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Summary. The authors have constructed an approximate solution in the form
of a spline-function of third degrae for a boundary value problem for func-
tional-differential equation of second order.

In the last decades there is a vigorous advance of the theory of functional-

differential equations due to the increasing circle of applications of functional-
differential equations in various fields of science and téchnology. A detailed
survey of the literature that reflects this theory is done in [T], and others.
- The interest towards boundary value problems for functional-differential equa-
tions is great. It is known that a basic source of such problems are the variational
problems with deviating argument, the problem of optimal control, problems of
ballistics and so on. Since the solution of boundary value problems as a rule is
not found in closed form, then the methods for their approximate solution assumes
a great importance.

The present paper proposes an efficient method for finding an approximate
solution in the form of a spline-function of third degree of a boundary value
problem for differential equations with deviating argument of second order.

The idea of using spline-functions when asking for an approximate solution
of boundary value problems for differential equations without deviations of the
arqument has been applied in a number of papers, for instance, [3]-[6].

1. Problem statement
Consider the boundary value problem
(1) V(@) =1z, y(@), ¥’ (@), Y@—ro(2), ¥'(@—7:(2)) , zela,b],
(2) Y(2)=0 for aZz<a; Y (2)=0.  for aZz<a; y(b)=0.

Here f(x, &1, 71, &, 7:) is a continuous function in the domain
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G-"—‘[a, b]XGIXC;gXGlXGz y
where

G,={¢: ¢eR, 81=Q)}, G:={{:{eR,|{|=Q)}
(Q, and @, are constants), the delays 7,(x)=0 and 7,(x)=0 are continuous functions
in the interval [a, b];

a=min { inf ](m——r,,(ac)),’e é?fb](x——rl(x))} .

zelad

2. Existence and uniqueness of the solution of the boundary value problem

We ask for a smooth for 2 € (a, b) solution y(x) of the equation (1) satisfying
the conditions (2). Assume that y(a+0)=0, but smoothness of the solution at the
point @ is not assumed.

By E denote the set {x: x € (a, b), x—r(x)=a}. We will consider the case when
the set E is finite, i.e. there exists a natural number /, such that E={z®}, a<
x®<Ldb, 1=1,2, -+, 1.

The accepted assumptions yield that the second derivative of the solution y(x)
of the boundary value problem (1), (2) will be in general partially continuous if
the right-hand side of the equation (1) really depends on y'(z—rz,(x)).

We set

Q=sup {| f(, &, 71, &0, W &I=Qy, =1, 2; 19,|=Qs, j=1, 2, asa=b} ;
ai=la,x?], &=[®,z®], -+, d.=[2®;0] @®PeE, s=1,2,...,]);
Q={y(x): y(x) € Cla, bl; y(x) € CYa, b; y(z) € C¥s,], r=1,2, ..., I+1;

max {sup |y’ (®)}=Q; y(®)=0, x€[a, a]U{b}; ¥'(®)=0, z€[a, a)} .

r=1,2,..0,l+1 3,

Theorem 1. Let
1. the following condition hold:

(3)  b-aSmin {(%)"', %Q”} ;

2. In the domain G the Sfunction f(x, &1, 71, &, 7:) Satisfies the Lipschitz condition
| f(®, &1, D1, &2, 02)—F(®, &1, Ty oy TS Lyl81— &1+ Lolny— 1l 4 Lyl€s—Ee| + Lol9e—72l ;

(b—a)* b—

a .
3 > <1.

3. (Ly+Ly)

+(Ls+Ly)

Then in the class of functions 2 there exists a unique solution y(x) of the
boundary value problem (1), (2).
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Proof. Consider the space

(B, li-lls)=(Cla, 81N C*{a, )N C'[a, B], | -I1)

with norm

(4) lyllz=max {

G max 1Y@, 2 max{ max /() max '@}

Determine the operator 17, acting from the space 2 into the space B according
to the formula

Sb G(a; $)f(s, Y(s), ¥'(s), Y(s—1o(s)), ¥ (s—7o(s)))ds , x€la,b]

Hy(x)={Ja
0, z€la,dq].

Here

G(z;s), (@=2=b, a=s=b)

Gla; 5)= {o , otherwise

while G(z;s) is the Green function for the boundary value problem]y’’(x)=0,
y(2)=0, y(b)=0.

Using the consideration of the problem (1), (2) which was done in [7], when
the condition (3) and the inequalities known from are fulfilled

(5) S 1G(z; s)|ds§ﬂ281"— ; S 16 @; 5)lds<2=2

we obtain the inclusion I7QCQ.
Let y,,y.€2. Then, according to the second condition of the theorem, the
inequalities (5) and the definition of the norm (4), we get

| Ty (%) —Ty,(x)] ésb IG(®; )| 1 £(s, ya(x), 9,/(5), Ys(s—74(5)), .’ (—172)))
:f(S. Y2(5), Y2/ (5), Ya(s—70(s)), Yo' (s—74(5)))Ids
<[ 16@ MLy -1+ Ly —v191
+Lglyy(s—7o(s))— '.llz(s—fo(s))l+L4|y1'(3_‘5'1(3)) 1/2’(5_'1'1(3))|}d3

§[<L1+La> b—a) | (1,+L)% ]um—yzn,s 1G(x; )lds

§[<L1+La)"”‘“) F(L+Lyi=e “]"’ D i vills ;
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l(ﬂyl)’(x)——(ﬂuz)’(w)lé[(L1+Ls) ""8“)2 (Lot Ly b;“]llyl—yzna S |G, (z; 5)\ds
5| @A L O L Lo [ il
(6) 17y~ Tyl S| Lt Ly B+ Lt L 252 [ly—vals

The inequality (6) and the third condition of the theorem imply that /7 is a
contraction operator in the set 2. The set £ with the introduced norm (4) and
the operator /7 satisfy the Banach principle for the fixed point. Hence the operator
IT has a unique fixed point in £, i.e. the boundary value problem has a unique
solution y(x) € Q.

3. Construction of the approximate solution
Let the following partition of the interval [a, b] be given:
d: a=2,<2, <X <o <y=b
and Ecd. |

Definition 1. The function S(x), given in the interval [a, 5], is called
spline-function of third degree with defect k2 with respect to the partition 4, if
the following conditions hold:

1. S(z)eP; in [x;_4, x,], i=1,2, :+-, N, where P; is the set of polynomials of
degree less than or equal to three in the interval [z;_,, «;].

2. S(zx) e C*Ha, b]. '

The points #; (=0, 1, ---, N) are called knots of the spline-function.

In literature [8, 9] it is accepted for the spline-functions of third degree with
defect 1 to be called cubic spline-functions.

Everywhere further we will consider spline functions S(x), of third degree
with defect 2 which satisfy the condition

(7) S(x) € Cz[a'r] ’ r:]-a 2’ Sty I+1 ’

i.e. on every interval 4, (r=1,2, .--,[+1), S(x) is a cubic spline-function.
Let the function y(x) is defined on the interval [a, b].

Definition 2. The spline-function S(z), satisfying the conditions

s(wi):y(wi)zyt ’ i=0’ 1’ ctty N;
S @y +0)=y" (2, +0) ,  S"(xy—0)=y" (xy—0) ;
(@@ —0)=y(x®—0), S7(x®+0)=y"(xz®+0), s=1,2,---,1,
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will be called a splide-function interpolating to the function y(x) in the nodes
%; ({=0,1, .-+, N) and will be denoted by S(y; ).
Intr_oduce the notations:

h.f:xj_w/—i ’ .7:1: 27 0y N;
M.i@:S”('y; m.f+0) ’ j=09 1, R N-1 ’
M;e=8"(y; #,—0), j=1,2,---,N.

- Definitions 1 and 2 yield that the spline-function S(y; %), interpola_ting to the
solution y(x) of the boundary value problem (1), (2), can be represented in the
form ‘

c@)=M ;g T2 (x—2s-4)°
(8) S(y; ) =08 g +M;o oh,
_M(]_l)éhjz\ T;— ( __M,@h,’\a:——x;_1
+<y1—1 6 Iy +( ¥ 6 ) &
we[‘”ﬂ—l:ml’] ’ j=1’2, "'rN-

The magnitude M;_;,¢ and M,g (j=1,2, ---, N) from (8) satisfy the system
of linear equations
hisys-1—(hs+hy)ys+hysy

(9) -:.h*'hsf+1 [~;M s-1y5+2h;Mic+2hs Mig+hs M yinol

y0=0’ yNZO; j=1,2,"',’N—1;

 In view of the assumed proposition (7), the equalities, as follows, will be
fulfilled:
Me=M;5, «,€E,

The derivative S$’(y; x) of the function S(y; x) is calculated by the formula

)2 — 2
(10) S + Mo EL My o
‘ —Mj@%‘+l{%:L ’ a7e[x.f—-l., x/] ’ j=1,2) "':N’
We set |
—(hy+h.) hy 0 .- 0 ' 0
hs “‘(hz'{"ha) hz °t 0 0
Ay= 0 h, —(hs+hy) -+ 0 0
0 ' 0 0 s '_(hN-2+hN—-1) hN—z

0 0 0 ces hy —~(Bx-1+hy)
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It can be inductively established that the matrix Ay possesses the property
_ (11) |Axl=(=1)*"thshs - - - hy_,(b—a),

The matrix A%, inverse to the matrix Ay, satisfies the inequalities:

12) | Ayl =max Z oS & 2 o—ar;
gy 1 < K%b—a) v cK—a)
1 <=2 AT . -
(13) xs'f'saxw-z,é,'“”"’ aijl= o ’2_:1|a, T (i=1, N—1) ,

where a;} are the elements of the matrix Ay, K=H/h,‘

h=rn.inhl: (j=1’2"°"N)y H=m?Xh!: (j:]-!""N)'
J

We will seek an approximate solution of the boundary value problem (1), (2)
in the form of a spline-function S(x) of third degree with defect 2 from the class

A={S(z): S(z) € Cla, b]; S(x) € C[a, bl; S(z) e C2[6,] (r=1,2, ---,141);
S(x)=0, z€l[a, alu{b}; max{ max |S"(x)|: j=1, ---, N}=@Q}.

zj-18837;

In our further considerations we will use the following theorem.

Theorem 2. [10] If y(zx) € C*4,], then
1S9 (y)—y @ | =D H* %0 (y"; H) ,

where S(y) (=S(y; x)) is the cubic spline-function interpolating the function y(z) in
the knods {4N3,}; ¢=0,1,2; o (y"’; H) is the continuity modulus of the function
y'/(x) for &

D,=5, D,=5; Ilyll=rggXIy(w)l.

Construct the iteration sequence of spline-functions in the following way.
Choose as a null approximation S(y®; x) an arbitrary function from the class

A. .
The next approximations are constructed by the scheme (14)-(18).

(14) M(k+1)—f[wh S(y(k)’ x;+0), S,(y(k)’ m/+0)’ S(y(k?, wl+0'—'fo(x1+0))’
S (y®; x;+0—7y(x4+0)], 7=0,1,.--,N—1;

(15) MED=flx,;, Sy®; x;—0), S'(y*; 2,—0), S(y"" er—ro(wj—O)),
S'(y®; 2,—0—zy(x,—O0)], j=1,2,---;,N

(k is the number of the iteration).
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in (14) and (15) we set
S®; 2,4+0—7o(x;+0)=0 and  S@H®; #;—0—ro(x;—0))=0
for x;—r(x5)<a;
S'(y®; 2;+0—1y(x;+0)=0 and S'(Y*®; 2,—0—7y(x;—0)=0

for z;—7,(25)<a.
The numbers y;**? are determined from the system

Ry Y — Byt By &0 + By R
”f”“* Bibsas (g MG 12, MO +2h 50 ME O +hy MEB]
j’:l’ 2’ “'9N_1 ’

(16)

YotV =y g *+D =0

Sy®; ) and S'(y**?; x) in the interval [z,-,, #;] are determined by the formulae

(17) .\ S(y*+v; g)= M(A-.+1) (x5;—2)® +M(k+1) (x—%5-1)° +( Ger1) Mg"ﬁ@"!’)%““‘r

Y18 6h, 6h; 6 hy
(et —
+(y§k+1) _M k61)hj )w ha;j—l y XTE [xf—ly xs], .7:17 2: Yy N;
(18) S/ (y®+0; g)y=—M%*Bg (a:;th) + MV (= 2._:!__1_) +ME e hﬁj — MY ’_’6!_
yj(k-*—l)—y‘(’k—‘:_l)

’ xe[ﬁl—hwll ’ j=1:27 ""N-
h;

Consider the iteration sequences {S(y*®; z)} and {S’(y®; x)} determined by help

of the relations (14)-(18).
Set

max IS(y®; 2)—S(y**; z)l=a ;

maXIS’(y"‘) £)—S' (Y*?; x)|=a, ;

eszsh
male;"‘“’-—M;“"l—max{ max |M{P—MQ@|; max Mg —M};
Pt oty
=L+Ly;  A=Lyt+L,; u=—8—+£85—(b~a)’: v=—-23—H+%(b—a);

P=Autag p=5(1+|—;—L3H’+L4H) i

We will prove the following theorem.

Theorem 3. Let the following hold:
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1. conditions of Theorem 1,
2. the inequality

(b—a)*
8

a9 K‘[ll +zzb;“}<1.

Then there exists a number H,>0 such that for all H<H, the sequences
{S®(y®; 2)} (1=0, 1) are uniformly convergent in the interval [a, b] and the estimates,
as follows, hold: ‘ ‘

S@ (@) —~y@l|=Ewly”; H), ¢=0,1,
where :9(17; a:)=£im S(y®; x), y(x) is the exact solution of the boundary value problem
1), @),

— up | 5 1 - vy 2
E=gup ({45, E=gup (2 isH],

o(y”’; Hy=max {o,(y’"’; H)}, r=1,2,---,l4+1 and Ilyll=n;a1§cbly(w)ly.

Proof. The determinant of the system (16), in view of [11), is different from
zero. - Therefore, the construction of the iteration sequence {S(y®; )} is possible.
From the way the spline-functions S(y®; x) are constructed and from the inequalities
(5) it follows that they belong to the class 4. Obviously {S(y®; z)}C Q.

From the relations [(11)-(18) we get

2 — —
Is(y(ki’l); m)._.s(y(k); w)lé_H.s_ mgx IMj(k'*'l)___Mj(k)l_i_max |yj(k+1) ._.yj(k)l ,
J J

j:Or]-’ ""N;
IS/ (y *+V; 2) —S'(y ®; )]

g%Hm?x IMJ("“’*"MJ(")|+“1h‘j=f1n§?iNWJ("“)—y?‘—ﬁ”—(%(")—y;"—’x)l :

ly; ®+D — ,""lé—l-{—b(b—~a)2 max | M, — M, ®| ;
Y Y ) ;

K4 o —
_max |y, # P —y P —(y; P~y S~ (0—a) H max |[M;*0—M,®| ;
J=1rayeey J

| M — M <L,|S(y®; 2;+0)—S(y*?; 2,40)|
+L,|S'(y®; w5+0)+ S (y*2; ;4-0)]
+L;|S(y®; 2;4+0—14(25+0)—S(y*2; 0;4+0—14(2;+0))|
+L,|S (Y ®; 2;+0—7y(2;+0))—S (¥ *¥; 2;4-0—1y(x;4-0))|
<lapt+ial , j=0,1,--+,N—1;
IM@ED—MB|S A+ 2ear , j=1,2,---, N,
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Therefore

(20) akHSu(ziakHza,,’i
(21) ak+1_v(21a,‘+22ak )
The inequalities and imply

(22) a1 Sup* (e +2s0)
(23) S0P (et ey)

By assumption, the condition holds. Hence, there exists a number H,>0
such that for all H<H,, p<1 and E,<-+o0, g=0,1 holds. Then for all H<H,
the inequalities and are sufficient conditions for a uniform in [a, 8] con-
vergence of the series

éolsm)(y(kﬂ); x)_S(q)(y(k); )| , q=0, 1.

This implies that the sequences {S@(y®; z)} (¢=0,1) when H<H, are uni-
formly convergent in [a, b].

Let H<H, and II‘LIE S(y®; £)=S(%; ). Then ’1‘1_{2 S'(y*+0; 2)=S"(¥; x) .

The function S(§; ) is accepted to be an approximate solution of the boundary
value problem (1), (2). Denote

Mi@zs’l(g; x/"{"o) ’ j:07 17 Y N—-1 ’
MJE-):S”(:&; wj'_'o) ’ .7:1) 27 %y N’
gf:—s(g; x/)’ j=0’ 1’ "'rNQ

It is easily seen that the following relations hold:
( (25— x)° (x—a5.)°
S(y: x) M(.f n»Pd |6h +M Ghj

. My yeh®\ 2 —2 ( . Mch? \a—w,_,
(24) < +(y1—1 6 / 7, +( s 6 } h, ’

velxjq, 2, j=1,2,---,N;

S(@; x)=0, z<a;

S'(7; 2)= "‘M(i ) (&, —a)* 'M @—a-0)” —I—M(f ne L—M hj-f-yj Us=s ,

2h; 2h; 6 6 h;
xe[x.f-ly xj] ] .7""1’ ,N,
(25) Mig=Flw;, S@; £;40), S'(§; 2;+0), S(F; %;-+-0—14(;+0)),

S,(’_l?; x1+0_71(w1+0))] ’ j:07 1) ) N-1 ;
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(26) Mo=fl;, S(7; 2—0), S'(F; ©;—0), S(F; #;—0—1zo(x,—0)),
S (y; £;7—0—1y(2,—0))], j=1,2,.--,N;

hyss¥s-s—(Bs+hy)Ps+hiihiss
@7 =%1'[th -nd+2h;Mio+2hs Myg+hys Myl ,

! =,2,...,N—1,
Po=9x=0.

The fulfilment of the conditions of Theorem 3 guarantees the existence of a
unique in 2 solution y(x) of the boundary value problem (1), (2). Let S(y; %)
denote the spline-function interpolating the exact solution y(x) of the boundary
value problem (1), (2) in the knods 4 of the interval [a, 5]. In view of Theorems
1 and 2 the inequalities, as follows, hold:

(28) IS®@W)—-y?I|=D.H* o(y’; H), ¢=0,1,2

(here S’(y; x;) and y’/(x,) for the points z;€ E denote any of the one-sided deriva-
tives S(y; x;+0), S”(y; #,—0) and y’’(x;+0), y"’(x;—0), respectively.)

We will look for a connection between M;5=S"(y; x;-+0) and f(x;, S(y; x;+0),
S'(y; 2;+0), S(y; ©;4+0—17(2;4-0)), S'(y; ©;+0—1,(x;+0))) .

Using the second condition of Theorem 1 and the condition (28), we get

| Me—f(%;, S(y; ©;4-0), S'(y; 2;+0), S(y; &54+0—1z4(2;+0)), S'(y; 2;+0—7,(2;40)))]
=I18(y; 5+0)—y"’ (25 +0) |+ 1 f(®s, Y(21), Y'(5), Y(X1—10(5)), Y (%1 0—71(;-0)))
— flxs, S(y; 2;+0), S'(y; £;+0), S(y; x;+0—2(2;+0)), S'(y; x;+0—7(2,+0)))|
<5w(y’’; H)+L,|y(x;)—S(y; £;+0)|+L,|y'(2;40)—S'(y; 2;+0)|
+ Lyl y(2,—7o(21))—S(y; 2;4-0—174(2;+0))]
+L |y’ (%4 0—1(;40)—S'(y; ©;4-0—17,(;40))|
<5 (1+ % LBH2+12H)w<y"; H)
=pw(y’’; H), j=0, 1,.--,N—1.
In an analogous wé.y, we obtain
IMo— f(x;, S(y; 2;—0), S(y; 2,—0), S(y; £;—0—7(2,—0)), S(y; x;—0—7,(2;—0)))|
é/‘w(y"; H) ’ j=1y 2’ R N’
where

M;c=S8"(y; ©;—0) ;
Hence,

(29) Mio=f(xs, S(y; 2,+0), S'(y; ;40), S(¥; 25+0—70(2,+0)), S'(y; 2;+0—71(2,+0)))
+[1w(y”; H) ’ ]:0; 1’ ) N—-1 s
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(30) Moo= f(x;, S(y; £,—0), S'(y; ,—0), S(y; ;,—0—1o(2;—0)), S'(y; £;—0—7,(2;,—0)))
+#w(y"; H) ’ j=1’ 21 “'1N-
Denote

max ISD(F; 2)—S9(y; 2)|=a?, ¢=0,1;

ases

max |M,— M, =max { _max IMIO‘_MJOI, _max  |Mo—Miel} .
J =12 N 3=0,1, .

Having in mind the relations (24)-(27), (8)-(13), (29) and (30), we get
2 - —
1S5 2)— Sty @) S5 max |M,— B, +max |g,—sl , j=0,1,-+,N;

|s'(z7;w)—s'<y,x>|<—§—Hmale, M;l+% max [9,—§s1—W—ys-) ;

i=1,.
- K® = =
\9:—vsl é——(b—a)2 max |M;— M| ;

max ny—-yj —(Ys—Ys- 1)l<£——(b —a) max le M ;

§=1,000, N
IMJ$-—MJ$I§11a+22a’+ﬂw(y", H) ’ —O’ 19 Sty N—-1 ’
\Mio— M| S8+ 28+ po(y”; H), j=1,2,+--,N.

Therefore,

@y a=u(2,a+2,&' +po(y'’; H))
(32 & S0(E+2E +poly’’; H)) .
The inequalities and yield

(33) 1—7 oy’ H),

(34) a=

I’ffp o(y”; H) .

Then, in view of the inequalities [(28), (33) and we obtain the estimates-
IS —y I IS —SW)ll+ I1S)— yn<(1"”p +iH=)w<y~ H)=Ew(y”; H) ;
IS @y ISISD—S WI+18' W)~ IS({25-+5H Jot’s HISEty”; H)

The Theorem is proved.
Theorem 3 and the definition (4) of the norm || Il imply the estimate
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i — 8E, 2E1} ”.
1S(#)—ylls=max { —af’ b—g]®¥" H).

Remark. When solving particular boundary value problems of the type (1),
(2) by the described approximate method, practically S(y®; x) is taken as an ap-
proximate solution for k sufficiently large in order to reach a definite proximity
between S(y**V; ) and S(y®;x). The error in this case may be estimated on
the grounds of the inequalities and in the following way:

1Sy #+0)— Sy © )| Sty - Ayary?)pr-2 L2
(35) 1_”
1S/ (g ®+9)— S (y @) | Sv(dgas + doas )+ ’;

For H=H, and i—c, from the inequalities (35) we obtained the inequalities

15— S(y @) | Su(hias+ ) p:;

1S/ () —S' (y )| Sv(2s+ Reery’) " — —

Therefore, for an arbitrary ¢>0 for all H<H, a number of iteration 2, might
be exactly pointed, such that for all numbers 2=k,

IS@(H—SC(y®)|=e, ¢=0,1,
will be fulfilled. Then, for k=%, in the conditions of Theorem 1, the inequalities
|S@(y®)—y @l e+ Ely”; H), g=0,1
hold.

Example 1. Consider the boundary value problem
v (@) =ay’ (ac-—— ———)-f—e’ zel0,1], lal<l

b BN PR TOR y(1)=0.
Here E={1/2}. Q.=3, Q=3|a|+e¢; L,=L,=L,=0, L,=|al.
It is easily seen that the conditions of Theorem 1 hold. Hence, there exists
a unique solution of the boundary value problem belonging to the set 2, correspond-
ing to the data of the problem By checking it can be found that this solution
is as follows: ' :
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- {(@a—Dz+e—1, 0_<x<_%,
y(@) 4x*—4x4-1 5 a «a 1
= o )—1—"fn— —_ ) p— — g2 z—(1/2) _|_p® —<g<1
a(m+a 3 ) 1 Sa (l-i— z)w zw +ae +e®, 5 =1,
where

__16—8a+v e +13a—8e
a= .
8+a

For the construction of the approximate solution we use the uniform division
of the interval [0,1] with length of the subintervals (1/2*)(N=(b—a)2"). Then
the point 0, 5 turns out to be a knod of the corresponding spline-functions, while
the condition for convergence of the iteration sequence of spline-function (19)
coincides with the third condition of the theorem for existence and uniqueness of
the solution.

- The example is calculated at «=0,5 on a ES 1020 computer. Calculations

are done with double accuracy. The program is written in FORTRAN.
The obtained results are given on Table 1. The following notations are used
in the tables:

Table 1 (a=0,5)

. WWs—sl lys' =95
g

N+1=9 N+1=33 N+1=129 N+1=9 N+1=33 N+1=129
0,00 0,00 0,0 0,0 9,88 (—4) 6,2 (—5) 4,0 (—6)
0,25 2,02 (—4) 1,3 (~5) 1,3 (—6) 6,18 (—4) 3,8 (—5) 2,0 (—6)
0,50 3,00 (—4) 1,9 (=5 1,0 (—6) 1,44 (-9 9,0 (-6 1,0 (—6)
0,75 2,53 (—4) 1,6 (—5) 1,0 (—6) 5,50 (—4) 3,5 (=5) 2,0 (—6)
1,00 0,00 0,0 0,0 1,52 (-3) 9,5 (—5) 6,0 (—6)

y;—the value of the exact solution in z;,

75;—the value of the approximate solution in z;,

y;/—the value of the derivative of the exact solution in z;,

7/ —the value of the derivative of the approximate solution in
N+1—number of the nodes.
The maximal number of iterations to obtain the shown results is 8.

Example 2. Consider the boundary value problem

2

;{E:;:g} 5<0,  y(O)=yx)=0.

y;/(w)e%yr<a:— .”_)-i—sin z, O=z=x,
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Here E={r/2}. For Q,=r, Q=2, L,=L,=L,=0, L,=1/4.

The conditions of the theorem for existence and uniqueness of the solution of
the boundary value problem are fulfilled. By checking it is found that the unique
solution of the boundary value problem is as follows: '

8z o < T
e ————n_(32+ﬂ) sinz , 0=x=—z ,
let4@-mz_3 . 8 7o
23217 4 ¥y g=t=ET

Example 2 is also calculated on a ES 1020 computer, with double accuracy
the program is also written in FORTRAN. The obtained results are shown on
Table 2. The maximal number of iterations to obtain the shown results is 54.

Table 2
lvi—¥sl lys' ¥4
t7]
N+1=9 N+1=33 N+1=129 N+1=9 N+1=33 N+1=129
0,00 0,00 0, 00 0,0 1,10 (—2) 6,87 (—4) 4,3 (=5)
/4 7,57 (—3) 4,77 (—4) 3,0 (—5) 7,26 (—3) 4,52 (—4) 2,8 (—5)
/2 9,85 (—3) 6,21 (—4) 3,9 (—5) 1,84 (=3) 1,16 (—4) 7,0 (—6)
3I1/4 6,39 (—3) 4,03 (—4) 1,5 (—5) 6,80 (—3) 4,26 (—4) 2,9 (—5)
/4 0,00 0, 00 0,0 9,05 (—3) 5,64 (—4) 3,5 (—5)

4. Influence of the errors at the rounding off in the process of calculations

Practically, with the use of a computer, the numbers M{, j=0,1, ---, N—1;
M®, j=1,2,---,N and y;®, j=0,1,---, N, k=1,2, --- are calculated approxi-
mately. Hence the question about the influence of the error that is done at each
iteration on the result obtained after the A-th iteration.

By T4 we denote the operator acting from A into A by the scheme (14)-(18).
We will prove the following lemma.

Lemma 1. If conditions of Theorém 3 hold, then there exists a number H,>0,
such that for all HSH, the sequences {S@(y®;x)}, q=0,1, are uniformly con-
vergent in [a, b] and the operator T is contractive in the space ACB.

"~ Proof. Theorem 3 implies that for sufficiently small values of H the sequences
{S@(y®; x)}, ¢=0, 1, are uniformly convergent in [a, b].
Let S,(y®; z) and S;(y®; ) be two functions from A. Then, by reasoning
analogous to that for finding (20) and we obtain the following inequalities:
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(T AS)W®; 2)— (T 4S:)(y@; @)

—a)? —
=15y ) S o) = 1 L0 2L YISl

T 4SY W @; 2)—(T4S:Y (¥ ; )|

—n)2 —_
=[S/ (y?; w)-—Sz’(y“’; x)lév[h (0 8(1) + 2, b za ]I‘S1—Szlln .

‘Whence,

)2 — .
(36) ”TAS1_TA82”B§maX {(b_s_ua)z ’ b-z—Z)aH:21 (b Ba) + 12 b za:|"51_‘szl|n .

By assumption, K3[1,((b—a)*/8)+4,((b—a)/2)]<1. Then, for sufficiently small
values of H, the inequality

' 8u 2v (b—a)* b—a
37) max{(b~a)2 s b_a}[zl 3 +2; > ]<1

holds.

Therefore, there exists a number H,>0, such that for all H=H,, the sequences
(S@(y®; x)}, ¢=0, 1, are uniformly convergent in [a, b] and the inequality
holds. Let

e ) sl 505

Then, the inequality (36) yields
“TAS1_TASz"B§0'”S1—82"B ’

where ¢<1.

Thus, [Lemma 1 is proved.
The iteration process (14)-(18) may be written by help of the operator T, in
the following way:
TsS(y®; 2)=Sy**; =) .
Under the conditions of Theorem 3, the function S(7; ) is a fixed point of the
operator T 4.

Theorem 4. Let conditions of Theorem 3 hold and let, when each function
S(y®; x)=Su(x) is calculated, an error be done, which, by the norm in B, does not
exceed some number 4,, i.e.

(39) 1T 4Se— T aS:ll a< 4o
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where f‘ASk(w)=fl:‘AS(y(“> ; @) is the approximately calculated value of T ,S(y™; x).

Then, if the approximately calculated by formula (38) consecutive approxima-
tions §(y“’; x), §(y">; ), e, §(y""; x) belong to the set A, then for the deviation
of the calculated after the k-th iteration approximation §(y"" ; x)=§,,(.'c) from
S(7; )=S(x), the estimate as follows holds:

15, —Sll5<0*1Se— S5+

Ao &
1—0¢ (=%
where Sy(x)=S(y?; x).

Proof. - The inequality and Lemma 1 imply the chain of inequalities

1S:—Sll»= alIS,,_ —Sllgt+dy=<---
» <o*|Sy—Sl s+ o1 +o+ -+ +o*Y)

<o1Ss—Sla+ 4o =

Thus, Theorem 4 is proved.
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