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1. Introduction.

Owing to works by Takahashi and by do Carmo and Wallach [1] we know
that the property of spherical harmonics plays a quite important role in the
theory of isometric minimal immersions of spheres into spheres. In the present
paper we study some features of spherical harmonics or of homogeneous harmonic
polynomials and prove a theorem which we shall use in another paper where
isotropic properties of isometric minimal immersions will be studied.

2. Preliminaries.

Let & be a homogeneous harmonic polynomial of degree s in R™*! and let
S™(1) be the unit hypersphere of R™*!, Then & restricted to S»(1) is a spherical
harmonic of order s. For convenience sake we use the letter ¢ for this function.

We fix an orthonormal frame {e,, -+, €,,,} in R™** and use the following
indices

Byi,j, +oe=1, oo, m+1,

Ky A pry ooe=1, oo, m
for which we adopt the summation convention if possible. This does not mean
that the letters &, i, j, --- cannot be used otherwise.

A point of S™(1) may be expressed by the position vector

u=u'e, , [ull=1
and also by the local coordinates z!, ---, z™. The relation between them is
written
u(x)=u*(x)e, .
The standard Riemannian metric on S™(1) is denoted by g and its local
components by g,; or g(z2). Then we have
; () =uu'=1,

V,‘ufyluhg[ll o 6”& — utuh ,




182 YOSIO MUTO

Viulu'=g,, ,
VJVut=—g,,u",
dur=—g" Y 7wt =mu* ,
do=20 , A=s(s+m—1)

where u,=u*, g#* are given by g*ig,,=é,* and F denotes the Riemannian connec-
tion, hence V,u"=0,u"=0ou*/ox?*.

We can cansider ¢ as a symmetric tensor of degree s in R™*! satisfying

(2.1) Zt: SD(e;, €y Vgy =, ‘l),):O
for arbitrary vectors v, -+, v, of R™*,

3. Symmetric tensor fields 9, and D®,.

Let ¢, --+, t, be arbitrary tangent vector fields of S*(1). Then we can define
a symmetric tensor field ¢, on S™(1) by
GDt(tn s, t‘):(P(tl, s, t“ U, *o-, u) .
Here we can consider /=0, 1, - - -, s if we put ¢,=¢(%, --+,%). As we can put locally
t.=tVu, a=1, -+, 1,

we have
Pults, ooy L) =QWat, ~ oo, Vo, y + ooy )t 21 oo B
For convenience sake we use the notation
Oy~ A) =Wty -+, Vithy 10, +++, 1)

so that ¢(4, --- 4,) are local components of the tensor field ¢;. We also adopt the
abbreviation

?t(ty %y t)=§0¢(t) .
From the tensor fields ¢,, ¢,, -+, ¢, we define a symmetric tensor field @,,

1=0,1, ---, s, as follows.

Definition 1. Let ¢ be any local unit tangent vector field and let x, (9=
0,1, ---,[#/2]) be given by

(3.1 qm—+2i—2q—2)x,,,=((1—29+2)(i —2¢9+1)/2)2,,,-, ,
%,0=1.

Then @, is defined by
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k
3.2 D.(t)=s(s—1) <+« (s—i+1) ont,q%—zq(t)
where k=[i/2] is the largest integer satisfying 2&<:.
If ¢ is an arbitrary tangent vector field, should be replaced by
k
O,(t)=s(s—1) -+ (s—i+1) qéomt.q"t"zq‘/’t—zq(t) .

Definition 2. D¢, is a symmetric tensor field of degree i+1 satisfying

(De) @)=V (:(8)) —iu(t, ==+, ¢, Pil) _
for any tangent vector field ¢#. Thus the local components of D¢, are
G4V 2,0+ < 2;,) where .., is the symmetrizer with respect to 4, **+, 2.
D@, is defined similarly.

4. Some lemmas and the main Theorem.

We give here some lemmas and the main Theorem which we prove in §6
and §8.

Lemma 1. Let y, . (g=1, -+, h=[(+1)/2]) be determined by

4.1 Yi,e=(—i+29)%;,,— ((—29+2)@;, 01— (S— 1) @41 1,4
if q=1, -+, k=[i/2] , Yin=—00,x—(S—O)Bss1,a

where the last one appears only when i is odd, hence h=k~+1. Then the following
identity holds at every point of S™(1) and for any unit tangent vector t,

4.2) (Dmij(t)_¢t+1(t)=s(s_1) cee (s—i+1)
X [qél yt,q¢¢+1—2q(t)+y¢.n¢o] .

Lemma 2. The local components O(A, -+ + ;) of the symmetric tensor field @,
satisfy '

4.3 g D(vpdg «++ 2)=0.
Our main result is the following theorem.
Theorem 3. Let ¢ be an integer, 1i<s. Then

4.4) D, O)=(DP)#)—(s—i+ 1Y, D:-1(F)

holds at any point of S™(1) and for any unit tangent vector t.
In view of [Lemma 1 we easily get the following equivalent.

Theorem 3’. y,, of Lemma 1 satisfy
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(45) Yi,=Yi,1%i-1,9-1 -

5. Some properties of symmetric tensors.

We consider the Euclidean m-space R™ where a basis {f;, ---, f.} is fixed
such that <f,, fD>=h.,. Let P(=P,, be a symmetric tensor of degree i with
components P4, +++ 4)=Pi(f3,, *+, f2,). We define from P, a series of symmetric
tensors P, (g=1, ---, k=[i/2]) of degree i—2q inductively by

—RH Py, (vphagsg + o 2)=Py011(Asgrs *++ A)

where h**=h** are given by h**h,;=d;* and ¢=0,1, .-, k—1. The following
lemma concerns a symmetric tensor P,_,, of degree i—2p and symmetric tensors
Pi—zP’q.

Lemma 4. Let Q, be a symmetric tensor of degree i defined from P,_,,,
(q=0, 17 *t %y k—P) by

k—p
(5.1) Qt(t) =q§0 ag, p+th—2p.q(t)

where h,tt*=1. Then, putting «;,, ,=0, we get

6 —G—1/DQuul)= L5 [P+ m+2i—25—20~ Dt s
—((—2p—2q+2)(i—2p—24-+1)/2)te, 1 4-1)Picsp.o(0) -
Proof. is equivalent to

k—»
Q4 -+ 4) =q§0at.r‘%.ih(2122) se h(zzr—lxzr)Pt—zp,q(zzrﬂ cer 2y

where h,; is written A(¢d) and 7 stands for p+g. As we have

(2r(2r—1)/2)h*1%2. 57,3, B(A125) * + + B(Rgp-122,)
=r(M—+2r—2)F3,2,-2R(252,) * + + B(A3y-12s,) ,
we get

(i(i_1)/2)h1122y2.ih(2122) tee h(XZr—lzzr)Pt—zp.q(zh'-H. te Xi)
=(rm+2r—2)42r(1—27))),-(A54,) + * h(22r—1227)P{—2p.q(12r+1 cee Ay
_((i_zr)(i"‘zr"1)/2)%4-2}3(2324) e h('zzr-{r122r+2)}){—2p.q+1(227+8 cev Ay

This proves the following formula which is equivalent to (5.2),
—(@(@—1)/2)Q, (5 -+ - )
k—
=Z}:{r(m+2i—2r—2)a¢,,-—((i—2r-|—2)(i—2r+1)/2)0;,,_1}
q=
X F2,0-2R(A540) **+ B(Ropo1As)) Ps_sp,oRapsy o0 A)) ©
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On this occasion we prove the following lemma.

Lemma 5. Let S, be a symmetric tensor of degree i. We assume that there
exists a symmetric tensor T,_, of degree i—2 such that S,(t)=T,_,(t) if t satisfies
hutttr=1. Then we have

k
S;(2) +q4=\__:1 xt,qst.q(t) =0

where x,,, are given by (3.1).
Proof. As we have
Si@; ¢+ 2)=F2,8RA) Ty o5 =+ 2)
we get
—((G—1)/2)S,,,(O)=(m+21—4) T,_,(t)— ((—2)(G—3)/2) T;,,(?) .
Furthermore we get
(EE—=1/2)S,,()=—qm~+2i—2q—2)T,_,,,() +H{((—29) (i —29—1)/2)T,_,,,(#) ,
hence

(i(z'——l)/2)|:S¢(t)+Zk wt,qsi,q(t):l
q=1

== /D Tes)+ X 20— qm-+2i—24—2) T oes,0ms()
+((—~20)—24~1)/2) Toos, o0}
== /2 Teest)— Z, qn+2i 2420, Tovs,gms)

k
+q§2 ((i—zq+2)(i_2q+1)/2)x‘rq-1Ti-2.q-—1(t) .
As the last member vanishes because of [(3.1), we have proved [Lemma 5.

6. Proof of Lemma 1 and Lemma 2.

As we have

(6-1) V;go(V;lu, °~-,Vltu’ u, ...,u)
=(s~i)¢(711u’ Tty Vltu’ Vlu’ Uy *°°y u)

p ‘
+p£\;1¢(721ur %y VIleu9 M) th; U, ***, u)
and V.V ,u=—g,u, we get

(D)) =(s— )Py, () =105, (2)
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for any unit tangent vector {. Thus we get from
k
(DO () =s(s—1) - - (s-—z'+1)l:(Dgo,)(t)+ Elxhq(Dgoi_zq)(t):'

and
. A
D,..(H)=s(s—1) - (3_1)[%““)+E1xt+1.q¢i+1—zq (t)}

after some straightforward calculation.

In order to prove we take an arbitrary point # of S*(1) and con-
sider T,(S™(1)) as the space R™ of [Lemma 4. Then we can put k,,=g,; and, as
we have ¢,,,(f)=¢,_,(f) in view of g*¥ u'V,u*=06"*—wu'u* and [2.1), @,(¢) is a special
case of Q,(?) in Lemma 4, such that p=0, a;,,=s(s—1) - -+ (s—i+1)x,,, and P, (f)=
@i-2,(t). Thus we get @,,,(f)=0 from (5.2). This proves

7. Some integrals.

- We consider again the Euclidean m-space R™ as i §5. Let S be a symmetric
tensor of any degree 2 with compoxients S(4, +++ 2,) and put S#)=S(, ---, ). Let
do,_, be the volume element of the unit hypersphere S™‘(1) of R™. Then we
have the following lemma where, here and in the sequel, the domain of each
integral is S™~(1).

Lemma 6. Let x be a moving point of S™ (1) and t be the position vector
2 in R™. Then

SS(t)dwm_1=0 if h s odd
SS(t)dwm_lzkpS(ll o Q)R+ Biap—ths if R=2p .

Proof. We only need to consider the case {f,, ---, f.} is an orthonormal
basis. It is clear that, if # is odd, the integral vanishes. Putting 2=2p we
get

Ssa)dwm-l:S(xl AZP)S”‘ co terdon,
where

Stn oo Bordwy =k ,,00H - o Flap-thp |

b =((m—21@—D1Y/@p-+ m—2)1D| dan-,
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(see [2], pages 321, 322). This proves Lemma 6.

Let 2 be a point of S»(1) and ¢ be the moving unit tangent vector at z.
Considering T,(S™(1)) as R™ we can prove the following lemma where the integral
is taken over the unit hypersphere S™1(1) of T.(S™(1)).

Lemma 7. The symmetric tensor fields ®,, @; satisfy
S@(t)@(t)dwm_l:O if i

Proof. In terms of local components we can write
CO,O)D(E)=P(pts + -+ DRy + o+ AJEFL oo s tEIEA e e,

Hence, if j+i is odd, the integral vanishes. Thus we need to consider only the
cases i=j+2 such that j+:i is even. Hence, in view of and
we can deduce immediately.

Lemma 8. The following integral vanishes if j<i—2,
S¢J(t)(mt)(t)dwm_1 :

Proof. If j=i—2, then (D®,)(¢)®,(¢) is a homogeneous polynomial of degree
2i—1 in ¢ and the integral vanishes. We consider the case j=i—3. From
2, which is valid at every point of S™(1), we get

9"V D(vpdy - -+ 2)=0 .
Thus, applying to the integral
S¢(#1 s p WV DAy oo AL oo sttt oo thdey,
we find that this integral vanishes. Proof for the cases j<i—3 follows similarly.

8. Proof of the main Theorem.

It is clear that we get from [(3.2) the following formulas where {,,, are certain
constants and k=[i/2],

k
s(s—1) --- (3—i+1)¢t(t)=¢¢(t)+q§1Ct.q¢t—2q(t) .
From this and we get

(DD) () =Dy (t)—(s—i+1)y,, 1D, (D) +qZ::22t.q@t+1—zq(t) =0
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weher z,, are some constants and A=[({+1)/2]). Then, as an application of

ILemma 7| and Lemma 8, we get

z;.qg(@-gm(t))?dwm-l=0 , 4=2.

This shows that, if z,,#0, then &,_,,.,(#) vanishes identically, hence z,,,D;.;_,,(¢)
always vanishes. This proves the main theorem. In fact z,, vanishes and
®,.,_2,(t) does not vanish except the trivial case, as we can prove the following
lemma.

Lemma 9. Let ¢ be a non-trivial .spherical harmonic of order s and 7 be an
integer, 2<j<s. Then there exists no set of numbers a,  (q=1, +--, h(=[4/2]))
such that

h
@4(2) +qZ=:1aj.q90,_2q(t) =0

holds identically.
Proof. First, suppose we have the identity
o(pA)+agup.=0 .

Then we get a=1/m from g**(¢(pd)+ag..0,)=0, hence ¢(pd)~+(1/m)g,:0,=0. Dif-
ferentiating partially we get

(s—2)p(vpd) + ((s/m—2)[3)(g,.p(2) + g,20(12) + 9,20(»)) =0
and further
{—(s—2)+((m+2)(s/m—2)/3)}p()=0 ,

namely, (m—1)(m—+s)e(2)=0. But, if ¢(2)=0, ¢ vanishes identically which we have

excluded. Thus is proved for j=2.
Suppose there exists a certain integer i such that is valid for j=
2, ---,i—1 but fails for j=¢, namely, there exists a set of numbers «,,, such that

the identity
k
o)+ 2 @ pis =0, k=[i/2]

holds. This identity is just the identity of if we put Q;(#)=0, p=
0, a;,0=1 and P, ()=¢,,(t) where ¢, (t)=¢,_.,,(f). Hence we get

0= él{Q(m+ 2i—29—2)a;,,—(((—2q+2)(i—2g+1)/2)a;, g 1}0s-2,(F)
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and consequently a;,,=%;,,.
Now suppose

k
@4(2) +q§1 %s,qPi-2,()=0,

namely, @,()=0 identically. Then we get (D®,)(#)=0 and becomes
‘ k
—@,,1(F)=s(s—1) + -+ (s_i+1)|:q§1yi,q¢t+l—2q (t)+y¢,n€9o] .

This identity is the special case of such that p=0, ¢ is replaced by /+1 and

Qi+1(t):_¢{+1(t) ’
Cli:+1.0:O ’ ai+1.q:s(s_1) et (s—i+1)yi,q ’
Pt+1.q(t)=§0i+1—2q(t) .

As, in view of Lemma 2, we have &,,,,(1)=0, we get
qm—+2—2q)a;.,,,— (i—29+3)(i—29+2)/2) ;11,41 =0
and, especially for g=1, (m+2i—2)y,;,,=0. But we get from
Yi,,=—it(@—i+1)(@a+s—i+2)/(ala+2))

where a=m-+2i—4, hence y;,<0. Thus @,(?)=0 identically cannot occur and
we have proved
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