YokoHAMA MATHEMATICAL
JournaL VoL. 31, 1983

ON DISTRIBUTIVE AND MODULAR y-LATTICES

By
JUHANI NIEMINEN

(Received January 30, 1982; Revised September 10, 1982)

1. Introduction. In a poset (P, =), which is a lattice, a\vvb=Ilub{a, b} and
aNb=glb{a, b} for every two elements a, bP. In fact, [ub picks up a single
element from the set ub{a, b} of upper bounds of a and b, and moreover, this
element is among the minimal elements mub{a, b} of ub{a, b}. Similarly, gib
picks up a single element from the set mib{a, b} of maximal lower bounds of a
and 4. The picking up is impossible by means of rules /ub and gib, if lub{a, b}
and glb{a, b} do not exist for every pair a, beP. In this paper we will con-
sider posets, where mub{a, b} #0+mib{a, b} for every two elements a, beP, and
in particular, we will consider algebras, where a\V/b is a freely chosen single
element of mub{a, b} as well as aAb is an anologous element from mib{a, b}.
When [ub{a, b} exists, then mub{a, b} =Ilub{a, b}, and similarly, when glb{a, b}
exists, then mib{a, b} =glb{a, b} ; thus in those cases the only possible choice
for avvb is lub{a, b} and for aAb the element glb{a, b}. Hence the algebras
considered here reduce to a lattice (P, \V, A) whenever (P, =) is a lattice.

A poset (P, =), where mub{a, b} #0+mlib{a, b} for every two elements a, b
P, is called a X-poset, where X is a choice function choosing a single element
from mub{a, b} as well as from mlb{a, b}. The chosen element X(mub{a, b})
is denoted by aVb and X(mib{a, b}) by aAb. After the choice X, the elements
aVvb and aAb are fixed, and because mub{a, b} =mub{b, a}, the choice aVb is
independent of the order of @ and b; this holds also for aAb. On the other
hand, the choice X is not assumed to be consequential, i.e. although mub{a, b}
=mub{c, d} for some elements a, b, ¢, d=P, c+a, b, a\Vb and ¢Vd need not be
equal; an analogy holds for aAb and ¢Ad. Thus the choice X depends on
elements a and b only. Note that if (P, =) is a finite X-poset, there is a least
element 0=P as well as a greatest element 1P. The algebra (P, VV, A) derived
from a X-poset (P, =) by means of the choice function X is called a X-lattice.

The purpose of this paper is to present a few properties of distributive and
modular X-lattices. It seems to be so that the translations of a distributive
(modular) X-lattice imitate the translations of the corresponding lattice. Also
ideals and congruence relations are considered.

X-lattices are introduced in and some results of that paper, necessary here,
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are listed below. Translations are investigated by Szdsz e.g. in and [4]
As a general reference we have used Gritzer’s book [1].

The following result is proved in [2, Thm. 1]: If (P, =) is a X-poset, then
the X-lattice (P, V, N) is an algebra, where aN b=X(mub{a, b}) and a Nb=X(mlb
{a,b}), and the operations A\ and \/ satisfy the following conditions for all a,b,c
eP:

1) ana=a; (1) ava=a;

(2) anb=bAa; (2) avb=bVa;

@) (and)A(avb)Ve)=aAnb; (3) (avb)V({(aAb)Ac)=aVb;

4) if aNc=bAc=cV(aAb)=c, then c=aAb;

@) if aVe=bVe=cAN(aVb)=c, then c=a\Vbh.

As easily seen, the absorption laws hold in (P, V, A), and the associativity for
V and for A not; not even the weak associativity of weakly associative lattices
does hold. It is also observed that a<be aAb=a = aVb=b. In [2, Thm. 2]
it is proved that: Let (P, \VV, A) be a X-lattice. A X-poset (P, =) is obtained by
putting aNb=a & a<b. Moreover, if (P, =) is a X-poset, (P, \/, A\) a X-lattice
derived form (P, =), and (P, <X)the X-poset derived from (P, \/, A), then (P, =)
=(P, <). If X denotes a fixed choice on a X-lattice (P, =), it is observed in
that there is a one-to-one correspondence between X-lattices (P, \/, A) and pairs
(P, 2), X).

In it is assumed that if mub{a, b} +#0, then for every d<ub{a, b} there
is at least one cqsmub{a, b} such that c;=<d; an analogy holds for mib{a, b}.
As the referee has pointed out, such assumptions are not necessary for obtaining
the results of [2] cited above. In this paper the abovementioned assumptions
are not made.

2. Distributivity and modularity. A X-poset (P, =) is called distributive (mod-
ular), if the following conditions (D;) and (D,) ((M;) and (M;)) hold for every
possible choice X on (P, =):

(D1) (aVb)A(aVe)ZaV(bAc) for all a, b, ceP;

(D) (aAb)V(aAc)=aA(bVe) for all a, b, ceP;

M1 (aVvb)A(aVe)=av(bAN(aVe)) for all a, b ‘ceP;

(M) (aAb)V(aAc)zaAN(bVv(aAc) for all a, b, ceP.
These conditions are the well known conditions of the distributivity (modularity)
in lattices. If we say that a X-lattice (P, \V, A) is distributive (modular), it means
that the X-poset (P, =) derived from (P, \V, A) is distributive (modular), and thus
every X-lattice derived from (P, =) is distributive (modular).

At first we present a connection between the modularity and the distributiv-
ity ; thereafter we consider, when a distributive (modular) X-lattice is a lattice.

Lemma 1. If a X-lattice (P, \/, N\) is distributive, then it is also modular.
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Proof. Because a=a V¢, then aV(aVc)=aVec, and similarly, a Ac=aA(aAc).
Thus we can substitute aVVe by aV(eVe) in (D,), and so (aVb)A(aVe)=
(avb)A(aVviaVe)=aV(bA(aVc)), whence (M;) holds. The validity of (M,) is
proved analogously.

Lemma 2. If implication A (B) holds for all a, b, x, yeP in a X-lattice
(P, V, \) derived from a X-poset (P, =), then (P, =) is a join-semilattice (meet-
semilattice), where :

(A) if a=x and b=y, then aVb=xVy;

(B) if a=<x and b=y, then aANb=xAy.

Proof. Let a, beP. If x=ub{a, b}, then since a<x and b=x, it follows
from (A) that aVvb=xVvx=x. Hence, aVvb=Ilub{a, b}, and (P, =) is a join-
semilattice. The second assertion is proved dually.

Theorem 1. Let (P,V, A\) be a modular X-lattice derived from a X-poset
(P, =). If M,) is an equality, then (P, =) is a meet-semilattice, and if (My) is an
equality, then (P, =) is a join-semilattice.

Proof. We will show that the equality (M.) implies the condition (A) of
Lemma 2, from which the assertion follows. The proof of the second assertion
is proved analogously and hence omitted.

Let x=a and y=b. Thus x, y<aVb, and consequently, x=xA(aVb) and
y=yA(aVvb). Now xVy=(xA(aVbd)V(yA(aVbh)=(@VbA(xV(yA(aVb))=
(aVb)A(xVy), whence xVy=ZaVb.

A distributive X-poset (P, =), which is not a lattice, is given in Figure 1,
and a modular one in Figure 2. Let a choice X be defined as follows in (P, =)

Figure 1 Figure 2
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of Figure 1: X(mlb{a, b})=x and X(mub{x, y})=a. Then (yVa)A(yVb)=aAb
=x<yV(aAb)=yVx=a. Similarly, (bAx)V(bAY)=xVy=a>bA(xVy)=bVa
=x.

The converse inequalities of (D,), (D,), (M,) and (M,) are characteristic for
lattices as proved in the following theorem.

Theorem 2. Let (P, =) be a X-poset. If (Mi) holds for a X-lattice (P, V, A)
derived from (P, =), then (P, =) is a join-semilattice, and if (M3) holds, then (P, =)
is a meet-semilattice, where '

M) (avb)Alavey=av(bAN(aVe)) for all a, b, ceP;

M3) (anb)Vv(anc)Zan(bV(aNce) for all a, b, ceP.

Proof. It suffices to show that (M;) implies (A). If a<x and b<y, then
aV(xVy)=xVy and bA(aV(xVy))=b, since a<x=<xVy and b<y<xVy<aV
(xVy). Hence, by (M]) we have aVb=aV(bA@aVxVIN=(aVHA@V(xVy)=
(@Vbh)A(xVy)<xVy. The second assertion is proved analogously.

In the following we give some necessary conditions for distributive and
modular X-posets.

Lemma 3. If a X-poset (P, =)

(i) contains three non-comparable elements a, b, ¢ having a common minimal
upper bound and a common maximal lower bound, it is non-distributive;

(ii) contains five disjoint elements a,b,c,d, e such that a<b<d<e, a<c<e,
asmlb{c, d} nnmlb{c, b}, and e=mub{c, d} "mub{c, b}, it is non-modular.

Proof. The system of (i) is the well known diamond of five elements,
where d e mub{a, b} "mub {a, c} "mub{b, ¢} and e=mlb{a, b} "mlb{a, c} "mib{b, c}.
Because (D,;) and (D,) must hold for every choice X, by choosing d=aVb=aVc
=bVc¢ and e=aAb=aAc=cAb, the non-distributivity of (P, =) is now seen.

The system of (ii) is the well known pentagon, by means of which the non-
validity of .(M,) and (M,) is easily shown.

3. Ideals and translations on X-lattices. A non-empty subset JCP of a
X-lattice H=(P, VV, A\) is called an ideal of H, if /=] and acsP=iAa<], and if
i, j€I=ivjel. When x<i€l, then x=iAx<l. A dual ideal of H is defined
dually. ,

The settheoretical intersection of two ideals 1 and J of H is clearly an ideal
of H. Thus the ideals of H constitute a complete lattice J(H), where IAJ=
INnJ and IV J=N{K|I, JCK and K is an ideal of H}. Note that (¢]J={x|x=Za
in H} need not be an ideal of H: For example, in the X-poset (P, =) of Figure
1 we can determine a X-lattice H such that x\Vy=b. Then x, y=(a] and xVVy
&(al.
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Theorem 3. Let H=(P, \/, A) be a X-lattice derived from a X-poset (P,=).
If (a] is an ideal of H for every a<P, then (P, =) is a join-semilattice, and if
Ca)={x|x=a in H} is a dual ideal of H for every acP, then (P, Z) is a meet-
semilattice.

Proof. It suffices to show that (A) of Lemma 2 holds. If a<x and b=y,
then since a, be(xVy] and since (xVy] is an ideal, we have aVvbe(xVy],
whence aVVb=xV3y. The second assertion is proved analogously.

Following Szasz [3; 4] we say that a mapping 1:P—P is a meettranslation
on a X-lattice (P, vV, A)=H if A(x Ay)=2A(x)Ay for every two elements x, ycP.
A jointranslation is defined dually. We will call the meettranslation H briefly a
translation.

Lemma 4. Let A be a translation on a X-lattice H. Then
(1) zx=y=24x)=4A);

(ii) A(x)=x;

(iii) AQAx)=A(x);

(iv) AxAY)=A2)INAY);

(v) the fixelements x=2A(x) of 2 constitute an ideal of H.

Proof. (i): If x=y, then since yAx=x, we have A(x)=Ax A y)=A(Y)Ax
=A().

(ii): Ax)=AxAx)=2x)Ax=2Ax)Zx.

(iii) : AAx)=AQA(x A x))=Ax AN A(x))=2x) AN A(x)=A(x).

(iv): AxAP)=AAxAN=Ax AAY)=Ax)NAY).

(v): Let J be the set of fixelements of 4. Assume that 2<j<]. Then
k=kAj=kNAj)=A(kNj)=A(k). Moreover, when 7, j€J, then GV )<iVJ, and
on the other hand, /=AG)<AGVj ) and j=A(/)<A(@Vj ). Because 7, jSAGVH=
i1V, we conclude that ;\Vj=A4(GFV ). Thus J is an ideal of H.

Theorem 4. I[f A is a translation on a X-lattice H satisfying (D,), then A is
an endomorphism on H.

Proof. As seen in Lemma 4: (iv), 1 is a meet-endomorphism, and so it re-
mains to show that it is a join-endomorphism on H, too. A(x)VA(y)=QA(xV y)Ax)
VRAEVIANZAxV A (xV y)=AxV y). Because A(x) VA(Y)=Ax V y)=A(x), A(y),
we can conclude that A(xV y)=2(x)VA(y), and the theorem follows.

In the case of lattices [3], the property of Thm. 4 characterized the dis-
tributivity of lattices. According to the lack of special translations on X-lattices
we were unable to characterize the distributivity of X-lattices by means of transla-
tions. Following Szasz [3] we can also prove.

Theorem 5. If 2 is a translation on a X-lattice H satisfying (M,), then
AX)VAY)=AxVy) for yeP and x=2A(x).
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Proof. A(x)VAM=QAxVNAXIVAXVINANZAxVIIANYVA XV Y)AX)=
AxVHAGVAE)=AxVA(YVx)=AxVy). As above, we can now conclude
that A(xV y)=2(x)VA(y).

As easily seen, the dual statements of Thms. 4 and 5 can be proved by sub-
stituting (D,) by (D,) and (M,) by (M,;). One can also prove that the ideal of
fixelements of a translation determines the translation uniquely on a X-lattice.

Theorem 6. Let A be a translation on a X-lattice H and I the ideal of its
fixelements. Then

(i) Lin(x]=s];

(ii) Lin(xAyI=UinGEDNyI=Tn DN ]
Conversely, if I is an ideal of H satisfying (i) and (ii), then I 1s the set of fix-
elements of a translation on H.

Proof. Let I; be the ideal of fixelements of a translation 2 on H.

(i): Because A(x)<x, A(x)eI;N(x], and because y=x implies A(y)=A4(x),
t<(x) for element teI;\(x]. Hence I;N\(x]=(A(x)].

(ii): Lin(xAYI=QUxAYI=UnNEDNTND=U m(x])m(y] Iy
N(x] because of A(x A y)=A(x)AA(y) and the properties of .

The converse proof is now obvious.

4. On congruences on a X-lattice. Let 6 be a congruence relation on a
A-lattice H. As usually, the congruences on H constitute a lattice C(H) with w
as the least element ({x, y>Ew& x=y) and 7 as the greatest element ({x, y>E7
for every two elements. x, yEP). Further, <{x, y>€0A¢p&<x, y>=b and <{x, y>
€¢. Moreover, {x, y>0V¢&there is a sequence x=2zo, 21, =+, Z2=) of ele-
ments such that <{z;.;, z:>€80 or <{z;-;, 2P ¢ for every i, i=1, ---, n.

Before proving the distributivity of the lattice C(H) of all congruences on a
X-lattice H we need a lemma. It is an analogy of [1, Lemma 2.3.8].

Lemma 5. Let H be a X-lattice. A reflexive binary relation on H is a con-
gruence on H if and only if the following three properties are satisfied for
x, 9,2, teP:

(i) <z, ypebsixNy, xNVy>Eb;

(i) x=Zy=<z, <x, W, <y, DEl=Lx, 2>€0;

(ii) x<y and {x, D€L, YA, {xViE, yVHEL.

Proof. If @ is a congruence on H, then it obviously satisfies the conditions
of the lemma. Hence we prove the converse only. At first we prove that if
b, cela, d]={x|a<x=d} and if <{a; d>€0, then {b, c>=6. According to (iii)
we obtain, <b, d>, <a, by . By using (iii) again we obtain <bAc, ¢>,<c, cvbyea.
Because bAc<c=<bVc¢, (ii) implies now <bAc, bVc>6, and by (i), <b, c>€0,
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According to (i) 6 is symmetric. To prove the transitivity of 6, we assume
that <x, >, <y, z2>€6. Then by (i), <xAy, xVy>el, and by (i), (yVz)V
(XA, (xVIV(V2D=yVz, (xVy)V(yV2)>eb. Similarly, {y Az, (x AY)A(YA
z)>€6. Because {(x AY)A(YAZ), yAZ), <¥Az, yV2D, {<yVz, (xVy)V(yV2)Heb
and (x APIA(YA2)=SyAz=yVz=(xV y)V(yVz), we obtain by applying (ii) twice
that <(xAY)A(YA2), (xVy)IV(yVz)rel. Because x, ze[(x AYA(YAZ), (xV )
V(yVz)], the proof of the preceding paragraph implies that <x, z>€#6.

Next we prove the assertion: if <x, y>=6, then <xVt, yVi>ef. Because
x, yE[x Ay, xVy], (i) and the proof of the first paragraph imply that <{x, x\V y,
<3, xVy>€f. Now, according to (iii), <xV¢, (x Vy)V), <yVi, (xVy)ViEHeEb,
and by applying the transitivity proved above, we obtain {xVt, yVipf. Now
we are able to prove the substitution property of € for \V: Let {xo, yo», {x1, yD
€6. Then {x,Vxi, 2V, <xoV¥1, ¥oVy >, and according to the transiti-
vity, <xoV %1, ¥V y.>€6. The substitution property for A is proved similarly.
This completes the proof.

Theorem 7. The lattice C(H) of all congruences on a X-lattice H is dis-
tributive.

Proof. Let ¢, 6, ¢=C(H). In order to show the distributivity of C(H) it is
sufficient to prove that ¢A(OVP)=(PAG)V(PA¢Y). Thus we assume that <a, b>
EPA(0V¢) and show that <a, b>=(pAO)V(sA¢P). According to we
may assume further that a<b. The relation <a, b>=dA(0V¢) implies <a, bbegd
and <a, b)>=60V¢, and the latter relation implies the existence of a sequence
a=2zy, 2, ***, Zn-1, Z2.=b Of elements of H such that <z;, z;+:> €8 or {z;, z;DE,
0<:i<n. Because # and ¢ are congruences on H, we obtain a new sequence
a=(aVa)ANb=zy, (z;Va)Ab, -+ ,(z,-.1Va)Ab, (z,V a) Ab=(b\ a) Ab=b of elements
of H such that <{(z;Va)Ab, (z4+1V a)Ab) belongs to 6 or to ¢, 0=i<n. Now
a=z;Va, whence aA(z;Va)=a, and thus we obtain from <a, b)< ¢ the relation
{aN(z;Va), (z;:Va)Aby=<a, (z;\Va)Ab>= ¢ for every i, i=0, ---, n. According
to the transitivity of ¢ we obtain further that <(z;VVa)Ab, (z;+1Va)Abye g for
0=<i<n. But then {(z;V@)Ab, (z:x1Va)Aby belongs to ¢Af or to $A¢ for
0=<:<n, where (20Va)Ab=a and (z,Va)Ab=b. Accordingly, <a, b>($NBb)V
(pA¢), and the theorem follows.
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