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ABSTRACT. Let $G$ be a locally compact group. We show that, for any $C^{*}$ -dynamical system
$(A, G, \alpha)$ , the bidual $(G\times A\alpha)^{\prime\prime}$ of the $C^{*}$ -crossed product $G\times A$ is canonically isomorphic to
the von Neumann algebra generated by the regular representation of $Gx$$ A\alpha$ if, and only if, $G$

is amenable and the group $C^{*}$-algebra $C^{*}(G)$ is scattered.

1. Introduction

Let $(A, G, \alpha)$ be a $C^{*}$ -dynamical system. In [4], we proved that if $G$ is a discrete
group which acts freely on $A$ in a strong sense, then the bidual $(G\times A)^{\prime\prime}\alpha$ of the $C^{*}-$

crossed product $ G\times$ $A$ is
$\alpha$

-isomorphic to the $W^{*}$ -crossed product $G\times,A^{\prime\prime}\alpha^{\prime}$ of the $W^{*}-$

dynamical system $(A^{\prime\prime}, G, \alpha^{\prime\prime})$ where $\alpha^{\prime\prime}$ is the bitransposed action of $\alpha$ on the bidual $A^{\prime\prime}$

of $A$ . As $G\times A^{\prime\prime}\alpha^{\prime\prime}$ is just the von Neumann algebra $M$ generated by the regular

representation of $ G\times$
$ A\alpha$ when $G$ is discrete, it is natural to ask under what

circumstances such an isomorphism between $(G\times A)^{\prime\prime}\alpha$ and $M$ still persists if $G$ is

nondiscrete. The purpose of this note is to show that, given any locally compact
group $G$ , the bidual $(G\times A)^{\prime\prime}\alpha$ is canonically isomorphic to $M$ for any $C^{*}$ -dynamical

system $(A, G, \alpha)$ if, and only if, $G$ is amenable and the group $C^{*}$-algebra $C^{*}(G)$ is
scattered which in tum, is equivalent to the condition that the Fourier algebra $A(G)$

of $G$ coincides with the Fourier-Stieltjes algebra $B(G)$ .

I wish to thank Professor M. Choda for a useful conversation which inspired this
work.

As usual, we will identify the bidual $A^{\prime\prime}$ of a $C^{*}$-algebra $A$ with its universal
enveloping von Neumann algebra. A $C^{*}$-algebra $A$ is called scattered [8] if every
(nondegenerate) representation of $A$ is a direct sum of its irreducible subre-
presentations or equivalently, if its bidual $A^{\prime\prime}$ is a direct sum of type I factors. A
separable $C^{*}$-algebra $A$ is scattered if, and only if, its spectrum $\hat{A}$ is countable. If $G$ is
a compact group, then every continuous unitary representation of $G$ is a direct sum of
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irreducible ones, so the group $C^{*}$-algebra $C^{*}(G)$ of $G$ is scattered. On the other hand,
the group $C^{*}$-algebra of the integers $Z$ is not scattered. Fell (cf. [2; p. 142]) has given
an example of a second countable noncompact amenable group with countable dual
space and so its group $C^{*}$-algebra is scattered. It seems an interesting question to find
intrinsic characterizations of $G$ for $C^{*}(G)$ to be scattered. However, we will prove
that the group $C^{*}$-algebra $C^{*}(G)$ of a discrete group $G$ is scattered (if and) only if $G$ is
finite.

2. Fourier algebra

Let $G$ be a locally compact group and let $\lambda_{o}$ : $G\rightarrow B(L_{2}(G))$ be the left regular
representation which extends to a representation of the group $C^{*}$-algebra $C^{*}(G)$ of
$G$ . In the sequel, we will use the following commutative diagram:

where $\tau_{0}$ is the extension of $\lambda_{0}$ on the bidual $G^{*}(G)^{\prime\prime}$ and $\lambda_{\langle)}(C^{*}(G))$ is the reduced
group $C^{*}$-algebra of $G$ . The weak closure $M(G)$ of $\lambda_{0}(C^{*}(G))$ in $B(L_{2}(G))$ is the
group von Neumann algebra of $G$ . It is well-known that the Banach dual $C^{*}(G)^{\prime}$ of
$C^{*}(G)$ is linearly isomorphic to the (complex) linear span $B(G)$ of all continuous
positive definite functions on $G$ (cf. [10; 7.1.8, 7.1.10]) and if $B(G)$ is equipped with the
pointwise multiplication and the norm inherited from $C^{*}(G)^{\prime}$ , then it becomes a
Banach algebra and is called the Fourier-Stieltjes algebra of $G$ . Moreover, the closed
subalgebra $A(G)$ of $B(G)$ generated by the positive definite functions with compact
supports in $G$ can be identified with the predual $M(G)_{*}$ of $M(G)$ and is known as the
Fourier algebra of G.When $G$ is abelian, $A(G)$ is the image of $L_{1}(\hat{G})$ under the Fourier
transform, where $\hat{G}$ is the Pontryagin dual of $G$ . We refer to $[1, 6]$ for other properties
of $A(G)$ . Recently, De Camni\‘ere and Rousseau [5] proved that $A(G)$ is the smallest
(nonzero) closed order and algebra ideal of $B(G)$ .

3. C*-crossed products

We now consider the more general set-up of a $C^{*}$ -dynamical system $(A, G, \alpha)$ .
We will denote by $K(G, A)$ the linear space of continuous functions from $G$ to $A$ with
compact support. Let $\pi_{u}$ : $A\rightarrow B(H_{u})$ be the universal representation of $A$ and let
$\tilde{\pi}_{u}$ : $A\rightarrow B(L_{2}(G, H_{u}))$ and $\lambda:G\rightarrow B(L_{2}(G, H_{u}))$ be the representations defined by

$(\tilde{\pi}_{u}(a)\xi)(t)=\pi_{u}(\alpha_{t^{-1}}(a))\xi(t)$

$(\lambda_{s}\xi)(t)=\xi(s^{-1}t)$
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for $a\in A,$ $s,$ $t\in G$ and $\xi\in L_{2}(G, H_{u})$ . As in [10; 7.7], we define the associated regular
representation $\tilde{\pi}_{u}\times\lambda:G\times\alpha A\rightarrow B(L_{2}(G, H_{u}))$ by

$(((\tilde{\pi}_{u}\times\lambda)f)\xi Xt)=\int_{G}\pi_{u}(\alpha_{t^{-1}}(f(s)))\xi(s^{-1}t)ds$

where $ds$ is the left Haar measure on $G,$ $f\in K(G, A)$ and $\xi\in L_{2}(G, H_{u})$ . We have the
following commutative diagram:

where $\pi$ is the universal representation of $ G\times$
$ A\alpha$

$\tau$ is the extension of $\tilde{\pi}_{u}\times\lambda$ on the

bidual $(G\times A)^{\prime\prime}\alpha$ and $\tau((G\times A)^{\prime\prime})\alpha$ is the weak closure of $(\tilde{\pi}_{u}\times\lambda)(G\times A)\alpha$ in $B(L_{2}(G, H_{u}))$ .
We will denote this weak closure by $M(A, G, \alpha)$ . We note that the previous diagram is
a special case of the above one in which $A=C,$ $\alpha$ reduces to the trivial action, $ G\times C\alpha$ is

the group $C^{*}$-algebra $C^{*}(G)$ and $M(C, G, \alpha)$ the group von Neumann algebra $M(G)$ .
We also note that $(\tilde{\pi}_{u}\times\lambda)(G\times A)\alpha$ is the reduced $C^{*}$-crossed product $G\times A\alpha r$

If $G$ is discrete, then the bitransposed action $\alpha^{\prime\prime}$ : $g\in G\rightarrow\alpha_{g}^{\prime\prime}\in Aut(A^{\prime\prime})$ on the
bidual $A^{\prime\prime}$ induces a $W^{*}$-dynamical system $(A^{\prime\prime}, G, \alpha^{\prime\prime})$ and in this case, $M(A, G, \alpha)$ is
just the $W^{*}$ -crossed product $G\times,A^{\prime\prime}\alpha^{\prime}$ We have shown in [4] that if $\alpha$ is a strongly

centrally free action, then the map $\tau$ in the above diagram is faithful and so $(G\times A)^{\prime\prime}\alpha$

can be identified with $G\times,A^{\prime\prime}\alpha^{\prime}$ We now investigate the faithfulness of $\tau$ in the

nondiscrete situation. We say that $(G\times A)^{\prime\prime}\alpha$ is canonically isomorphic to $M(A, G, \alpha)$ if $\tau$

is faithful.
We first observe that if $B$ is any $C^{*}$-algebra and if $\phi:B\rightarrow M$ is a-homomor-

phism into a von Neumann algebra $M$ with predual $M_{*}$ , then the extension di of $\phi$ on
the universal envelope $B^{\prime\prime}$ in the diagram

$B\rightarrow^{\phi}M$

$\backslash $ $\nearrow\phi$

$B^{\prime\prime}$

is faithful if, and only if, $\phi^{t}(M_{*})=B^{\prime}$ where $\phi^{t}$ : $M^{\prime}\rightarrow B^{\prime}$ is the transpose of $\phi$ . Note
that di is the transpose of the restriction of $\phi^{t}$ to $M_{*}\subset M^{\prime}$ and if $\phi(B)$ is weakly dense
in $M$, then $\phi^{t}$ is faithful on $M_{*}$ .

Proposition 1. Let $(A, G, \alpha)$ be a $C^{*}$ -dynamical system. Then the following
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conditions are equivalent:
(i) $(G\times\alpha A)^{\prime\prime}$ is canonically isomorphic to $M(A, G, \alpha)$ ;

(ii) For any $\psi\in(G\times A)^{\prime}\alpha$ there exist sequences $(\xi_{n})$ and $(\eta_{n})$ in $L_{2}(G, H_{u})$ with
$\sum_{n}\Vert\xi_{n}\Vert^{2}<\infty$ and $\sum_{n}\Vert\lambda_{n}\Vert^{2}<\infty$ such that

$\psi(y)=\sum_{n}\langle(\tilde{\pi}_{u}\times\lambda)y\xi_{n}, \eta_{n}\rangle$ $(y\in G\times A)\alpha$

Proof. Let $M_{*}$ be the predual of $M(A, G, \alpha)$ . By the above remark, $\tau$ is faithful
if and only if $(\tilde{\pi}_{u}\times\lambda)^{t}(M_{*})=(G\times A)^{\prime}\alpha$ But if $\psi\in(G\times A)^{\prime}\alpha$ is equal to $(\tilde{\pi}_{u}\times\lambda)^{t}(\omega)$ for

some $\omega\in M_{*}$ , then there exist sequences $(\xi_{n})$ and $(\eta_{n})$ in $L_{2}(G, H_{u})$ with $\sum\Vert\xi_{n}\Vert^{2}<\infty$ ,
$\sum\Vert\lambda_{n}\Vert^{2}<\infty$ and $\omega(\cdot)=\sum\langle\cdot\xi_{n}, \eta_{n}\rangle$ and so we have $\psi(y)=(\tilde{\pi}_{u}\times\lambda)^{t}(\omega)(y)=$

$\omega((\tilde{\pi}_{u}\times\lambda)(y))=\sum\langle(\tilde{\pi}_{u}\times\lambda)y\xi_{n}, \eta_{n}\rangle$ .
Remark. The faithfulness of $\tau$ implies that of $\tilde{\pi}_{u}\times\lambda$ in which case $ G\times$

$ A\alpha$ is

isomorphic to the reduced $C^{*}$-crossed product $c_{\alpha}\times_{1}A$ . Therefore $\tau$ need not be faithful
in general.

We write $A(G_{\alpha}\times A)$ for $(\tilde{\pi}_{u}\times\lambda)^{t}(M_{*})$ which is the norm-closed subspaoe of

$(G\times A)^{\prime}\alpha$ consisting of functions of the form $\psi(y)=\sum\langle(\tilde{\pi}_{u}\times\lambda)y\xi_{n}, \eta_{n}\rangle$ . Thus, $(G\times A)^{\prime\prime}$

is canonically isomorphic to $M(A, G, \alpha)$ if, and only if, $ A(G\times A)=(G\alpha\times A)^{\prime}\alpha$ Note that

if $A=C$, then $ A(G\times C)=\lambda_{0}^{t}(M(G)_{*})\alpha$ which is just the Fourier algebra $A(G)$ and so
the last condition is $A(G)=B(G)$ .

As before, we can identify the Banach dual $(G\times A)^{\prime}\alpha$ with the linear span

$ B(G\times A)\alpha$ of $A^{\prime}$-valued functions $\Phi:G\rightarrow A^{\prime}$ which are positive definite with respect to

$\alpha$ (cf. [10; 7.6.10]). Moreover, if $\Phi\in B(G\times A)$ is positive definite, then $\Vert\Phi\Vert=\Vert\Phi(e)\Vert$

where $e$ is.the identity of $G$ . Also, if $\psi\in A(G)$ is positive definite, then $\psi\cdot\Phi\in B(G\times A)\alpha$

is positive definite with respect to $\alpha$ and also $\Vert\psi\cdot\Phi\Vert=\Vert\psi(e)\Phi(e)\Vert=\Vert\psi\Vert\cdot\Vert\Phi\Vert$ (cf.
[10; 7.6.9]). Hence for $\phi\in A(G)$ with positive decomposition $\phi=\phi_{1}-\phi_{2}$ where
$\Vert\phi\Vert=\Vert\phi_{1}\Vert+\Vert\phi_{2}\Vert$ , we have

$\phi\cdot\Phi=\phi_{1}\cdot\Phi-\phi_{2}\cdot\Phi\in B(G\times A)\alpha$

and
$|I\emptyset\cdot\Phi\Vert=\Vert\phi_{1}\cdot\Phi-\phi_{2}\cdot\Phi\Vert\leq\Vert\phi_{1}\cdot\Phi\Vert+\Vert\phi_{2}\cdot\Phi\Vert=\Vert\phi_{1}\Vert$ . I $\Phi\Vert+\Vert\phi_{2}\Vert\cdot\Vert\Phi\Vert$

$=(\Vert\phi_{1}\Vert+\Vert\phi_{2}\Vert)\cdot\Vert\Phi\Vert=\Vert\phi\Vert\cdot\Vert\Phi\Vert$ .

Lemma 2. Let $A$ be a $C^{*}$ -algebra and suppose that there is a minimal central
projection $p$ in $A^{\prime\prime}$ . If $z$ is a centralprojection in $A^{\prime\prime}$ with $pz=0$ , then $A^{\prime}\cdot z$ is not $w^{*}$ -dense
in $A^{\prime}$ , where we define as usual $(f\cdot z)(a)=f(az)$ for $f\in A^{\prime}$ and $a\in A$ .
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Proof. We note that the split (invariant) faces of the state space of a unital $C^{*}-$

algebra $B$ are in natural one-one correspondence with the central projections in $B^{\prime\prime}$

(cf. [11; III.6]).

Let $A_{1}$ be the $C^{*}$ -algebra obtained by adjunction of an identity to $A$ . Let $Q=$
$\{f\in A_{+}^{\prime} : \Vert f\Vert\leq 1\}$ be the quasi-state space of $A$ which is affine $w^{*}$-homeomorphic to
the state space of $A_{1}$ [ $11$ ; p. 166]. Now $A_{1}^{\prime\prime}=A^{\prime\prime}\oplus C$ and $p$ is a minimal central
projection in $A_{1}^{\prime\prime}$ . So $F=\{f\in Q:f(p)=0\}$ is a (proper) maximal split face of $Q$ . But the
$w^{*}$-closure $\overline{F}$ of $F$ is also a split face of $Q$ and $\overline{F}\neq Q$ . Hence $F=\overline{F}$ is $w^{*}$ -closed. Now
$V_{+}=\bigcup_{\lambda\geq 0}\lambda F$ is a hereditary subcone of $A_{+}^{\prime}$ which is $w^{*}$-closed sinoe $F$ is the
intersection of $V_{+}$ with the closed unit ball of $A^{\prime}$ [ $11$ ; p. 146]. Therefore, by [11;
Proposition III.4.13], $V_{+}=V\cap A_{+}^{\prime}$ for some proper $w^{*}$-closed (invariant) subspace $V$

of $A^{\prime}$ . It follows from $pz=0$ that $A^{\prime}\cdot z\subset V$ and so the $w^{*}$-closure of $A^{\prime}\cdot z$ is properly
contained in $A^{\prime}$ .

Now we prove the main result.

Theorem 3. Let $G$ be a locally compact group. Then the following conditions are
equivalent:

(i) $G$ is amenable and $C^{*}(G)$ is a scattered $C^{*}$ -algebra;
(ii) $A(G)=B(G)$ ;
(iii) For any $C^{*}$ -dynamical system $(A, G, \alpha)$ , the bidual $(G\times A)^{\prime\prime}\alpha$ is canonically

isomorphic to $M(A, G, \alpha)$ .
Proof. $(i)\Rightarrow(ii)$ . We prove that. $\lambda_{0}^{t}(M(G)_{*})=C^{*}(G)^{\prime}$ since there is a linear

isomorphism which identifies $A(G)$ with $\lambda_{0}^{t}(M(G)_{*})$ and $B(G)$ with $C^{*}(G)^{\prime}$ . As $G$ is
amenable, $\lambda_{0}^{t}(M(G)_{*})$ is $w^{*}$ -dense in $C^{*}(G)^{\prime}[10;7.3.9]$ . To show that they are
actually equal, we prove that $\tau_{0}$ is faithful. As $C^{*}(G)$ is scattered, there is a family
$\{p_{j}\}$ of minimal central projections in $C^{*}(G)^{\prime\prime}$ with $\sum_{j}p_{j}=1$ . Let $z$ be a central
projection in $C^{*}(G)^{\prime\prime}$ such that ker $\tau_{0}=C^{*}(G)^{\prime\prime}(1-z)$ . By minimality, we have either
$p_{j}z=0$ or $p_{j}z=p_{j}$ for each $j$. Suppose $z\neq 1$ , then $p_{j}z=0$ for some $j$. By Lemma 2,
$C^{*}(G)^{\prime}\cdot z$ is not $w^{*}$ -dense in $C^{*}(G)^{\prime}$ . If $\omega\in M(G)_{*}$ , then $(1-z)(\lambda_{0}^{t}(\omega))=$

$\tau_{0}(1-z)(\omega)=0$ . Therefore $\lambda_{0}^{t}(M(G)_{*})\subset C^{*}(G)^{\prime}\cdot z$ which implies that $\lambda_{0}^{t}(M(G)_{*})$

is not $w^{*}$ -dense in $C^{*}(G)^{\prime}$ . This is impossible. Hence $z=1$ and $\tau_{0}$ is faithful. So
we have $A(G)=B(G)$ .

$(ii)\Rightarrow(iii)$ . Let $(A, G, \alpha)$ be a $C^{*}$ -dynamical system. By Proposition 1, the
faithfulness of $\tau$ is equivalent to $ A(G\times A)=(G\alpha\times A)^{\prime}\alpha$ We prove the latter. It suffices to

show that the positive definite A’-valued functions $\Phi$ in $ B(G\times A)\alpha$ are contained in
$ A(G\times A)\alpha$ As $A(G)=B(G)$ , the constant l-function on $G$ is the norm-limit of a
sequence $(\phi_{n})$ of positive definite functions with compact supports in $G[10;7.2.5]$ .
By [10; 7.7.6], we have $\phi_{n}\cdot\Phi\in A(G\times A)\alpha$ Now $\Vert\Phi-\phi_{n}\cdot\Phi\Vert=\Vert(1-\phi_{n})\cdot\Phi\Vert\leq$

$\Vert 1-\phi_{n}\Vert\cdot\Vert\Phi\Vert\rightarrow 0$ as $ n\rightarrow\infty$ . Hence $\Phi\in A(G\times A)\alpha$ This proves that $ A(G\times A)=\alpha$
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$ B(G\times A)\alpha$ and so $\tau$ is an isomorphism from $(G\times A)^{\prime\prime}\alpha$ onto $M(A, G, \alpha)$ .
$(iii)\Rightarrow(i)$ . First, by consjdering the trivial $C^{*}$-dynamical system $(C, G, \iota)$ ,

$\tau_{0}$ : $C^{*}(G)^{\prime\prime}\rightarrow B(L_{2}(G))$ is faithful and so is the regular representation
$\lambda_{0}$ : $C^{*}(G)\rightarrow B(L_{2}(G))$ . Therefore $G$ is amenable. Let $A$ be any $C^{*}$-algebra and
consider the $C^{*}$-dynamical system $(A, G, \iota)$ in which $\iota$ is the trivral action. The
bitranspose $\iota^{\prime\prime}$ of $\iota$ induces the $W^{*}$-dynamical system $(A^{\prime\prime}, G, \iota^{\prime\prime})$ and it is not difficult
to verify that $M(A, G, \iota)$ is naturally isomorphic to the $W^{*}$-tensor product
$A^{\prime\prime}\otimes^{-}M(G)$ . Also the $C^{*}$ -crossed product $G\times_{l}$

$A$ is naturally isomorphic to the

projective $C^{*}$ -tensor product $A\otimes^{v}C^{*}(G)$ where $C^{*}(G)^{\prime\prime}$ is isomorphic to $M(G)$ via $\tau_{0}$ .
Therefore we have the following canonical isomorphisms

$(A\otimes C^{*}(G))^{\prime\prime}V\approx(G\times_{l}A)^{\prime\prime}\approx M(A, G, \iota)\approx A^{\prime\prime}\otimes M(G)-\approx A^{\prime\prime}\otimes C^{*}(G)^{\prime\prime}-$

As $A$ was arbitrary, by a result of Huruya [7; p. 23], $C^{*}(G)$ is a scattered $C^{*}$ -algebra.
The proof is complete.

We conclude with two relevant results.

Proposition 4. Let $G$ be a discrete group. Then the group $C^{*}$ -algebra $C^{*}(G)$ is
scattered if, and only if, $G$ is finite.

Proof. We need only prove the sufficiency. As $C^{*}(G)$ is a type I $C^{*}$-algebra, by
Thoma’s characterization of type I groups [12], there is an abelian normal subgroup
$\Delta$ of $G$ with finite index. It suffices to show that $\Delta$ is finite. Since $C^{*}$-subalgebras of a
scattered $C^{*}$-algebra are also scattered [3], the group $C^{*}$-algebra $C^{*}(\Delta)$ is also
scattered. But $C^{*}(\Delta)$ is the $C^{*}$-algebra $C(\hat{\Delta})$ of continuous functions on the dual
group $\hat{\Delta}$ which is compact and so has finite Haar measure $\mu$ . By scatteredness of
$C(\hat{\Delta}),$

$\mu$ must be atomic [8] and hence $\hat{\Delta}$ must be finite sinoe $\mu$ is finite and invariant. It
follows that $\Delta$ is finite by Pontryagin duality.

IfGisdiscrete, then A” can be embedded into $(G\times_{\alpha}A)^{\prime\prime}$ as in $[3, 4]$ where it has

been shown that if the relative commutant of the centre of $A^{\prime\prime}$ in $(G\times A)^{\prime\prime}\alpha$ is contained

in $A^{\prime\prime}$ , then $(G\times\alpha A)^{\prime\prime}$ is canonically isomorphic to the $W^{*}$ -crossed product $ G\times,A^{\prime\prime}\alpha$

’

Conversely we have the following result.

Proposition 5. Let $(A, G, \alpha)$ be a $C^{*}$-dynamical system in which $G$ is a discrete
group. Then the following two conditions are equivalent:

(i) If $ m\in(G\times A)^{\prime\prime}\alpha$ commutes with the centre of $A^{\prime\prime}$ , then $m\in A^{\prime\prime}$ ;

(ii) The bitranspose $\alpha^{\prime\prime}$ acts freely on the centre of $A^{\prime\prime}$ and $(G\times A)^{\prime\prime}\alpha$ is canonically

isomorphic to the $W^{*}$ -crossed product $G\times,A^{\prime\prime}\alpha^{\prime}$

Proof. This follows readily from a result of Nakagami and Takesaki [9; p. 102]
which states that $\alpha^{\prime\prime}$ acts freely on the centre of $A^{\prime\prime}$ if and only if the relative
commutant of the centre of $A^{\prime\prime}$ in $c_{\alpha’}\times,A^{\prime\prime}$ is contained in $A^{\prime\prime}$ .
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