)$ in $B(L_2(G, H_u))$. We will denote this weak closure by $M(A, G, \alpha)$. We note that the previous diagram is a special case of the above one in which A = C, α reduces to the trivial action, $G \underset{\alpha}{\times} C$ is the group C^* -algebra $C^*(G)$ and $M(C, G, \alpha)$ the group von Neumann algebra M(G). We also note that $(\tilde{\pi}_u \times \lambda)(G \underset{\alpha}{\times} A)$ is the reduced C^* -crossed product $G \underset{\alpha}{\times} A$.

If G is discrete, then the bitransposed action $\alpha'': g \in G \to \alpha''_g \in \operatorname{Aut}(A'')$ on the bidual A'' induces a W^* -dynamical system (A'', G, α'') and in this case, $M(A, G, \alpha)$ is just the W^* -crossed product $G \underset{\alpha''}{\times} A''$. We have shown in [4] that if α is a strongly centrally free action, then the map τ in the above diagram is faithful and so $(G \underset{\alpha}{\times} A)''$ can be identified with $G \underset{\alpha''}{\times} A''$. We now investigate the faithfulness of τ in the nondiscrete situation. We say that $(G \underset{\alpha}{\times} A)''$ is canonically isomorphic to $M(A, G, \alpha)$ if τ is faithful.

We first observe that if B is any C^* -algebra and if $\phi: B \to M$ is a *-homomorphism into a von Neumann algebra M with predual M_* , then the extension $\bar{\phi}$ of ϕ on the universal envelope B'' in the diagram

is faithful if, and only if, $\phi^t(M_*) = B'$ where $\phi^t : M' \to B'$ is the transpose of ϕ . Note that $\bar{\phi}$ is the transpose of the restriction of ϕ^t to $M_* \subset M'$ and if $\phi(B)$ is weakly dense in M, then ϕ^t is faithful on M_* .

Proposition 1. Let (A, G, α) be a C^* -dynamical system. Then the following

18 C.-H. CHU

conditions are equivalent:

- (i) $(G \times A)''$ is canonically isomorphic to $M(A, G, \alpha)$;
- (ii) For any $\psi \in (G \times A)'$, there exist sequences (ξ_n) and (η_n) in $L_2(G, H_u)$ with $\sum_n ||\xi_n||^2 < \infty$ and $\sum_n ||\lambda_n||^2 < \infty$ such that

$$\psi(y) = \sum_{n} \langle (\tilde{\pi}_{u} \times \lambda) y \xi_{n}, \eta_{n} \rangle \qquad (y \in G \underset{\alpha}{\times} A).$$

Proof. Let M_* be the predual of $M(A, G, \alpha)$. By the above remark, τ is faithful if and only if $(\tilde{\pi}_u \times \lambda)^t (M_*) = (G \times A)'$. But if $\psi \in (G \times A)'$ is equal to $(\tilde{\pi}_u \times \lambda)^t (\omega)$ for some $\omega \in M_*$, then there exist sequences (ξ_n) and (η_n) in $L_2(G, H_u)$ with $\sum ||\xi_n||^2 < \infty$, $\sum ||\lambda_n||^2 < \infty$ and $\omega(\cdot) = \sum \langle \cdot \xi_n, \eta_n \rangle$ and so we have $\psi(y) = (\tilde{\pi}_u \times \lambda)^t (\omega)(y) = \omega((\tilde{\pi}_u \times \lambda)(y)) = \sum \langle (\tilde{\pi}_u \times \lambda) y \xi_n, \eta_n \rangle$.

Remark. The faithfulness of τ implies that of $\tilde{\pi}_u \times \lambda$ in which case $G \underset{\alpha}{\times} A$ is isomorphic to the reduced C^* -crossed product $G \underset{\alpha_r}{\times} A$. Therefore τ need not be faithful in general.

We write $A(G \times A)$ for $(\tilde{\pi}_u \times \lambda)^t(M_*)$ which is the norm-closed subspace of $(G \times_{\alpha} A)'$ consisting of functions of the form $\psi(y) = \sum \langle (\tilde{\pi}_u \times \lambda) y \xi_n, \eta_n \rangle$. Thus, $(G \times A)''$ is canonically isomorphic to $M(A, G, \alpha)$ if, and only if, $A(G \times_{\alpha} A) = (G \times_{\alpha} A)'$. Note that if A = C, then $A(G \times_{\alpha} C) = \lambda_0^t(M(G)_*)$ which is just the Fourier algebra A(G) and so the last condition is A(G) = B(G).

As before, we can identify the Banach dual $(G \underset{\alpha}{\times} A)'$ with the linear span $B(G \underset{\alpha}{\times} A)$ of A'-valued functions $\Phi \colon G \to A'$ which are positive definite with respect to α (cf. [10; 7.6.10]). Moreover, if $\Phi \in B(G \times A)$ is positive definite, then $\|\Phi\| = \|\Phi(e)\|$ where e is the identity of G. Also, if $\psi \in A(G)$ is positive definite, then $\psi \cdot \Phi \in B(G \underset{\alpha}{\times} A)$ is positive definite with respect to α and also $\|\psi \cdot \Phi\| = \|\psi(e)\Phi(e)\| = \|\psi\| \cdot \|\Phi\|$ (cf. [10; 7.6.9]). Hence for $\phi \in A(G)$ with positive decomposition $\phi = \phi_1 - \phi_2$ where $\|\phi\| = \|\phi_1\| + \|\phi_2\|$, we have

$$\phi \cdot \Phi = \phi_1 \cdot \Phi - \phi_2 \cdot \Phi \in \mathcal{B}(G \underset{\alpha}{\times} A)$$

and

$$\begin{split} \|\phi\cdot\Phi\| &= \|\phi_1\cdot\Phi - \phi_2\cdot\Phi\| \leqslant \|\phi_1\cdot\Phi\| + \|\phi_2\cdot\Phi\| = \|\phi_1\|\cdot\|\Phi\| + \|\phi_2\|\cdot\|\Phi\| \\ &= (\|\phi_1\| + \|\phi_2\|)\cdot\|\Phi\| = \|\phi\|\cdot\|\Phi\| \;. \end{split}$$

Lemma 2. Let A be a C^* -algebra and suppose that there is a minimal central projection p in A". If z is a central projection in A" with pz = 0, then $A' \cdot z$ is not w^* -dense in A', where we define as usual $(f \cdot z)(a) = f(az)$ for $f \in A'$ and $a \in A$.

Proof. We note that the split (invariant) faces of the state space of a unital C^* -algebra B are in natural one-one correspondence with the central projections in B'' (cf. [11; III.6]).

Let A_1 be the C^* -algebra obtained by adjunction of an identity to A. Let $Q = \{f \in A'_+: \|f\| \le 1\}$ be the quasi-state space of A which is affine w^* -homeomorphic to the state space of A_1 [11; p. 166]. Now $A''_1 = A'' \oplus C$ and p is a minimal central projection in A''_1 . So $F = \{f \in Q: f(p) = 0\}$ is a (proper) maximal split face of Q. But the w^* -closure \overline{F} of F is also a split face of Q and $\overline{F} \ne Q$. Hence $F = \overline{F}$ is w^* -closed. Now $V_+ = \bigcup_{\lambda \ge 0} \lambda F$ is a hereditary subcone of A'_+ which is w^* -closed since F is the intersection of V_+ with the closed unit ball of A' [11; p. 146]. Therefore, by [11; Proposition III.4.13], $V_+ = V \cap A'_+$ for some proper w^* -closed (invariant) subspace V of A'. It follows from pz = 0 that $A' \cdot z \subset V$ and so the w^* -closure of $A' \cdot z$ is properly contained in A'.

Now we prove the main result.

Theorem 3. Let G be a locally compact group. Then the following conditions are equivalent:

- (i) G is amenable and $C^*(G)$ is a scattered C^* -algebra;
- (ii) A(G) = B(G);
- (iii) For any C*-dynamical system (A, G, α) , the bidual $(G \underset{\alpha}{\times} A)''$ is canonically isomorphic to $M(A, G, \alpha)$.
- **Proof.** (i) \Rightarrow (ii). We prove that $\lambda_0^t(M(G)_*) = C^*(G)'$ since there is a linear isomorphism which identifies A(G) with $\lambda_0^t(M(G)_*)$ and B(G) with $C^*(G)'$. As G is amenable, $\lambda_0^t(M(G)_*)$ is w^* -dense in $C^*(G)'$ [10; 7.3.9]. To show that they are actually equal, we prove that τ_0 is faithful. As $C^*(G)$ is scattered, there is a family $\{p_j\}$ of minimal central projections in $C^*(G)''$ with $\sum_j p_j = 1$. Let z be a central projection in $C^*(G)''$ such that $\ker \tau_0 = C^*(G)''(1-z)$. By minimality, we have either $p_j z = 0$ or $p_j z = p_j$ for each j. Suppose $z \neq 1$, then $p_j z = 0$ for some j. By Lemma 2, $C^*(G)' \cdot z$ is not w^* -dense in $C^*(G)'$. If $\omega \in M(G)_*$, then $(1-z)(\lambda_0^t(\omega)) = \tau_0(1-z)(\omega) = 0$. Therefore $\lambda_0^t(M(G)_*) \subset C^*(G)' \cdot z$ which implies that $\lambda_0^t(M(G)_*)$ is not w^* -dense in $C^*(G)'$. This is impossible. Hence z = 1 and τ_0 is faithful. So we have A(G) = B(G).
- (ii) \Rightarrow (iii). Let (A, G, α) be a C^* -dynamical system. By Proposition 1, the faithfulness of τ is equivalent to $A(G \underset{\alpha}{\times} A) = (G \underset{\alpha}{\times} A)'$. We prove the latter. It suffices to show that the positive definite A'-valued functions Φ in $B(G \underset{\alpha}{\times} A)$ are contained in $A(G \underset{\alpha}{\times} A)$. As A(G) = B(G), the constant 1-function on G is the norm-limit of a sequence (ϕ_n) of positive definite functions with compact supports in G [10; 7.2.5]. By [10; 7.7.6], we have $\phi_n \cdot \Phi \in A(G \underset{\alpha}{\times} A)$. Now $\|\Phi \phi_n \cdot \Phi\| = \|(1 \phi_n) \cdot \Phi\| \le \|1 \phi_n\| \cdot \|\Phi\| \to 0$ as $n \to \infty$. Hence $\Phi \in A(G \underset{\alpha}{\times} A)$. This proves that $A(G \underset{\alpha}{\times} A) = \|\Phi\| \to 0$ as $A \to \infty$.

20 C.-H. CHU

 $B(G \underset{\alpha}{\times} A)$ and so τ is an isomorphism from $(G \underset{\alpha}{\times} A)''$ onto $M(A, G, \alpha)$.

(iii) \Rightarrow (i). First, by considering the trivial C^* -dynamical system (C, G, ι) , $\tau_0: C^*(G)'' \to B(L_2(G))$ is faithful and so is the regular representation $\lambda_0: C^*(G) \to B(L_2(G))$. Therefore G is amenable. Let A be any C^* -algebra and consider the C^* -dynamical system (A, G, ι) in which ι is the trivial action. The bitranspose ι'' of ι induces the W^* -dynamical system (A'', G, ι'') and it is not difficult to verify that $M(A, G, \iota)$ is naturally isomorphic to the W^* -tensor product $A'' \otimes M(G)$. Also the C^* -crossed product $G \times A$ is naturally isomorphic to the projective C^* -tensor product $A \otimes C^*(G)$ where $C^*(G)''$ is isomorphic to M(G) via τ_0 . Therefore we have the following canonical isomorphisms

$$(A \otimes C^*(G))'' \approx (G \times A)'' \approx M(A, G, \iota) \approx A'' \overline{\otimes} M(G) \approx A'' \overline{\otimes} C^*(G)''$$
.

As A was arbitrary, by a result of Huruya [7; p. 23], $C^*(G)$ is a scattered C^* -algebra. The proof is complete.

We conclude with two relevant results.

Proposition 4. Let G be a discrete group. Then the group C^* -algebra $C^*(G)$ is scattered if, and only if, G is finite.

Proof. We need only prove the sufficiency. As $C^*(G)$ is a type I C^* -algebra, by Thoma's characterization of type I groups [12], there is an abelian normal subgroup Δ of G with finite index. It suffices to show that Δ is finite. Since C^* -subalgebras of a scattered C^* -algebra are also scattered [3], the group C^* -algebra $C^*(\Delta)$ is also scattered. But $C^*(\Delta)$ is the C^* -algebra $C(\hat{\Delta})$ of continuous functions on the dual group $\hat{\Delta}$ which is compact and so has finite Haar measure μ . By scatteredness of $C(\hat{\Delta})$, μ must be atomic [8] and hence $\hat{\Delta}$ must be finite since μ is finite and invariant. It follows that Δ is finite by Pontryagin duality.

If G is discrete, then A" can be embedded into $(G \underset{\alpha}{\times} A)$ " as in [3, 4] where it has been shown that if the relative commutant of the centre of A" in $(G \underset{\alpha}{\times} A)$ " is contained in A", then $(G \underset{\alpha}{\times} A)$ " is canonically isomorphic to the W*-crossed product $G \underset{\alpha''}{\times} A$ ". Conversely we have the following result.

Proposition 5. Let (A, G, α) be a C^* -dynamical system in which G is a discrete group. Then the following two conditions are equivalent:

- (i) If $m \in (G \times A)^n$ commutes with the centre of A^n , then $m \in A^n$;
- (ii) The bitranspose α'' acts freely on the centre of A'' and $(G \underset{\alpha}{\times} A)''$ is canonically isomorphic to the W^* -crossed product $G \underset{\alpha''}{\times} A''$.

Proof. This follows readily from a result of Nakagami and Takesaki [9; p. 102] which states that α'' acts freely on the centre of A'' if and only if the relative commutant of the centre of A'' in $G \times A''$ is contained in A''.

References

- [1] W. Arendt and J. De Cannière: Order isomorphisms of Fourier algebras, J. Funct. Anal., 50 (1983),
- [2] L. Baggett: A separable group having a discrete dual space is compact, J. Funct. Anal., 10 (1972), 131-148.
- [3] C.-H. Chu: Crossed products of scattered C*-algebras, J. London Math. Soc., 26 (1982), 317-324.
- [4] C.-H. Chu: Shift automorphism groups of C*-algebras, Yokohama Math. J., 32 (1984), 31-37.
- [5] J. De Cannière and R. Rouseau: The Fourier algebra as an order ideal of the Fourier-Stieltjes algebra, Math. Z., 186 (1984), 501-507.
- [6] P. Eymard: L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
- [7] T. Huruya: A spectral characterization of a class of C*-algebras, Sci. Reports, Niigata University, 15 (1978), 21-24.
- [8] H. E. Jensen: Scattered C*-algebras, Math. Scand., 41 (1977), 308-314.
- [9] Y. Nakagami and M. Takesaki: Duality for crossed products of von Neumann algebras, Lecture Notes in Math., Springer-Verlag, 1979.
- [10] G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, 1979.
- [11] M. Takesaki, The theory of operator algebras I, Springer-Verlag, 1979.
- [12] E. Thoma, Eine Charakterisierung disketer Gruppen vom Typ I, Invent. Math., 6 (1968), 190-196.

Department of Mathematical Sciences Goldsmiths' College London S.E. 14 England