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ABSTRACT Let $(K_{\beta})_{\beta\in R}$ be a family of subsimplexes of a compact, convex, metrizable set
$K$ such that $\{(\beta, \omega);\beta\in R, \omega\in K_{\beta}\}$ is a closed subset of $R\times K$. We prove that there exist a
simple separable $C^{*}$-algebra $\mathscr{A}$ with identity, and a strongly continuous one-parameter
group $\gamma of*$-automorphisms of $\mathscr{A}$ , such that the set of $(\gamma, \beta)$-KMS states is affinely isomor-
phic to $K_{\beta}$ for each $\beta\in R$ . Furthermore, $(\mathscr{A}, \gamma)$ may be chosen such that the set of ground
states, resp. ceiling states, is isomorphic to an arbitrary face in the state space of an arbitrary
simple, unital, separable AF algebra. We finally prove that any metrizable simplex is
isomorphic to a face in the state space of a certain simple, unital, separable AF algebra.

I Introduction

In [5] a simple $C^{*}$-algebra and a continuous one-parameter automorphism
group were constructed such that the set of inverse temperatures $\beta$ at which there
exist equilibrium states (i.e. KMS states, or, for $\beta=\pm\infty$ ground or ceiling states) is
an arbitrary given closed subset of $[-\infty, \infty]=R\cup\{\pm\infty\}$ . The construction was
such that the equilibrium state at $\beta$ is unique for all $\beta$ in the closed subset. In [5]

a couple of alternative constructions were proposed which allowed certain cases of
specified nonuniqueness of the equilibrium states at a fixed temperature, i.e. a speci-
fication of the compact, convex set $K_{\beta}$ of KMS-states at temperature $\beta$ . In this
paper we will pursue a more systematic investigation in this direction.

We will consider $C^{*}$-dynamical systems $(\mathscr{A}, \gamma)$ , where $\mathscr{A}$ is a $C^{*}$-algebra with
identity and $t\in R\mapsto\gamma_{t}$ is a strongly continuous one-parameter group of $*$-auto-
morphisms of $\mathscr{A}$ . If $\omega$ is a state on $\mathscr{A}$ and $\beta$ is a real number, $\omega$ is said to be a
$(\gamma, \beta)$-KMS state if

$\omega(A\gamma_{i\beta}(B))=\omega(BA)$

for all A, $Be\mathscr{A}$ such thatB is entire analytic for $\gamma$ . We use the terminology that $\omega$
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is a $(\gamma, +\infty)$-KMS state if $\omega$ is a ground state, i.e.

$-i\omega(A^{*}\delta(A))\geq 0$

for all $A$ in the domain of the generator $\delta$ of $\gamma$ . The notion of $(\gamma, -\infty)$-KMS state
or ceiling state is defined by the converse inequality, [7].

The set $K_{\beta}$ of $(\gamma, \beta)$-KMS states is a compact, convex subset of the state space
$E_{d}$ of $d$ for any $\beta\in R\cup\{\pm\infty\}$ . $K_{\beta}$ is a simplex if $\beta\in R$ and a face in $E$, for
$\beta=\pm\infty$ . $K_{+\infty}$ is not in general a simplex; a certain condition of asymptotic
abelianness is necessary and sufficient for this, [3], [4], [7].

The structure of the map

$\beta\in[-\infty, \infty]\mapsto K_{\beta}$

has been analyzed in detail in several models, notably in quantum lattice spin systems,
[7]. In this paper we will attack the converse problem, i.e. we will assume that
the map is given and then construct a $C^{*}$-dynamical system where the equilibrium
states define the given map. It is then necessary that $K_{\beta}$ is a simplex for each $\beta\in R$ .
It is also necessary to impose some continuity on the “field” $\beta\mapsto K_{\beta}$ , and we will do
that by requiring that each $K_{\beta}$ be contained in a common compact convex set $K$ ,
in such a way that if $(\omega_{\alpha})$ is a convergent net in $K$ such that $\omega.\in K_{p}$. and $\beta_{\alpha}$ converges
to some $\beta\in R$ then $\lim_{\alpha}\omega_{\alpha}\in K_{\beta}$ . If $(\mathscr{A}, \gamma)$ is a $C^{*}$-dynamical system and $K=E,$ ,
it is well known that the family of $K_{\beta}’ s$ has this property (see for example [7], Propo-
sition 5.3.23). The only assumption we must impose on the field $\beta\mapsto>K_{\beta}$ which is
not fulfilled for general $C^{*}$-dynamical systems is a separability assumption; we
assume that $K$ is metrizable. We do not know if this assumption can be avoided;
we make it because we do not know whether the general groups considered in [10]
are dimension groups of (not necessarily separable) AF algebras or not. Even when
this is the case we do not know whether automorphisms lift.

The construction is such that the sets of ground and ceiling states can be identi-
fied with the state spaces of two arbitrary simple unital AF algebras $\mathscr{A}^{\pm\infty}$ . If
$ K_{\beta}=\phi$ for all large positive, resp. negative $\beta$ , the construction can be made such
that there are no ground states, resp. ceiling states.

By perturbing the dynamics $\gamma$ by an inner perturbation we can obtain a $C^{*}-$

dynamical system $(\mathscr{A}, \gamma^{P})$ such that the set of $(\gamma^{P}, \beta)$-KMS states is still affinely
isomorphic to $K_{\beta}$ for $\beta\in R$ , but the set of ground states, resp. ceiling states is affinely
isomorphic with an arbitrarily given face in the state spaoe of $\mathscr{A}^{+\infty}$ , resp. $\mathscr{A}^{-\infty}$ .
We will show in Section 9 that any metrizable simplex is affinely isomorphic to such
a face.
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The construction in this paper is a modification of the construction in [5], in-
corporating and extending the result of [15] (for which we give a new proof). The
main theorem is stated in Section 2 and proved in Sections 3-6. The complements
on ground and ceiling states are in Sections 7-10.

In Section 2 we also give a necessary and sufficient condition ensuring that a
given one-parameter family $(K_{p})_{\beta\in R}$ of finite-dimensional simplexes can be embedded
in a metrizable compact convex set $K$ in the manner described above.

II KMS-states

Our first main result is the following

Theorem 2.1. Let $K$ be a compact, convex metrizable set, and let $K_{\beta}$ be a
closed convex subset of $K$ for each $\beta\in R$ . Assume that
1. Each $K_{\beta}$ is a simplex.
2. If $(\omega_{\alpha})$ is a convergent net in $K$ such that $\omega_{\alpha}\in K_{p_{a}}$ , and $\beta_{\alpha}$ converges to

some $\beta\in R$ , it follows that $\lim\omega_{\alpha}\in K_{\beta}$ .
There exists a $C^{*}- dynamic^{\alpha}al$ system $(\mathscr{A}, \gamma)$ such that $\mathscr{A}$ is simple with unit,

and the set of $(\gamma, \beta)$-KMS states on $\mathscr{A}$ is affinely isomorphic to $K_{p}$ for each $\beta\in R$ .
Furthermore, $(\mathscr{A}, \gamma)$ can be constructed such that $\mathscr{A}$ is separable and amenable

and $\gamma$ is periodic with period $ 2\pi$ .
The proof of Theorem 2.1 goes in two steps.

Step 1. One constructs an approximately finite-dimensional $C^{*}$-algebra $g$ , an
automorphism $\alpha$ of $\mathcal{B}$ anda projectionE in $\mathcal{B}$ such that

1. The set of lower semicontinuous traces $\rho$ on $\mathcal{B}$ such that

$\rho(E)=1$ , $\rho\circ\alpha=e^{-\beta}\rho$

is affinely isomorphic to $K_{\beta}$ for each $\beta\in R$ .
2. There are no globally $\alpha$-invariant ideals in $\mathcal{B}$ except for the trivial ones.
3. $\alpha$ transforms each nonzero projection in $\mathcal{B}$ into a non-equivalent projection.
es will be constructed by constructing its dimension group, in Sections 3-5.

Step 2. Conditions 2 and 3 above imply that the $C^{*}$-crossed product $C^{*}(\mathcal{B}, \alpha)$ of
$\mathcal{B}$ by $\alpha$ is simple. We let $\gamma$ be the dual action of $\alpha$ restricted to $\mathscr{A}=EC^{*}(2, \alpha)E$ .
Then we establish a one-one correspondence between $(\gamma, \beta)$-KMS states $\omega$ and
traces $\rho$ on $\mathcal{B}$ such that

$\rho(E)=1$ , $\rho\circ\alpha=e^{-\beta}\rho$ .

This correspondence is given by
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$\omega=\rho\circ\epsilon$

where $\epsilon;\mathscr{A}\rightarrow E\mathcal{B}E$ is the projection defined by

$\epsilon(A)=\frac{1}{2\pi}\int_{0}^{2\pi}dt\gamma_{t}(A)$ .

This will be done in Section 6.
In this statement of Theorem 2.1 it was assumed that all $K_{\beta}$ are contained in

a common convex compact subset $K$ in a certain continuous manner. This suggests
the problem of deciding when a one-parameter family $\beta\mapsto K_{\beta}$ of simplexes can be
embedded in a metrizable convex compact set $K$ in this manner. In the case that
all the $K_{p}’ s$ have finite affine dimension we can give a completely satisfactory answer
to this question:

Corollary 2.2. Let $F_{0},$ $F_{1},$ $ F_{2},\ldots$ be a sequence of subsets of R. Then the
following conditions are equivalent.
1. The sets $F_{1},$ $ F_{2},\ldots$ are all $F_{\sigma}$-sets, $F_{0}$ is closed and

$ F_{0}\supseteq F_{1}\supseteq F_{2}\supseteq\cdots$ .
2. There exists a $C^{*}$-dynamical system $(\mathscr{A}, \gamma)$ such that $\mathscr{A}$ is separable simple

amenable with unit, $\gamma$ is periodic with period $ 2\pi$ , and $F_{k}$ is the set of $\beta’ s$ such
that the set of $(\gamma, \beta)$-KMS states has affine dimension greater than or equal
to $k$ for $ k=0,1,\ldots$ .

3. There existsa C*-dynamical system(,sai‘, $\gamma$) such that.sai‘ is separable with unit,
and $F_{k}$ is the set of $\beta’ s$ such that the set of $(\gamma, \beta)$-KMS states has affine dimen-
sion greater than or equal to $k$ for $ k=0,1,\ldots$ .
Proof. We prove $1=2\Rightarrow 3\Rightarrow 1$ .

$1\Rightarrow 2$ . Let $\xi_{1},$ $\xi_{2},\ldots$ be an orthonormal basis in an infinite-dimensional separable
real Hilbert space $\ovalbox{\tt\small REJECT}$ , and let

$K=\{\xi\in\ovalbox{\tt\small REJECT};(\xi_{i}, \xi)\geq 0,\sum_{i=1}^{\infty}(\xi_{i}, \xi)\leq 1\}$ .

Then $K$ is a simplex, equipped with the weak topology. For $ k=1,2,\ldots$ , let $F_{k.i}$ ,
$ i=1,2,\ldots$ be an increasing sequence of closed sets such that $\bigcup_{i\geq 1}F_{k,i}=F_{k}$ and define
a function $f_{k}$ : $R\rightarrow[0,1]$ by

$f_{k}(\beta)=1$ if $\beta\in F_{k,1}$

$f_{k}(\beta)=\frac{1}{i}$ if $\beta\in F_{k,i}\backslash F_{k,i-1}$ , $ i=2,3,\ldots$
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$f_{k}(\beta)=0$ if $\beta\not\in F_{k}$ .
Then $f_{k}$ is an upper semicontinuous function of $\beta$ , for $ k=1,2,\ldots$ .

We define subsimplexes $K_{p}$ of $K$ as follows:

$ K_{p}=\phi$ if $\beta\not\in F_{0}$

$K_{\beta}=$ { $\xi;\xi=\sum_{i=1}^{\infty}\lambda_{i}f_{i}(\beta)\xi_{i}$ where $\lambda_{\ell}\geq 0,$
$\sum_{i}\lambda_{i}\leq 1$ } if $\beta\in F_{0}$ .

$TheneachK_{\beta}$ isasubsimplex of K, $K_{\beta}$ has affine dimensionk if $\beta\in F_{k}\backslash F_{k+1},$ $k=0$,
1, 2, $\ldots$ , and $K_{p}$ is affinely isomorphic to $K$ if $\beta\in\bigcap_{k}F_{k}$ . Furthermore, the set

$\{(\beta, \omega);\beta\in R, \omega\in K_{\beta}\}$

is a closed subset of $K$ as a consequence of the upper semicontinuity of each $f_{i}$ .
Hence 2 follows by Theorem 2.1.
$2\Rightarrow 3$ . Trivial.
$3\Rightarrow 1$ . Use $K_{p}$ to denote the set of $(\gamma, \beta)$-KMS states, and define

$F_{k}=$ {$\beta$ ; dim $K_{\beta}\geq k$ }

for $ k=0,1,2,\ldots$ . Clearly $F_{0}$ is closed and $ F_{0}\supseteq F_{1}\supseteq\cdots$ . It remains to show that
each $F_{k}$ is an $F_{\sigma}$-set.

Let $(A_{n})_{n\geq 1}$ be a dense sequence of self-adjoint elements in $\mathscr{A}$ , and if $n_{1},\ldots,$ $n_{k}$

is a finite sequenoe of natural numbers, define a subset of $R^{k}$ by

$K(\beta;n_{1},\ldots, n_{k})=\{(\omega(A_{n_{1}}),\ldots, \omega(A_{n_{k}}));\omega\in K_{p}\}$

for all $\beta\in R$ . $K(\beta;n_{1},\ldots, n_{k})$ is then a compact convex subset of $R^{k}$ , and dim $K_{\beta}$

$\geq k$ if and only if dim $K(\beta;n_{1},\ldots.n_{k})\geq k$ for some $(n_{1},\ldots, n_{k})$ . Define

$K(\beta;n_{1},\ldots, n_{k}; N)$

$=\{\alpha\omega_{1}+\beta\omega_{2} ; \omega_{1}, \omega_{2}\in K(\beta;n_{1},\ldots, n_{k}), \alpha, \beta\in R, \alpha+\beta=1, |\alpha|, |\beta|\leq N\}$

for $ N=1,2,\ldots$ .
$Then\cup K(\beta;n_{1},\ldots, n_{k}; N)$ is the affine subspace of $R^{k}$ spanned by $K(\beta;n_{1},\ldots, n_{k})$ ,

and $di^{N}mK_{\beta}\geq k$ if and only if this space is equal to $R^{k}$ for some $n_{1},\ldots,$ $n_{k}$ . Let
$\{x_{n}\}_{n=1}^{k+1}$ be $k+1$ affinely independent points in $R^{k}$ . Then the set

$F(n_{1},\ldots, n_{k}; N;n)=\{\beta;K(\beta;n_{1},\ldots, n_{k};N)\ni x_{n}\}$

is a closed subset of $R$ , since

$\{(\beta, x);\beta\in R, x\in K(\beta;n_{1},\ldots, n_{k};N)\}$
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is a closed subset of $R\times R^{k}$ . Hence

$F(n_{1},\ldots, n_{k}; N)=\bigcap_{n}F(n_{1},\ldots, n_{k}; N;n)$

is a closed subset of R. But

$\bigcup_{N}F(n_{1},\ldots, n_{k};N)\equiv F(n_{1},\ldots, n_{k})$

is exactly the set of $\beta$ such that dim $K(\beta;n_{1},\ldots, n_{k})\geq k$ , and hence one has

$F_{k}=\cup F(n_{1},\ldots, n_{k})n_{1}\ldots..n_{k}$

It follows that $F_{k}$ is a $F_{\sigma}$-set.

III A Riesz group

Following [10], we will say that an ordered abelian group $G$ is a Riesz group
if $G$ is unperforated, i.e.,

If $g\in G$ and $ng\geq 0$ for some $n\in N$ then $g\geq 0$,
and if $G$ has the Riesz interpolation property, i.e.,

If $g_{1},$ $g_{2},$ $g_{3},$ $g_{4}\in G$ and

$g_{1},$ $g_{2}\leq g_{3},$ $g_{4}$

then there exists a $g_{5}\in G$ such that

$g_{1},$ $g_{2}\leq g_{5}\leq g_{3},$ $g_{4}$ .
The dimension group of an AF algebra was defined in [12], see also [11], and it was
proved in [10] that a countable ordered group is the dimension group of a separable
AF algebra if and only if it is a Riesz group.

We will construct a certain ordered group $G_{0}$ , and the dimension group $G$ of $g$

will be an ordered subgroup of $G_{0}$ . In the definition of $G_{0}$ we will tacitly assume
that $ K_{p}\neq\phi$ for at least one $\beta\in R$ ; the case that $ K_{p}=\phi$ for all $\beta$ can be treated by
taking the tensor product of two $C^{*}$-dynamical systems $(d_{1}, \gamma_{1}),$ $(d_{2}, \gamma_{2})$ , where
$(\mathscr{A}_{i}, \gamma_{i})$ has $(\gamma_{i}, \beta)$-KMS states only for one $\beta=\beta_{i}$ , and $\beta_{1}\neq\beta_{2}$ .

In order to proceed with the construction we will make a certain replacement
of the sets $K_{\beta}$ within $K$ . Let $\omega_{0}$ be a fixed arbitary element in $K$ , and define affine
continuous maps $\Phi_{p}$ : $K\rightarrow K$ by

$\Phi_{\beta}(\omega)=e^{-|p|}\omega+(1-e^{-|\beta|})\omega_{0}$ .
Define

$K_{p}^{\prime}=\Phi_{\beta}(K_{\beta})$ .
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Then $K_{\acute{p}}$ is affinely isomorphic to $K_{p}$ , and the family $(K_{\acute{\beta}})_{\beta\in R}$ still has the properties
1 and 2 in Theorem 2.1. Furthermore, if $(\omega_{\alpha})$ is a convergent net in $K$ such that
$\omega_{\alpha}\in K_{\beta_{\alpha}}$ and $\beta_{\alpha}\rightarrow+\infty$ , then it follows from the compactness of $K$ that $\omega_{\alpha}\rightarrow\omega_{0}$ .
The same statement is true for $-\infty$ . Thus, ifwe define $K_{\pm\infty}^{\prime}=\{\omega_{0}\}$ , or $K_{\pm\infty}^{\prime}$ as any
simplex in $K$ containing $\omega_{0}$ , or in the case that $ K_{\beta}=\phi$ for all large $positive/negative$

$\beta,$ $ K_{+\infty}^{\prime}=\phi/K_{-\infty}^{\prime}=\phi$ , we obtain a family $(K_{\beta}^{\prime})_{\beta\in[-\infty,\infty]}$ of subsimplexes of $K$ which
has the properties 1, 2 of Theorem 2.1 when $R$ is replaced by $[-\infty, \infty]$ (here
$[-\infty, +\infty]=R\cup\{\pm\infty\}$ with the obvious topology). For simplicity of notation
we drop the prime and denote this new family by $(K_{\beta})$ . In summary, the properties
of the family $(K_{\beta})$ needed in the sequel are

1. $K_{\beta}$ is a simplex for each $\beta\in[-\infty, +\infty]$ .
2. If $(\omega_{\alpha})$ is a convergent net in $K$ such that $\omega_{\alpha}\in K_{\beta_{\alpha}}$ , and $\beta_{\alpha}$ converges to

some $\beta\in[-\infty, \infty]$ , it follows that $\lim_{\alpha}\omega_{\alpha}\in K_{\beta}$ .
Demition 3.1. Adopt the assumptions above. Let $\tilde{K}$ be the $s$ubset of [-co,

$+\infty]\times K$ defined by

$K=\{(\beta, \omega);\beta\in[-\infty, \infty], \omega\in K_{\beta}\}$ .
(Condition 2 implies that $K$ is closed.) Let $G_{0}$ be the additive group consisting of
real continuous functions $f$ on $\langle-\infty, +\infty\rangle\times K$ such that

(a) $\omega\rightarrow f(\beta, \omega)isanaffinefunctionforeach\beta\in R$ .
(b) There exist (necessarily unique) continuous real affine functions $f_{n}^{+},$ $f_{n}^{-}$ ,

$n\in Z$ and a constant $N=N(f)>0$ such that only finitely many of $f_{n}^{+},$ $f_{n}^{-}$ are non-
zero and

$f(\beta, \omega)=\sum_{n}e^{n\beta}f_{n}^{+}(\omega)$ for $\beta\geq N(f)$

$f(\beta, \omega)=\sum_{n}e^{n\beta}f_{n}^{-}(\omega)$ for $\beta\leq-N(f)$ .

Write $f>0$ if and only if there exist integers $n,$ $m$ such that

$i$ . $f(\beta, \omega)>0$ for $\beta\in R$ and $(\beta, \omega)\in K$

ii. $f_{k}^{+}(\omega)=0$ for $\omega\in K$ and $k\geq n+1$

iii. $f_{n}^{+}(\omega)>0$ for $\omega\in K_{+\infty}$

iv. $f_{k}^{-}(\omega)=0$ for $\omega\in K$ and $k\leq m-1$

$v$ . $f_{m}^{-}(\omega)>0$ for $\omega\in K_{-\infty}$ .
The most important property of $G_{0}$ is the following
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Lemma 3.2. $G_{0}$ is a Riesz group.

Proof. It is easily verified that $G_{0}$ is an ordered group, i.e.

$G_{0+}+G_{0+}\subseteq G_{0+}$

$G_{0+}-G_{0+}=G_{0}$

$G_{0+}\cap(-G_{0+})=\{0\}$ .
(The second property follows by adding and subtracting an element of the form
$f(\beta, \omega)=C(e^{n\beta}+e^{-n\beta})$ to a given element in $G_{0}$ , with $C$ and $n$ sufficiently large.)
Obviously $G_{0}$ is unperforated in the sense that if $f\in G_{0}$ and $nf\geq 0$ for some $n=2$ ,
3, $\ldots$ , then $f\geq 0$ . Hence it is sufficient to verify that $G_{0}$ has the Riesz interpolation
property. We show this in the case that $ K_{\pm\infty}\neq\phi$ . The other cases can be treated
with small modffications in the argument, and are actually simpler.

Assume that a, $b\neq c,$ $dinG_{0}$ . The case that one of a, bisequal to one of c, $d$

is trivial, so we may assume $a,$ $b>c,$ $d$ . Let $A(K)$ denote the real continuous
affine functions on $K$ .

We will find an $N\in R$ and a function $f$ on $[N, +\infty]\times K$ of the form

$f(\beta, \omega)=\sum_{k}e^{k\beta}f_{k}^{+}(\omega)$

where the sum is finite and $f_{k}^{+}\in A(K)$ such that $f$ lies between $a,$
$b$ and $c,$

$d$ in the
sense of Definition 3.1 when rt is replaced by rt $\cap([N, +\infty]\times K)$ . Let $n$ be the
largest integer such that one of the four elements

$a_{n}^{+}(\omega)-c_{n}^{+}(\omega)$ , $a_{n}^{+}(\omega)-d_{n}^{+}(\omega)$ , $b_{n}^{+}(\omega)-c_{n}^{+}(\omega)$ , $b_{n}^{+}(\omega)-d_{n}^{+}(\omega)$

is nonzero for some $\omega\in K$ ; by relabeling we may assume the first of these elements
is nonzero. We define

$f_{k}^{+}(\omega)=a_{k}^{+}(\omega)=b_{k}^{+}(\omega)=c_{k}^{+}(\omega)=d\ddagger(\omega)$

for all $k\geq n+1$ and all $\omega\in K$ . Since $a>c$ , Definition 3.1 implies that

$a_{n}^{+}(\omega)>c_{n}^{+}(\omega)$

for all $\omega\in K_{+\infty}$ , and all the other three differences are either strictly positive on
$K_{+\infty}$ or zero on $K$ . There are then eight possibilities, which can be written as

1) $+$ $+$ $+$ $+$

2) $+$ $+$ $+$ $0$

3) $+$ $+$ $0$ $+$
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4) $+$ $+$ $0$ $0$

5) $+$ $0$ $+$ $+$

6) $+$ $0$ $+$ $0$

7) $+$ $0$ $0$ $+$

8) $+$ $0$ $0$ $0$

where $+means$ that the differenoe is strictly positive on $K_{+\infty}$ and $0$ that it is zero
on $K$ . We treat the possibilities successively:

1) Since $K_{+\infty}$ is a simplex it follows that there exists an $h\in A(K_{+\infty})$ such that

$a_{n}^{+}(\omega),$ $b_{n}^{+}(\omega)>h(\omega)>c_{n}^{+}(\omega),$ $d_{n}^{+}(\omega)$

for all $\omega\in K_{+\infty},$ $[1],$ $[6]$ . But $A(K_{+\infty}, K)$ , the restrictions to $K_{+\infty}$ of the affine
continuous functions on $K$, is uniformly dense in $A(K_{+\infty})$ (see [1], Cor. I.1.5). It
follows that there exists an $f_{n}^{+}\in A(K)$ such that

$a_{n}^{+}(\omega),$ $b_{n}^{+}(\omega)<f_{n}^{+}(\omega)<c_{n}^{+}(\omega),$ $d_{n}^{+}(\omega)$

for all $\omega\in K_{+\infty}$ . $Definingf_{k}^{+}(\omega)=0fork\leq n-1,$ $\omega\in K$ , it follows that

$f(\beta, \omega)=\sum_{k}e^{k\beta}f_{n}^{+}(\omega)$

has the right properties for a sufficiently large $N$ .
2) In this case one defines

$f_{n}^{+}(\omega)=b_{n}^{+}(\omega)=d_{n}^{+}(\omega)$

and then $a>f>c$ independently of the choice of $f_{k}^{+}$ for $k\leq n-1$ . One has now
two sub-possibilities.

2.1. $b_{n-1}^{+}(\omega)>d_{n-1}^{+}(\omega)$ for $\omega\in K_{+\infty}$ . In this case one lets $f_{n-1}^{+}$ be a function
in $A(K)$ such that

$b_{n-1}^{+}(\omega)>f_{n-1}^{+}(\omega)>d_{n-1}^{+}(\omega)$

for all $\omega\in K_{+\infty}$ , and sets $f_{k}^{+}=0$ for $k\leq n-2$ .
2.2. $b_{n-1}^{+}(\omega)=d_{n-1}^{+}(\omega)$ for $\omega\in K$ . In this case one defines

$f_{n-1}^{+}(\omega)=b_{n-1}^{+}(\omega)=d_{n-1}^{+}(\omega)$

and then proceeds to compare $b_{n-2}^{+}$ and $d_{n-2}^{+}$ . Here the same two possibilities
occur as for $b_{n-1}^{+}$ and $d_{n-1}^{+}$ , and one proceeds inductively until one reaches a $k$

such that $b_{n-k}^{+}-d_{n-k}^{+}$ is strictly positive on $K_{+\infty}$ . One then chooses $f_{n-k}^{+}\epsilon A(K)$

such that
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$b_{n-k}^{+}(\omega)>f_{n-k}^{+}(\omega)>d_{n-k}^{+}(\omega)$ , $\omega\in K_{+\infty}$

and defines $f_{n-k-1}^{+}=f_{n-k-2}^{+}=\cdots=0$ .
The cases 3) and 5) are equivalent to 2).

4) In this case one defines

$f_{n}^{+}(\omega)=b_{n}^{+}(\omega)=c_{n}^{+}(\omega)=d_{n}^{+}(\omega)$

and proceeds in a similar fashion as before; for example if $b_{n-1}^{+}-c_{n-1}^{+}$ is strictly
positive on $K_{+\infty}$ and $b_{n-1}^{+}-d_{n-1}^{+}$ is zero on $K$ one defines $f_{n-1}^{+}(\omega)=b_{n-1}^{+}(\omega)=$

$d_{n-1}^{+}(\omega)$ and if $b_{n-2}^{+}(\omega)-d_{n-2}^{+}(\omega)>0$ for $\omega\in K_{+\infty}$ one picks $f_{n-2}^{+}\in A(K)$ such that
$b_{n-2}^{+}(\omega)>f_{n-2}^{+}(\omega)>d_{n-2}^{+}(\omega)$ for $\omega\in K_{+\infty}$ and defines $f_{n-3}^{+}=f_{n-4}^{+}=\cdots=0$ .

The case 6) is similar to 4) and cases 7) and 8) are self-contradictory and cannot
occur. In connection with this proof, note that the class of Riesz groups is closed
under the operation of forming lexicographical direct sums, [13], Theorem 3.10.

Analogously, we can construct a function

$f(\beta, \omega)=\sum_{k}e^{k\beta}f_{k}^{-}(\omega)$

such that $f$ is squeezed between $a,$
$b$ and $c,$

$d$ when rt is replaoed by rt $\cap$ ([-co,
$-N]\times K)$ for some $N\in R$ . For notational simplicity we use the same $N$ in the
two cases.

Now, by the reasonillg used in Case 1) above, for each $\beta\in[-N, N]$ there exists
a function $f_{\beta}\in A(K)$ such that

$a(\beta, \omega),$ $b(\beta, \omega)>f_{\beta}(\omega)>c(\beta, \omega),$ $d(\beta, \omega)$

for all $\omega\in K_{p}$ . But by continuity and compactness there is then a neighbourhood
$\theta_{p}$ around $\beta$ in $R$ such that

$a(\beta^{\prime}, \omega),$ $b(\beta^{\prime}, \omega)>f_{\beta}(\omega)>c(\beta^{\prime}, \omega),$ $d(\beta^{\prime}, \omega)$

whenever $(\beta^{\prime}, \omega)\in K\cap(\theta_{p}\times K)$ . We may assume that

$f_{N}(\omega)=\sum_{k}e^{kN}f_{k}^{+}(\omega)$ and $f_{-N}(\omega)=\sum_{k}e^{-kN}f_{k}^{-}(\omega)$ .

By $mpactness$ , there is a finite set $\{\beta_{1},\ldots, \beta_{n}\}\subseteq[-N, N]$ such that $[-N, N]$
$\subseteq\cup n\theta_{\beta_{k}}$ . We may assume that $-N,$ $N\in\{\beta_{1},\ldots, \beta_{n}\}$ , and that $\pm N\in\theta_{\beta_{k}}$ if and only
if $\beta_{k}=\pm Nk=1$

Let $(f_{k})_{k=1}^{n}$ be a partition of unity subordinate to $(\theta_{\beta_{k}})_{k=1}^{n}$ , i.e., the $f_{k}’ s$ are
non-negative continuous real functions on $[-N, N]$ such that $f_{k}$ vanishes outside
$\theta_{\beta_{k}}$ for $k=1,\ldots,$ $n$ and
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$\sum_{k=1}^{n}f_{k}(\beta)=1$

for all $\beta\in[-N, N]$ . Define

$f(\beta, \omega)=\sum_{k=1}^{n}f_{k}(\beta)f_{\beta_{k}}(\omega)$

for $-N\leq\beta\leq N,$ $\omega\in K$ . It follows that $f(\beta, \omega)$ coincides with the previously de-
fined $f(\beta, \omega)$ for $\beta=\pm N$, and

$a(\beta, \omega),$ $b(\beta, \omega)<f(\beta, \omega)<c(\beta, \omega),$ $d(\beta, \omega)$

whenever $(\beta, \omega)\in$ rt $\cap([-N, N]\times K)$ . Thus, piecing together the definitions of $f$

on $\langle-\infty, -N]\times K, [-N, N]\times K, [N, +\infty\rangle\times K$ we obtain an element $f\in G_{0}$

such that

$a,$ $b<f<c,$ $d$ .

This ends the proof that $G_{0}$ is a Riesz group.

IV An automorphism of the Riesz group

We now define an automorphism $\alpha$ of $G_{0}$ by

$(\alpha f)(\beta, \omega)=e^{-\beta}f(\beta, \omega)$ .
One verifies easily that $\alpha$ is an order automorphism of $G_{0}$ .

Lemma 4.1. If $(\beta, \omega)\in K$ and $\beta\in R$ , define an additive map $\rho(\beta, \omega)$ from $G_{0}$

into $R$ by

$\rho(\beta, \omega)(f)=f(\beta, \omega)$ .
It follows that $\rho(\beta, \omega)$ is a positive map such that

$\rho(\beta, \omega)\circ\alpha=e^{-\beta}\rho(\beta, \omega)$ .
Conversely, if $\rho$ is an additive positive map from $G_{0}$ into $R$ such that

$\rho(1)=1$

and

$\rho\circ\alpha=e^{-\beta}\rho$

for some $\beta\in R$ , then there exists an $\omega\in K_{\beta}$ such that

$\rho=\rho(\beta, \omega)$ .
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Proof. The first part of the Lemma is clear. Assume that $\rho$ is an additive
positive map such that

$\rho\circ\alpha=e^{-\beta_{0}}\rho$

and $\rho(1)=1$ , where $\beta_{0}\in R$ .
Observation 1. If $f\in G_{0}$ is a function such that $f(\beta, \omega)\geq 0$ for all $($fl, $\omega)\in K$

(with $\beta\in R$), then

$\rho(f)\geq 0$ .

Proof. Let $n\in N$ be so large that $f_{k}^{+}=f_{k}^{-}=0$ whenever $|k|2n$ and define
$g\in G_{0}$ by

$g(\beta, \omega)=e^{n\beta}+e^{-n\beta}$ .

Then $f+\frac{1}{k}g>0$ in $G_{0}$ for all $k\in N$ by Definition 3.1, and hence

$0\leq\rho(f+\frac{1}{k}g)=\rho(f)+\rho(\frac{1}{k}g)$

by positivity of $\rho$ . But

$\rho(g)=\rho(k\frac{1}{k}g)=k\rho(\frac{1}{k}g)$

by additivity, and henoe

$\rho(f)\geq-\frac{1}{k}\rho(g)$

for all $k\in N$ . It follows that $\rho(f)\geq 0$ .

Observation 2. If $f\in G_{0}$ is a function such that $f(\beta, \omega)\geq 0$ for all ( $\beta$ , co) $\in K$

(with $\beta\in R$), and $f(\beta, \omega)=0$ either for all $(\beta, \omega)\in\tilde{K}$ such that $\beta<\beta_{0}+\epsilon$ , or for all
$(\beta, \omega)\in$ rt such that $\beta>\beta_{0}-\epsilon$, where $\epsilon>0$, then

$\rho(f)=0$ .

Proof. We consider only the case that $f(\beta, \omega)=0$ for all $(\beta, \omega)\in$ rt with
$\beta<\beta_{0}+\epsilon$ . We have

$(\alpha f)(\beta, \omega)=e^{-\beta}f(\beta, \omega)\leq e^{-(\beta_{0}+\epsilon)}f(\beta, \omega)$

and hence

$e^{-(\beta_{0}+\epsilon)}f(\beta, \omega)-(\psi)(\beta, \omega)\geq 0$
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for all $(\beta, \omega)\in\tilde{K}$ . By Observation 1 one has

$e^{-(p_{0}+\epsilon)}\rho(f)\geq\rho(\alpha f)=e^{-\beta_{0}}\rho(f)\geq 0$

and henoe $\rho(f)=0$ .

Observation3. $Iff\in G_{0}isafunctionsuchthatf(\beta, \omega)=0for\beta inaneighbour-$

hood of $\beta_{0}$ and $(\beta, \omega)\in\tilde{K}$ , then

$\rho(f)=0$ .

Proof. We can find an $\epsilon>0$ and $f_{1},$ $f_{2},$ $g_{1},$ $g_{2}\in G_{0}$ such that $f_{i}(\beta, \omega),$ $g_{i}(\beta, \omega)$

$\geq 0$ for $(\beta, \omega)\in\tilde{K}$ , and $f_{1}(\beta, \omega)=g_{1}(\beta, \omega)=0$ for ( $\beta$ , co) $\in$ 1Zt with $\beta<\beta_{0}+\epsilon$, and
$f_{2}(\beta, \omega)=g_{2}(\beta, \omega)=0$ for $(\beta, \omega)\in K$ with $\beta>\beta_{0}-\epsilon$ , such that

$-g_{1}(\beta, \omega)-g_{2}(\beta, \omega)\leq f(\beta, \omega)\leq f_{1}(\beta, \omega)+f_{2}(\beta, \omega)$

for $(\beta, \omega)\in K$ . But then by Observation 1

$-\rho(g_{1})-\rho(g_{2})\leq\rho(f)\leq\rho(f_{1})+\rho(f_{2})$

and as $\rho(g_{i})=\rho(f_{i})=0$ by Observation 2 it follows that $\rho(f)=0$ .
Observation 4. $Iff\in G_{0}isafunctionsuchthatf(\beta_{0}, \omega)=0forall\omega\in K_{\beta_{0}}$ then

$\rho(f)=0$ .

Proof. There exists for all $\epsilon>0afunctiong\in G_{0}suchthatg(\beta, \omega)=0for\beta$ in
a neighbourhood of $\beta_{0}$ and

$ g(\beta, \omega)-\epsilon\leq f(\beta, \omega)\leq g(\beta, \omega)+\epsilon$

for all $(\beta, \omega)\in K$ . Observation 3 and Observation 1 imply that

$-\epsilon\leq\rho(f)\leq\epsilon$

and hence $\rho(f)=0$ .

Observation 5. There exists a positive linear functional $p$ on $A(K_{\beta_{0}})$ such that
$p(1)=1$ and

$\rho(f)=p(f_{\beta_{0}})$

where $f_{p_{0}}(\omega)=f(\beta_{0}, \omega)$ for $\omega\in K_{\beta_{0}}$ .
It follows from Observation 4 that $\rho(f)$ depends only on the function

$\omega\in K_{p_{0}}.\vdash\rightarrow f(\beta_{0}, \omega)$ ,

i.e.
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$\rho(f)=p(f_{\beta_{0}})$

where $p$ is a real additive function on $A(K_{p_{0}}, K)$ , the spaoe of restrictions to $K_{\beta_{0}}$ of
real affine continuous functions on $K$ .

Trivially $p(1)=\rho(1)=1$ .
We next argue that $p$ is positive. If $f_{\beta_{0}}(\omega)>0$ for $\omega\in K_{\beta_{0}}$ it follows that $f(\beta, \omega)$

$>0$ for $(\beta, \omega)$ in a neighbourhood of $\{\beta_{0}\}\times K_{\beta_{0}}$ in [-co, $\infty$ ] $\times K$ . It follows from
closedness of rt and compactness of $K$ that there exists a neighbourhood $\langle\beta_{0}-\epsilon$,
$\beta_{0}+\epsilon\rangle$ around $\beta_{0}$ such that $\{\beta\}\times K_{\beta}$ is contained in the previous neighbourhood
for all $\beta\in\langle\beta_{0}-\epsilon, \beta_{0}+\epsilon\rangle$ . Let $\chi:R\rightarrow[0,$ $\infty\rangle$ be a continuous function such that
$\chi$ is supported in $\langle\beta_{0}-\epsilon, \beta_{0}+\epsilon\rangle$ and $\chi(\beta_{0})=1$ , and define

$g(\beta, \omega)=\chi(\beta)f(\beta, \omega)$ .
Then $g\in G_{0},$ $g(\beta, \omega)\geq 0$ for $(\beta, \omega)\in K$ with $\beta\in R$ and $g_{\beta_{0}}=f_{\beta_{0}}$ . It follows from
Observation 1 that

$p(f_{\beta_{0}})=p(g_{\beta_{0}})=\rho(g)\geq 0$ .
If $f_{\beta_{0}}(\omega)\geq 0$ for $\omega\in K_{\beta_{0}}$ the above reasoning applied to $f+\frac{1}{n},$ $n\in N$ , gives

$p(f_{\beta_{0}})\geq-\frac{1}{n}p(1)=-\frac{1}{n}$

for all $n\in N$ , and henoe $p(f_{\beta_{0}})\geq 0$ , and $p$ is positive.
By additivity it follows that

$p(\lambda f_{\beta 0})=\lambda p(f_{\beta_{0}})$

for all rational numbers $\lambda$ , and next it follows from positivity that this relation
holds for positive $f_{\beta_{0}}$ and all real $\lambda$ , and henoe it holds for all $f_{\beta_{0}}$ by additivity. Since
$A(K_{p_{0}}, K)$ is uniformly dense in $A(K_{\beta_{0}}),$ $p$ extends uniquely to a positive linear
functional on $A(K_{p_{0}})$ .

We can now end the proof of Lemma 4.1. If $p$ is the positive linear functional
of Observation 5, there exists an $\omega\in K_{p}$ such that

$p(f_{\beta_{0}})=f_{p_{0}}(\omega)=f(\beta_{0}, \omega)$

(see [1]; one can define $\omega$ as the barycentre of any measure $\mu$ which defines a state
extension of $p$ to $C(K_{\beta})$ ; such extensions exist by the $Hahn\cdot Banach$ Theorem). But
this means that

$\rho(f)=f(\beta_{0}, \omega)$ .
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V The dimension group

Up to this point we have not used the metrizability of $K$ , but this is important
in constructing a countable subgroup $G$ of $G_{0}$ which is “dense” in $G_{0}$ in a suitable
sense. We first select three subgroups $G^{+\infty},$ $G^{0},$ $G^{-\infty}$ of the additive group $A(K)$ in
the following manner.
$\underline{G^{+\infty}}$

If $ K_{+\infty}=\phi$ , put $G^{+\infty}=\{0\}$ .
If $ K_{+\infty}\neq\phi$ , define an ordering $\geq$ on $A(K)$ :
$f>0$ if and only if $f(\omega)>0$ for all $\omega\in K_{+\infty}$ .
$G^{+\infty}$ is taken to be asubgroup of $A(K)$ such that
1. $G^{+\infty}$ is countable
2. $1\in G^{+\infty}$ (this ensures that $G^{+\infty}$ is an ordered group)

3. $G^{+\infty}$ is a Riesz group
4. If $f,$ $g\in A(K)$ and $f>g$ , then there exists a $h\in G^{+\infty}$ such that

$f>l_{i}>g$ .
$\underline{G^{-\infty}}$

$G^{-\infty}$ is chosen as $G^{+\infty}$ , with $K_{+\infty}$ replaoed by $K_{-\infty}$ .
$\underline{G^{0}}$

$G^{0}$ is taken to be asubgroup of $A(K)$ such that
1. $G^{0}$ is countable
2. $G^{+\infty}\subseteq G^{0},$ $G^{-\infty}\subseteq G^{0}$

3. $G^{0}$ is uniformly dense in $A(K)$ .

Sinoe $K$ is metrizable and compact, $A(K)$ is separable, and therefore groups $G^{+\infty}$ ,
$G^{0}$ and $G^{-\infty}$ with the above properties exist.

We define $G$ as the subgroup of $G_{0}$ consisting of functions on $R\times K$ which are
finite sums and differences of elements $f$ of the following three types:

1. $f(\beta, \omega)=g(\beta)e^{n\beta}h(\omega)$ where $g$ is defined from two rational numbers $p,$ $q$ ,

$p<q$ as follows,

$g(\beta)=\left\{\begin{array}{ll}0 & for \beta\leq p\\\frac{\beta-p}{q-p} & for p\leq\beta\leq q\\1 & for q\leq\beta ,\end{array}\right.$
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and $n\in Z$ , and $h\in G^{+\infty}$ .
2. $f(\beta, \omega)=g(\beta)e^{n\beta}h(\omega)$ where $g$ is a pieoewise linear continuous function with

compact support which is differentiable except at a finite number of points $\beta_{1},\ldots,$ $\beta_{k}$ ,
with $\beta_{\ell},$ $g(\beta_{i})$ rational, $i=1,\ldots,$ $k$ , and $n\in Z$ , and $h\in G^{0}$ .

3. $f(\beta, \omega)=g(\beta)e^{n\beta}h(\omega)$ where $\beta\leftarrow\rangle$ $g(-\beta)$ is as in 1, $n\in Z$ and $h\in G^{-\infty}$ .
The following lemma can now be proved by straightforward but tedious argu-

ments using the techniques of section III. We omit the details.

Lemma 5.1. $G$ is a subgroup of $G_{0}$ with the following properties.
1. $G$ is countable.
2. $G$ is a Riesz group in the ordering inherited from $G_{0}$ .
3. If $a,$ $b\in G_{0},$ $a<b$ and $a_{n}^{+},$ $b_{n}^{+}\in G^{+\infty},$ $a_{n}^{-},$ $b_{n}^{-}\in G^{-\infty}$ for all $n\in Z$ , then there exists

a $c\in G$ with $a<c<b$ .
4. $\alpha(G)\subseteq G,$ $\alpha^{-1}(G)\subseteq G$ , i.e. $\alpha$ defines an order automorphism of $G$ by restriction.
5. $1\in G$ .
6. There exists an element $f\in G$ such that $0<f<1,0<\alpha^{-1}(f)<1$ and $f_{-1}^{+}>0$ if

$K_{+\infty}\neq\phi,$ $f_{0}>0$ if $ K_{-\infty}\neq\phi$ .
We next prove a version of Lemma 4.1 in this context.

Lemma5.2. If $(\beta, \omega)\in Kand\beta\in R,$ $defineamap\rho(\beta, \omega)$ fromG intoR by

$\rho(\beta, \omega)(f)=f$( $\beta$ , co)

$forf\in G$ . Itfollows thatp is an additive positive map such that

$\rho(\beta, \omega)\circ\alpha=e^{-\beta}\rho(\beta, \omega)$ .
Conversely, if $\rho$ is an additive positive map from $G$ into $R$ such that

$\rho(1)=1$

and

$\rho\circ\alpha=e^{-\beta}\rho$

for some $\beta\in R$ , then there exists an $\omega\in K_{\beta}$ such that

$\rho=\rho(\beta, \omega)$ .

Proof. The first part follows from Lemma 4.1, and the second part also follows
onoe we can show that $p$ extends to a map on $G_{0}$ with the same properties. If $a\in G_{0}$ ,
we first show that

$inf\{\rho(c);c\in G, c2a\}=\sup\{p(d);d\in G, a2d\}$ .
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We first choose an $n_{0}$ such that $a_{k}^{\pm}=0$ whenever $|k|\geq n_{0}$ , and then choose a sequence
$b_{n}\in G$ such that $(b_{n})_{n_{0}}^{+}>0,$ $(b_{n})_{-n_{0}}^{-}>0,$ $b_{n}>0$, and $b_{n}>2b_{n+1}$ for all $n$ . Then

$a-b_{n}<a<a+b_{\hslash}$

for all $n$ . Sinoe $a\pm b_{n}$ has larger leading terms than $a$ at $\pm\infty$ , one can find elements
$d_{n},$ $c_{n}\in G$ such that

$a-b_{n}<d_{n}<a<c_{n}<a+b_{n}$

and then

$c_{n}-d_{n}<2b_{n}$ .
Henoe

$\rho(c_{n})-\rho(d_{n})\leq 2\rho(b_{n})\leq\frac{2}{2}\rho(b_{n-1})\leq\cdots\leq 2^{2-n}\rho(b_{1})$ .

Letting $ n\rightarrow\infty$ we obtain

$inf\{\rho(c);c\in G, c\geq a\}=\sup\{\rho(d);d\in G, a\geq d\}$

and we set $\rho(a)$ equal to these numbers. Since $\alpha$ is an order automorphism of $G_{0}$

it follows immediately that the extended $\rho$ still has the property

$\rho\circ\alpha=e^{-\beta}\rho$ .

VI Construction of the dynamical system

Let $\mathcal{B}$ denote the AF algebra, unique up to $*$-isomorphism (see [12]) whose
dimension range is the positive part of the dimension group $G$ defined just before
Lemma 5.1. By [12], the automorphism $\alpha$ of $G$ is induoed by an automorphism $\alpha$

of $\mathcal{B}$ . We choose a particular such automorphism in the following manner. Fix
a projection $E\in \mathcal{B}$ in the equivalence class corresponding to $1\in G$ . Let $f\in G$ be an
element with the properties in Lemma 5.1, 6., i.e. $0<f<1,0<\alpha^{-1}(f)<1,$ $f_{-1}^{+}>0$

if $K_{+\infty}\neq\phi,$ $f_{0}^{-}>0$ if $ K_{-\infty}\neq\phi$ . Sinoe $f<1$ there exists a projection $F\in gr-$

responding to $f$ such that $F\leq E$ in the usual ordering of self-adjoint operators. Sinoe
$\alpha^{-1}(f)<1$ one has $\alpha^{-1}(F)<E$ in the Murray-von Neumann ordering, independently
of the choice of $\alpha$ . Hence, by modifying $\alpha$ by an automorphism implemented by
a unitary operator in the multiplier algebra of $\mathcal{B}$ , we may require that

$\alpha^{-1}(F)\leq E$

in the usual ordering of self-adjoint operators. In the sequel we will assume that
$\alpha$ has been chosen in this way.
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We next analyze the ideal structure in $\mathcal{B}$ . Ideals in $\mathcal{B}$ are in one-one corre-
spondenoe with ideals in $G$ , i.e. subgroups $H\subseteq G$ such that $H=H_{+}-H_{+}(H_{+}=$

$G_{+}\cap H)$ , and if $h\in H_{+},$ $g\in G_{+}$ and $h>g$ then $g\in H_{+}$ . The ideals in $G$ can be
classified by two elements $n$ and $m$ in $Z\cup\{\pm\infty\}$ , and will be denoted by $I_{n.m}$ . We
define $I_{n,m}$ as the set of $f\in G$ such that

$f_{k}^{-}=0$ for all $k\leq-n-1$

$f_{k}^{+}=0$ for all $k\geq m+1$ .
Alternatively, if $n,$ $m\in Z,$ $I_{n,m}$ may be defined as the set of $f\in G$ such that $-\lambda f_{n,m}$

$<f<\lambda f_{n,m}$ for some $\lambda>0$ . $Heref_{n,m}$ is defined by

$f_{n,m}(\beta, \omega)=\left\{\begin{array}{ll}e^{-n\beta} & for -\infty<\beta\leq 0\\e^{m\beta} & for 0\leq\beta<+\infty.\end{array}\right.$

In particular $I_{n,m}=\{0\}$ if $ n=-\infty$ or $ m=-\infty$ and $I_{+\infty,+\infty}=G$ . $I_{n.m}$ is increasing
in both $n$ and $m$ . The function $n\mapsto I_{n,m}$ is strictly increasing if $ m\neq-\infty$ and $K_{-\infty}$

$\neq\phi$ ; in all other cases $n\leftarrow>I_{n.m}$ is constant. The function $m->I_{n,m}$ is strictly increasing
if $ n\neq-\infty$ and $ K_{\infty}\neq\phi$ ; in all other cases $m\vdash I_{n,m}$ is constant. Note that $\alpha$ maps
$I_{n.m}$ into $I_{n+1,m-1}$ , and hence there are no $\alpha$-invariant ideals in $G$ and thus no $\alpha-$

invariant ideals in $\mathcal{B}$ .
If $f\in G$ and $f\neq 0$, then $\alpha f\neq f$. It follows that $\alpha$ transforms each projection in

$\mathcal{B}$ into an inequivalent projection and henoe $\alpha$ is properly outer in the sense of [14].
Since $\mathcal{B}$ has no $\alpha$-invariant ideals it follows from [14] that the $C^{*}$-crossed product
$C^{*}(g, \alpha)$ of $\mathcal{B}$ by $\alpha$ is simple. su is canonically embedded in $C^{*}(\mathcal{B}, \alpha)$ and in
particular the projection $E$ corresponding to $1\in G$ is contained in $C^{*}(\mathcal{B}, \alpha)$ . We
cut down the crossed product with $E$ , and set

$\mathscr{A}=EC^{*}(2, \alpha)E$ .
Let $U$ be a fixed unitary multiplier of $C^{*}(\mathcal{B}, \alpha)$ such that

$\alpha(B)=UBU^{*}$

for Be $g$ , and $C^{*}(g\alpha)$ is the closed linear span of elements of the form $AU^{n}$ ,
$A\in g,$ $n\in Z$ . We will denote both the dual automorphism group of $\alpha$ on $C^{*}(\mathcal{B}, \alpha)$ ,
and its restriction to $\mathscr{A}$ , by $\gamma$ . In fact we will lift $\gamma$ from $\hat{Z}=T$ to $R$ , so $\gamma$ is defined
by

$\gamma_{t}(AU^{n})=e^{\ell nt}AU^{n}$

for $A\in \mathcal{B},$ $n\in Z,$ $t\in R$ . Since $\gamma_{t}(E)=E,$
$\gamma$ defines a strongly continuous one-
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parameter group $of*$-automorphisms of $\mathscr{A}$ .

Lemma 6.1. If $A\in \mathcal{B}$ and $n\in Z$ , then $AU^{\prime l}\in \mathscr{A}$ if and only if
$EA=A\alpha^{n}(E)=A$ .

$\mathscr{A}$ is the closed linear span of such elements.

Proof. We have that AU $\in \mathscr{A}$ if and only if

EA $U^{n}=AU^{n}E=AU^{n}$

i.e.

$(EA)U^{n}=A\alpha^{n}(E)U^{n}=AU^{n}$

i.e.

$EA=A\alpha^{n}(E)=A$ .
$C^{*}(g, \alpha)$ is the closure of elements of the form $\sum B_{n}U^{n}$ , where $B_{n}\in g$ and the sum
is finite. Hence $\mathscr{A}$ is the closure of elements of the form

$E(\sum_{n}B_{n}U^{n})E=\sum_{n}EB_{n}\alpha^{n}(E)U^{n}$

$=\sum_{n}A_{\hslash}U^{n}$

where $A_{n}=EB_{n}\alpha^{n}(E)$ . But then

$EA_{n}=A_{n}\alpha^{n}(E)=A_{n}$ .

Lemma 6.2. For all $\beta\in R$ there is an affine isomorphism between $K_{p}$ and the
set of lower semicontinuous traces $\rho$ on $\mathcal{B}$ with the properties

$\rho\circ\alpha=e^{-\beta}\rho$ and $\rho(E)=1$ .

If these traces are equipped with the weak*-topology defined by their restrictions
to $E\theta E$ this isomorphism is a homeomorphism.

Proof. By [12] there is a one-one correspondenoe between positive additive
functionals $\rho$ on $G_{+}$ and lower semicontinuous traces $p$ on $\mathcal{B}$ , given by

$\rho([P])=\rho(P)$

where $P$ is a projection in $\mathcal{B}$ and $[P]$ its representative in $G_{+}$ . It follows that there
is a one-one correspondence between positive additive functionals $\rho$ on $G_{+}$ such that

$\rho\circ\alpha=e^{-\beta}\rho$ and $\rho(1)=1$
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and lower semicontinuous traoes $\rho$ on $\mathcal{B}$ such that

$\rho\circ\alpha=e^{-\beta}\rho$ and $p(E)=1$ .
But by Lemma 5.2 there is a one-one correspondence between elements $\omega\in K_{\beta}$ and
additive positive maps $\rho$ on $G_{+}$ such that $\rho\circ\alpha=e^{-\beta}\rho$ and $\rho(1)=1$ . This corre-
spondenoe is given by

$\rho(f)=f(\beta, \omega)$

and as $f(\beta, )\in A(K)$ , this correspondence is affine. Sinoe the correspondence
between positive functionals and traces clearly is affine, there is an affine one-one
correspondenoe between elements $\omega\in K_{\beta}$ and traoes $\rho$ on $\mathcal{B}$ with $\rho\circ\alpha=e^{-\beta}\rho$ and
$\rho(E)=1$ , given by

$\rho(F)=[F](\beta, \omega)$

where $F\in \mathcal{B}$ is a projection, and $[F]$ its representative in $G$ . If one now equips
these traces on $\mathcal{B}$ with the weak*-topology defined by their restrictions to $E\mathcal{B}E$

$=\mathcal{B}\cap \mathscr{A}$ , one sees that the mapping $\omega\rightarrow\rho(F)$ is continuous for projections $F\in EgE$,
and as $E\mathcal{B}E$ is approximately finite-dimensional, it follows that the map $\omega\vdash\rightarrow\rho$ is
continuous. Sinoe $K_{\beta}$ is compact this map is a homeomorphism.

Let $\epsilon$ be the canonical projection from $\mathscr{A}$ onto its fixed point algebra $\mathscr{A}^{\gamma}=$

$\mathscr{A}\cap \mathcal{B}=E\mathcal{B}E$ under $\gamma$ , i.e.

$\epsilon(A)=\frac{1}{2\pi}\int_{0}^{2\pi}dt\gamma_{t}(A)$ .

Lemma 6.3. For all $\beta\in R$ there is an affine isomorphism between the set of
$(\gamma, \beta)$-KMS states $\omega$ on $d$ and the set of lower semicontinuous traces $\rho$ on $\mathcal{B}$ with
the properties

$\rho\circ\alpha=e^{-\beta}\rho$ and $\rho(E)=1$ .
This isomorphism is given by

$\omega=\rho\circ\epsilon$ .

Proof. Assume first that $\rho$ is given, and define $\omega$ by

$\omega=\rho\circ\epsilon$ .
We will show that $\omega$ is a $\gamma$-KMS state at value $\beta$ . It is enough to show that for
elements $X,$ $Y\in \mathscr{A}$ of the form $X=AU^{n},$ $Y=BU^{m},$ $A$ , Be $\mathcal{B}$ , one has that
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$\omega(Y\gamma_{i\beta}(X))=\omega(XY)$ ,

[7]. But

$Y\gamma_{\ell\beta}(X)=BU^{m}e^{-n\beta}AU^{\hslash}=e^{-n\beta}B\alpha^{m}(A)U^{m+n}$ ,

$XY=A\alpha^{n}(B)U^{n+m}$ ,

Thus $\omega(Y\gamma_{i\beta}(X))=\omega(XY)=0$ unless $m=-n$ and then

$\omega(Y\gamma_{i\beta}(X))=e^{-n\beta}\rho(B\alpha^{-n}(A))$

$=p(\alpha^{n}(B)A)$

$=\rho(A\alpha^{n}(B))$

$=\omega(XY)$ .
Suppose conversely that $\omega$ is a $\gamma$-KMS state at value $\beta$ . By $\gamma$-invariance $\omega$ has

the form

$\omega=\rho\circ\epsilon$

where $\rho$ is a state on $\mathscr{A}\cap \mathcal{B}$ . The KMS condition implies that $\rho$ is a trace, [7].

If $X=AU,$ $Y=BU^{-1}$ are elements in $\mathscr{A}$ , i.e.,

$EA=A\alpha(E)=A$

$EB=B\alpha^{-1}(E)=B$

by Lemma 6.1, then the KMS condition,

$\omega(Y\gamma_{i\beta}(X))=\omega(XY)$ ,

implies

$e^{-\beta}\rho(B\alpha^{-1}(A))=\rho(A\alpha(B))$ .
Putting $B=E\alpha^{-1}(E)$ in this relation gives

$e^{-\beta}\rho(E\alpha^{-1}(EA))=\rho(A\alpha(E)E)$

and combining this with the above relations for $A$ we obtain

$e^{-\beta}\rho(E\alpha^{-1}(A)E)=\rho(EAE)$ .
In particular this relation is valid for all $A\in(d\cap g)\cap\alpha(d\cap \mathcal{B})$ . If $F\in \mathcal{B}$ is the
projection defined in the beginning of this section, then

$F\leq E$, $\alpha^{-1}(F)\leq E$

and henoe
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$F\in(\mathscr{A}\cap \mathcal{B})\cap\alpha(\mathscr{A}\cap \mathcal{B})$ .
It follows that

$e^{-\beta}\rho(E\alpha^{-1}(P)E)=\rho(EPE)$

for all projections $P\in g$ such that $P\leq F$ .
Since $E\mathcal{B}E$ is a hereditary subalgebra of $\mathcal{B}$ , two projections in $EgE$ are equi-

valent if and only if they are equivalent in $\mathcal{B}$ , and hence by [12], Corollary 5.7, the
dimension group of $E\mathcal{B}E$ coincides with the ideal of $G$ generated by $[E]=1\in G$ ,
i.e., $I_{0.0}$ .

Let $\rho$ also denote the positive additive functional determined by $\rho$ on $I_{0,0}$ .
Then it follows that $\rho(1)=1$ and

$e^{-\beta}\rho(\alpha^{-1}(g))=\rho(g)$

whenever $g\in G$ is a function such that

$-nf<g<nf$

for some $n\in N$ , i.e., whenever $g\in I_{0.-1}$ . It follows by a slight extension of Lemma
5.2 that $\rho$ is the restriction of $\rho(\beta, \omega)$ for some $\omega\in K_{p}$ . (The proof of 5.2 shows
that $\rho$ agrees with some $\rho(\beta, \omega)$ on $I_{-2,-1}$ , and it follows that this holds also on
$I_{0,-3}=\alpha^{2}I_{-2.-1}$ and on $I_{-3.0}=\alpha^{-1}I_{-2,-1}$ , and henoe on $I_{0.0}=I_{0.-3}+I_{-3,0}.$) Thus
the traoe $\rho$ on $E\mathcal{B}E$ extends to the traoe $\rho$ on $\mathcal{B}$ corresponding to $\omega\in K_{\beta}$ given by
Lemma 6.2, and this ends the proof of the affine correspondence between $\omega$ and $\rho$ .

Proof of Theorem 2.1. Lemmas 6.2 and 6.3 immediately imply that $K_{\beta}$ is af-
finely isomorphic with the set of $(\gamma, \beta)$-KMS states on $\mathscr{A}$ for each $\beta\in R$ . $d$ is
separable sinoe $\mathcal{B}$ is, and $\mathscr{A}$ is amenable by [18]. $\gamma$ is periodic with period $ 2\pi$ by
construction.

VII Ground states

We now analyze the ground states (and ceiling states) of the $C^{*}$-dynamical
system we have $nstructed$ . Let $G^{\pm\infty}$ be the subgroups of $A(K)$ introduced in the
beginning of Section 5. Then $G^{+\infty}$ is identffied with the quotient of the ideal $I_{0,0}$

generated by 1 in $G$ by the ideal $I_{0,-1}$ ,

$G^{+\infty}\cong I_{0.0}/I_{0.-1}$ ,

and correspondingly

$G^{-\infty}\cong I_{0,0}/I_{-1,0}$ .
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Let $\mathscr{A}^{\pm\infty}$ be the unital AF algebra with dimension group $G^{\pm\infty}$ and dimension range
the closed interval between $0$ and 1. Then

$d^{+\infty}\cong(\mathcal{B}\cap d)/(EI_{0.-1}E)$

$\mathscr{A}^{-\infty}\cong(\mathcal{B}\cap \mathscr{A})/(EI_{-1,0}E)$

where we use $I_{n,m}$ also to denote the ideal in va defined by the ideal $I_{n.m}$ in $G$ . Since
$G^{\pm\infty}$ contains no nontrivial ideals, the $C^{*}$-algebras $\mathscr{A}^{\pm\infty}$ are simple. We have
$\mathscr{A}^{\pm\infty}\neq\{0\}$ if and only if $ K_{\pm\infty}\neq\phi$ .

Proposition 7.1. If $ K_{+\infty}=\phi$ , the $C^{*}$-dynamical system $(\mathscr{A}, \gamma)$ has no ground
states. If $ K_{+\infty}\neq\phi$ , the set of ground states of $(\mathscr{A}, \gamma)$ is identffied with the set of
all states on $\mathscr{A}^{+\infty}$ . The same statements hold for $-\infty$ and ceiling states.

Proof. We use the notation

$I^{+\infty}=EI_{0,-1}E$ , $I^{-\infty}=EI_{-1.0}E$

for the two maximal ideals in $\mathcal{B}\cap d=E\mathcal{B}E$ . Assume first that $\rho$ is a state on
$d^{+\infty}=E2E/I^{+\infty}$ . Then $\rho$ lifts uniquely toastate $\rho$ on EgE and we define

$\omega=\rho\circ\epsilon$

where $\epsilon;d\rightarrow E\mathcal{B}E$ is the projection defined prior to Lemma 6.3. To show that $\omega$

is a ground state it is enough to demonstrate for each $X,$ $Y\in\{AU^{n}$ ; $A\in \mathcal{B},$ $AU^{n}$

$\in \mathscr{A}\}$ that the function

$z-\rangle\omega(Y\gamma_{z}(X))$

is bounded in the upper half plane, [7]. But if $X=AU^{n},$ $Y=BU^{m}$ , then

$\omega(Y\gamma_{z}(X))=e^{inz}\omega(B\alpha^{m}(A)U^{m+n})$

and henoe $\omega(Y\gamma_{z}(X))=0unlessm=-n$ . Whenm $=$ -none has

$\omega(Y\gamma_{z}(X))=e^{inz}\rho(B\alpha^{-n}(A))$ .
To finish the argument we have to show that

$\rho(B\alpha^{-n}(A))=0$

when $n\leq-1$ . But we have

$EA=A\alpha^{n}(E)=A$

by Lrmma 6.1, and henoe
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$\alpha^{-n}(A)=\alpha^{-n}(E)\alpha^{-n}(A)=\alpha^{-n}(A)E$ ,

$\alpha^{-n}(A)\in I_{-n,n}\cap I_{0.0}$ .
It follows that when $n\leq-1$ ,

$\alpha^{-n}(A)\in I_{0,n}$ ,
$B\alpha^{-n}(A)\in I^{+\infty}$ ,
$\rho(B\alpha^{-n}(A))=0$ .

Conversely, if $\omega$ is a ground state then $\omega$ is $\gamma$-invariant and henoe

$\omega=\rho\circ\epsilon$

$forsomestateponE\mathcal{B}E$ . But reversing the argument above we deduce that
$\rho(EB\alpha^{-n}(E)AE)=0$

for all $A,$ $B\in \mathcal{B}$ whenever $n\leq-1$ . It follows that $\rho$ annihilates $EI_{1.-1}E=EI_{0.-}E$

$=I^{+\infty}$ and hence $\rho$ lifts to a state on $d^{+\infty}$ .
The same reasoning applies to the $-\infty$ case.
By perturbing the dynamics $\gamma$ by a bounded perturbation one has great liberty

in choosing the set of ground states, by using the techniques from [3]. If $P=P^{*}$

$\in \mathscr{A}$ , the perturbed group $\gamma^{P}$ is defined by

$\gamma_{\ell}^{P}(A)=\gamma_{t}(A)+\sum_{n\geq 1}i^{n}\int_{0}^{\ell}dt_{1}\int_{0}^{t_{1}}dt_{2}\cdots\int_{0}^{\ell_{n-1}}dt_{n}[\gamma_{t_{\hslash}}(P),$ $[\cdots[\gamma_{t_{1}}(P), \gamma_{t}(A)]\cdots]$ ;

see [7], Proposition 5.4.1. In particular, if $\gamma_{t}(P)=P$ for all $t$ one has

$\gamma_{t}^{P}(A)=\gamma_{t}$( $e^{itP}$ A $e^{-\ell tP}$) $=e^{\ell tP}\gamma_{t}(A)e^{-\ell tP}$

for $A\in \mathscr{A},$ $t\in R$ .
From now on we will assume that the field $\beta\mapsto K_{\beta}$ has been chosen such that

$K_{+\infty}$ is either empty or consists of one point, and the same for $K_{-\infty}$ . This is pos-
sible by the remarks prior to definition 3.1. We will now choose the “dense”
subgroup $G$ of $G_{0}$ slightly more carefully than in the introduction to Section 5.
If $G^{\pm\infty}$ are given countable archimedian totally ordered abelian groups without
minimal positive elements, then $G^{\pm\infty}$ can be embedded as subgroups of the additive
ordered group $R$ in such a way that given elements $g^{\pm\infty}$ map into $1\in R,$ $[13]$ .
These are dense in $R$ , because otherwise they would contain minimal positive
elements. If $K_{+\infty}$ , resp. $K_{-\infty}$ , is empty we will put $G^{+\infty}=\{0\}$ , resp. $G^{-\infty}=\{0\}$ .

We now choose the groups $G^{\pm\infty}$ in the beginning of Section 5 as the constant
functions on $K$ with value in $G^{\pm\infty}\subseteq R$ as defined above. Sinoe $K_{\pm\infty}$ consists of
at most one point in this case, one easily verifies that the conditions 1 to 4 in the



THE TEMPERATURE STATE SPACE OF A $C^{*}$-DYNAMICAL SYSTEM, I 149

specffications of $G^{\pm\infty}$ in Section 5 are fulfilled, and one can define $G$ as before.
We define a subgroup $H$ of $G$ as the sums and differences of elements $f$ of the

following three types:
1. $f(\beta, \omega)=g(\beta)e^{n\beta}h$ where $n\in Z,$ $h\in G^{+\infty}$ , and $g$ is defined from two rational

numbers $p,$ $q,$ $p<q$ , as follows

$g(\beta)=\left\{\begin{array}{ll}0 & for \beta\leq p\\\frac{\beta-p}{q-p} & for p\leq\beta\leq q\\1 & for q\leq\beta.\end{array}\right.$

2. $f(\beta, \omega)=g(\beta)e^{n\beta}h$ where $n\in Z,$ $h$ is in the subgroup of $R$ generated by
$G^{+\infty}$ and $G^{-\infty}$ , and $g$ is a piecewise linear continuous function with $mpact$ support
which is differentiable except at a finite number of points $\beta_{1},\ldots,$ $\beta_{k}$ , and $\beta_{i},$ $g(\beta_{i})$ are
all rational.

3. $f(\beta, \omega)=g(\beta)e^{n\beta}h$ where $\beta\leftarrow>g(-\beta)$ is as in 1, $n\in Z$ and $h\in G^{-\infty}$ .
Note that $H$ is a Riesz subgroup of $G$ in the inherited ordering. The crucial

properties of $H$ which will be needed in the sequel are
1. If $f\in H$, then $f(\beta, \omega)$ only depends on $\beta$ .
2. There exist elements $f,$ $g\in H$ such that

$f>0$ , $g>0,$ $f+g<1$ ,

$f_{0}^{+}=1$ , $g_{0}=1,$ $f_{+1}^{-}>0$, $g_{-1}^{+}>0$ .

The last properties ensure that the ideal in $H$ generated by $f$, resp. $g$ , is just $I_{-1.0}\cap H$,
resp. $I_{0,-1}\cap H$ . If we use the identifications $G^{+\infty}=I_{0,0}/I_{0,-1},$ $G^{-\infty}=I_{0.0}/I_{-1.0}$ , it
is not hard to prove

3. $I_{0.-1}\cap(I_{-1,0}\cap H)=I_{-1,-1}\cap Hisanorderedgroup$ , and

$(I_{-1,0}\cap H)/I_{-1.-1}\cap H=G^{+\infty}$ .
Likewise, $I_{-1,0}\cap(I_{0,-1}\cap H)=I_{-1.-1}\cap H$ is an ordered group and

$(I_{0.-1}\cap H)/(I_{-1.-1}\cap H)=G^{-\infty}$ .

Theorem 7.2. Let $K$ be a compact, convex metrizable set, and let $K_{\beta}$ be a
closed convex subset of $K$ for each $\beta\in R$ .

Assume that
1. Each $K_{\beta}$ is a simplex.
2. If $(\omega_{\alpha})$ is a convergent net in $K$ such that $\omega.\in K_{p}.$ , and $\beta_{a}$ converges to some

$\beta\in R$ , it follo $\tau vs$ that $\lim_{\alpha}\omega_{\alpha}\in K_{\beta}$ .
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Let $G^{\pm\infty}$ be non-zero, countable, archimedian totally ordered abelian groups
without minimal positive elements, and let $d^{\pm\infty}$ be unital $AF$ algebras correspond-
ing to intervals $[0, g^{\pm\infty}]$ in $G^{\pm\infty}$ . Let $F_{\pm\infty}$ be arbitrary non-empty closed faces
in the state spaces of $d^{\pm\infty}$ , and let $(\mathscr{A}, \gamma)$ be the $C^{*}$-dynamical system mentioned
before the Theorem.

It follows that there exists a self-adjoint operator $P\in \mathscr{A}$ such that $\gamma_{t}(P)=P$

for all $t\in R$ , the set of $(\gamma^{P}, \beta)$-KMS states is affinely isomorphic to $K_{\beta}$ when $\beta\in R$ ,
and the set of $(\gamma^{P}, \pm\infty)$-KMS states is affinely isomorphic to $F_{\pm\infty}$ .

In the case that $ K_{\beta}=\phi$ for large positive $\beta$ the statements above remain true
with $F_{+\infty}$ replaced by $\phi$ ; the same is true for $-\infty$ , or both $\pm\infty$ .

Remark. This theorem can be extended to the case where $G^{\pm\infty}$ are just count-
able, simple (with respect to the order) Riesz groups, i.e. to the case where $\mathscr{A}^{\pm\infty}$

are general simple unital separable AF algebras, but to avoid an impenetrably
complicated proof we defer a discussion of this extension to Section 10. We will
also show in Section 9 that there exists a simple, separable, unital AF algebra $\mathscr{A}$

such that any metrizable simplex is affinely isomorphic to a face in the state spaoe of
$\mathscr{A}$ . This means in particular that $ F\pm\infty$ can be taken to be arbitrary metrizable sim-
plioes in the theorem above.

Proof. We will assume that we are in the $ K_{\pm\infty}\neq\phi$ cases; the other cases can
be treated by minor modifications in the arguments. Let $\eta_{\pm}:$ $E\mathcal{B}E\rightarrow E\mathcal{B}E/I^{\pm\infty}$

$=\mathscr{A}^{\pm\infty}$ denote the quotient maps. Since $F_{\pm\infty}$ are faoes in $\mathscr{A}^{\pm\infty}$ there exist positive
elements $P^{\pm}\in \mathscr{A}^{\pm\infty}$ such that

$F_{\pm\infty}=\{\omega\in E,\pm\infty;\omega(P^{\pm})=0\}$ ;

see e.g. [3].
Now, choose elements $f,$ $g$ in the subgroup $H$ of $G$ with the following properties:

$f>0$, $g>0,$ $f+g<1,$ $f_{0}^{+}=1$ , $g_{0}^{-}=1,$ $f_{+1}^{-}>0$ , $g_{-1}^{+}>0$ .

The existence of $f,$ $g$ follows from property 2. Let $E_{+},$ $E_{-}$ be projections in $g$ such
that $[E_{+}]=f,$ $[E_{-}]=g,$ $E_{+}E_{-}=0$ and $E_{+}+E_{-}\leq E$, where $[]$ denote representa-
tive in $G$ . Then $\eta_{\pm}(E_{\pm})=1$ and $\eta_{\mp}(E_{\pm})=0$ . We now apply a lemma, Lemma 8.1,
which will be proved in the next section. This lemma together with property 3 of
$H$ implies that there exist AF subalgebras $q_{+}\subseteq E_{+}\mathcal{B}E_{+},$ $\mathscr{C}_{-}\subseteq E_{-}gE_{\leftarrow}$ such that
$\eta_{\pm}(q_{\pm})=\eta_{\pm}(E_{\pm}\mathcal{B}E_{\pm})=\eta\pm(E\mathcal{B}E)$ and the equivalenoe classes of all projections in
$q_{\pm}$ are contained in $H$ . Let $P_{1}\in q_{+},$ $P_{2}\in \mathscr{C}_{-}$ be positive elements such that
$\eta_{+}(P_{1})=P^{+},$ $\eta_{-}(P_{2})=P^{-}$ and define
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$P=P_{1}-P_{2}$ .
Then $\eta_{+}(P)=P^{+},$ $\eta_{-}(P)=-P^{-}$ and $P\in E\mathcal{B}E$ , so $\gamma_{t}(P)=P$ for all $t\in R$ . By multi-
plying $P$ by a positive number we may also assume that

$\Vert P\Vert<1/2$ .

We first prove that the set of $(\gamma^{P}, \beta)$-KMS states is affinely isomorphic to $K_{\beta}$

in the case $\beta\in R$ . It is known that there is a homeomorphism between the set of
$(\gamma, \beta)$-KMS states $\omega$ and the set of $(\gamma^{P}, \beta)$-KMS states $\omega^{P}$ which maps the extremal
elements onto the extremal elements, [2], [8]; see also [7], Theorem 5.4.4 and
Corollary5.4.5. In our case, $where$ ),$(P)=Pforallt$ , this map has the simple form

$\omega^{P}(A)=\omega(e^{-p_{P}}. A)/\omega(e^{-\beta P})$

$whereA\in \mathscr{A}$ . But we will show inamoment that K$(\beta)=\omega(e^{-\beta P})$ is independent of
the particular $(\gamma, \beta)$-KMS state $\omega$ chosen in our case. Henoe

$\omega^{P}(A)=\omega(e^{-\beta P}A)/K(\beta)$

and this defines an affine isomorphism between the $(\gamma, \beta)$-KMS states and the $(\gamma^{P}, \beta)-$

KMS states. Thus the $(\gamma^{P}, \beta)$-KMS state space is affinely isomorphic to $K_{p}$ by
Theorem 2.1.

To show that $K(\beta)$ is independent of $\omega$ , we use that $P=P_{1}-P_{2}$ where $P_{1}\in q_{+}$ ,
$P_{2}\in \mathscr{C}_{-}$ . If $Q$ is a projection in $\mathscr{C}_{+}$ , then $[Q]\in H_{+}$ is a function $f$ independent of
$\omega$ , and henoe $\omega(Q)=f(\beta)$ is independent of $\omega$ . Sinoe $e^{-\beta P_{1}}$ can be approximated
uniformly by linear combinations of projections in $\mathscr{C}_{+}$ , it follows that $\omega(e^{-p_{P_{1}}})$ is
independent of the $(\gamma, \beta)$-KMS state $\omega$ . Similarly $\omega(d^{P_{2}})$ is independent of $\omega$ .
But $P{}_{1}P_{2}=P_{1}E_{+}E_{-}P_{2}=0$ and henoe

$e^{-\beta P}=e^{-\beta P_{1}}+e^{\beta P_{2}}-1$

and thus $\omega(e^{-\beta P})=K(\beta)$ is independent of $\omega$ .
We now show that the ground states $\omega$ for $(d, \gamma^{P})$ correspond in a one-one

affine fashion to states $\psi$ on $d^{+\infty}$ with $\psi(P^{+})=0$, i.e. states $\psi\in F_{+}$ .
Assume first that $\psi$ is a state on $d^{+\infty}$ with $\psi(P^{+})=0$, lift $\psi$ to a state $\rho$ on

$E9E$ by setting

$p=\psi\circ\eta_{+}$ ,

and finally extend $\rho$ to a state $\omega$ on $d$ by setting

$\omega=\rho\circ\epsilon=\psi\circ\eta_{+^{O}}\epsilon$ .
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Since $P^{+}\geq 0$ and $\psi(P^{+})=0,$ $\psi$ is a ground state for the automorphism group $Ade^{\ell tP^{+}}$

on $d^{+\infty}$ . It follows that
$\omega(Xe^{-\ell tP})=p(\epsilon(Xe^{-itP}))$

$=\rho(\epsilon(X)e^{-\ell tP})$

$=\psi(\eta_{+}(\epsilon(X))e^{-itP^{+}})$

$=\psi(\eta_{+}(\epsilon(X)))$

$=\omega(X)$

for all $X\in d$ and $t\in R$ , where the second-last equality follows from

$|\frac{d}{dt}\psi(Ae^{-itP^{+}})|=|\psi(Ae^{-itP^{+}}P^{+})|\leq\psi(Ae^{-itP^{+}}P^{+}e^{\ell tP^{+}}A^{*})^{1/2}\psi(P^{+})^{1/2}=0$ .

Henoe, if $X=AU^{n},$ $Y=BU^{m}$ are elements in $\mathscr{A}$ it follows that

$\omega(Y\gamma_{z}^{P}(X))=\omega(Ye^{izP}\gamma_{z}(X)e^{-izP})$

$=\omega(Ye^{\ell zP}\gamma_{z}(X))$

$=e^{inz}\omega(B\alpha^{m}(e^{izP}A)U^{m+n})$ ,

and henoe $\omega(Y\gamma_{z}^{P}(X))=0$ unless $m=-n$ . When $m=-n$ one has

$\omega(Y\gamma_{z}^{P}(X))=e^{inz}\rho(B\alpha^{-n}(e^{izP}A))=e^{inz}\rho(EB\alpha^{-n}(E)\alpha^{-n}(e^{izP})\alpha^{-n}(E)\alpha^{-n}(A)E)$ .
By the reasoning in the proof of Proposition 7.1, the right side vanishes whenever
$n\leq-1$ . When $n=0,$ $E\mathcal{B}E=B,$ $Ee^{izP}E=e^{izP}$ , $EAE=A$ are all in $EgE$, and henoe
the equation above takes the form

$\omega(Y\gamma_{z}^{P}(X))=\psi(\eta_{+}(B)\eta_{+}(e^{izP})\eta_{+}(A))$

$=\psi(\eta_{+}(B)e^{izP^{+}}\eta_{+}(A))$ .

As $P^{+}\geq 0$ this function has a bounded analytic extension to the upper half plane.
When $n$ is strictly positive and $Imz\geq 0$, one has the estimate

$|\omega(Y\gamma_{z}^{P}(X))|\leq e^{-nImz}\Vert B\alpha^{-n}(e^{\ddagger zP}A)\Vert$

$\leq e^{-nImz}\Vert B\Vert\Vert e^{izP}\Vert\Vert A\Vert$

$\leq e^{\langle||P||-n)Imz}\Vert B\Vert\Vert A\Vert$

and this is bounded in the upper half plane because of the estimate $\Vert P\Vert<1/2$ . It
follows that $\omega$ is a ground state for $(d, \gamma^{P})$ .

Assume conversely that $\omega$ is a ground state for $(d, \gamma^{P})$ . We will show that
$\omega$ also isaground state of $(\mathscr{A}, \gamma)$ , in the form ofa general lemma.

Lemma 7.3. Let $(d, \gamma)$ be a $C^{*}$-dynamical system where $\gamma$ is periodic with
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period $ 2\pi$ , and let $P=P^{*}\in \mathscr{A}$ be an element such that $\Vert P\Vert<1/2$ and $\gamma_{t}(P)=P$ for
all $t\in R$ . Then any ground state for $(\mathscr{A}, \gamma^{P})$ is also a ground state for $(\mathscr{A}, \gamma)$ .

Proof. Assume that $\omega$ is a ground state for (.gt, $\gamma^{P}$). It is enough to show
that the analytic function

$z\mapsto\omega(B\gamma_{z}(A))$

is bounded in the upper half plane when $B\in \mathscr{A}$ and $A\in \mathscr{A}^{\gamma}(\{n\})$ , i.e., $A$ is an element
in $\mathscr{A}$ such that $\gamma_{t}(A)=e^{int}A$ ; see [7], Proposition 5.3.19 and [6], Section 3.2.3.
But

$\omega(B\gamma_{z}(A))=e^{inz}\omega(BA)$

and henoe it suffices to show that

$\omega(BA)=0$

when n $\leq-1$ . But as $\omega$ isa $(\mathscr{A}, \gamma^{P})$-ground state, the function

$\omega(B\gamma_{z}^{P}(A))=\omega(Be^{izP}\gamma_{z}(A)e^{-izP})$

$=e^{inz}\omega$($Be^{izP}$ A $e^{-\ell zP}$)

is bounded in absolute value in the upper half plane:

$|e^{inz}\omega(Be^{izP}Ae^{-izP})|\leq\Vert B\Vert\Vert A\Vert$

for $Imz\geq 0$ . But $e^{izP}$ $A$ $e^{-izP}\in \mathscr{A}^{\gamma}(\{n\})$ by $\gamma$-invarianoe of $P$ , and hence, replacing
$A$ by $e^{-izP}$ $A$ $e^{\ell zP}$ in the relation above, we obtain

$|e^{inz}\omega(BA)|\leq\Vert B\Vert\Vert e^{-izP}Ae^{izP}\Vert$

$\leq\Vert B\Vert\Vert A\Vert e^{2Imz||P||}$

for $Imz\geq 0$ . Settingz $=iswheres\geq 0onededuoesthat$

$|\omega(BA)|\leq\Vert B\Vert\Vert A\Vert e^{s\langle n+2||P||)}$ .

Sinoe $\Vert P\Vert<1/2$ it follows that $\omega(BA)=0$ when $n\leq-1$ , and the lemma is proved.
Resuming the proof of Theorem 7.2, since by Lemma 7.3 $\omega$ is also a ground

state for $(\mathscr{A}, \gamma)$ , by Proposition 7.1 $\omega$ annihilates the ideal $I^{+\infty}$ in $EgE$ ; i.e.
$\omega|E\mathcal{B}E\equiv p$ induces a state $\psi$ on $E\mathcal{B}E/I^{+\infty}=d^{+\infty}$ . Sinoe the restriction $p$ is a
$\gamma_{\ell}^{P}|_{ElE}=Ade^{itP}$ ground state, $\psi$ is an $Ad\eta_{+}(e^{i\ell P})=Ade^{\ell tP^{+}}$ ground state, and in
particular $\psi(P^{+})=0$ , i.e. $\psi\in F_{+\infty}$ . We conclude that

$\omega=\psi\circ\eta_{+}\circ\epsilon$
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establishes a one-one affine correspondence between $(\mathscr{A}, \gamma^{P})$-ground states $\omega$ and
states $\psi\in F_{+\infty}$ .

The reasoning for ceiling states is analogous.

Remark 7.4. The proof of Theorem 7.2 can be greatly simplified (i.e. one does
not need the subgroup $H$ and Lemma 8.1) in the case that all $K_{p}$ are Bauer simplexes,
i.e. simplexes where the sets of extremal points are closed. In this case one can let
$P$ be any element in $E\mathcal{B}E$ such that $\eta_{+}(P)=P^{+},$ $\eta_{-}(P)=-P^{-}$ and $\Vert P\Vert<1/2$ . This
is because the map

$\omega\mapsto\overline{\omega}^{P}$

where $\tilde{\omega}^{P}(A)=\omega(e^{-\beta P}A)$ is an affine isomorphism between the set of positive $(\gamma, \beta)-$

KMS functionals and the set of positive $(\gamma^{P}, \beta)$-KMS functionals. Henoe the map

$\omega-\overline{\omega}(A)=\tilde{\omega}^{P}(A)/\omega(e^{-\beta P})$

is a one-one continuous map from the extremal $(\gamma, \beta)$-KMS states $\omega$ to the extremal
$(\gamma^{P}, \beta)$-KMS states $\overline{\omega}$ . Sinoe the set $K_{\beta}$ of $(\gamma, \beta)$-KMS states is a simplex, there
exists for each $\omega\in K_{\beta}$ a unique maximal measure $\mu_{\omega}\in M\ddagger(K_{\beta})$ with barycenter $\omega$ ,

where $M\ddagger(K_{\beta})$ denotes the probability measures on $K_{\beta},$ $[1],$ $[6]$ . $\mu_{\omega}$ is supported
by the extremal points $d(K_{p})$ in $K_{p}$ sinoe $K_{\beta}$ is metrizable, and hence we may define

$\overline{\omega}=\int_{t\langle Kp)}\overline{\rho}d\mu_{\omega}(\rho)$ .

This is an affine map from $K_{\beta}$ into the set of $(\gamma^{P}, \beta)$-KMS states. But as $K_{\beta}$ is a
Bauer simplex, the map $\omega->\mu_{\omega}$ is continuous when $M\ddagger(K_{p})$ is equipped with the
weak topology, [1], Theorem II, 4.1, and as

$\rho\mapsto\rho(e^{-\beta P}\cdot)/\rho(e^{-\beta P})=\overline{\rho}$

is a continuous function it follows that $\omega$ }$\rightarrow\overline{\omega}$ is continuous; henoe it is a homeo-
morphism by the compactness of $K_{\beta}$ .

VIII A Lemma on $AF$ algebras

In this section we will prove the lemma needed in the proof of Theorem 7.2.
We use freely results and methods from [9] during the proof.

Lemma 8.1. Let $G$ be the dimension group of a separable $AF$ algebra $g$ with
identity 1, let I denote both an ideal in $G$ and the corresponding ideal in $g$ . If
$E$ is a projection in $\mathcal{B}$ , resp. $\mathcal{B}/I$ , let $[E]$ denote its Murray-von Neumann equiva-
lence class in $\mathcal{B}$ , resp. $\mathcal{B}/I$ . Assume that $H$ is a Riesz subgroup of $G$ such that
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$H\cap I$ is an ordered group, $[1]\in H$ , and $H/I=G/I$ . Then there exists an $AF$ sub-
algebra $\mathscr{C}\subseteq \mathcal{B}$ such that the equivalence classes in $\mathcal{B}$ of all the projections in 9
belong to $H$ and $\mathscr{C}/I=\mathcal{B}/I$ .

Proof. Let $\eta$ denote both the quotient maps $G\rightarrow G/I$ and $\mathcal{B}\rightarrow \mathcal{B}/I$ .
Observation 1. If $V$ is a unitary in $\mathcal{B}/I$ there exists a unitary $U\in g$ such

that $V=\eta(U)$ .
This is because $V$ has the form $V=e^{\ell H_{1}}e^{iH_{2}}$ where $H_{1},$ $H_{2}$ are self-adjoint

elements in $\mathcal{B}/I$ (If $V$ is a finite-dimensional subalgebra this is clear with $H_{2}=0$, if
not we can approximate $V$ by an element in a finite-dimensional subalgebra, and
taking the polar decomposition we find a unitary $e^{iH_{1}}$ in the finite-dimensional
algebra such that $\Vert e^{-iH_{1}}V-1\Vert=\Vert V-e^{iH_{1}}\Vert<2$ , and hence $e^{-iH_{1}}V=e^{iH_{2}}$ by spectral
theory). $H_{1}$ and $H_{2}$ can be lifted to self-adjoint elements $K_{1}$ and $K_{2}$ in $\mathcal{B}$ , and then
$U=e^{iK_{1}}e^{iK_{2}}$ has the desired property.

Observation 2. If $E$ is a projection in $\mathcal{B}/I$ and $g\in G$ is such that $0\leq g\leq[1]$

and $\eta(g)=[E]$ , then there exists a projection $F\in \mathcal{B}$ such that $[F]=g$ and $\eta(F)=E$ .
This is because if $F^{\prime}\in \mathcal{B}$ is any projection with $[F^{\prime}]=g$ , then $[\eta(F^{\prime})]=\eta[F^{\prime}]$

$=[E]$ , and henoe there exists a unitary $V\in \mathcal{B}/I$ with $E=V\eta(F^{\prime})V^{*}$ . By Observation
1 there is a unitary $U\in \mathcal{B}$ with $\eta(U)=V$, and we may define $F=UF^{\prime}U^{*}$ .

Observation 3. If $E_{1},$ $E_{2}$ are mutually orthogonal projections in $\mathcal{B}/I,$ $F$ is a
projection in $\mathcal{B}$ and $h_{1},$ $h_{2}$ are positive elements in $G$ such that $E_{1}+E_{2}\leq\eta(F)$ ,

$\eta(h_{i})=[E_{i}],$ $i=1,2$ and $h_{1}+h_{2}\leq[F]$

then there exist mutually orthogonal projections $F_{1},$ $F_{2}$ in $\mathcal{B}$ such that $[F_{\ell}]=h_{i}$ ,

$\eta(F_{i})=E_{t},$ $i=1,2$ and $F_{1}+F_{2}\leq F$ .
We first apply Observation 2 with $\mathcal{B}$ replaced by FSSF to get $F_{1}$ , and next we

replace $\mathcal{B}$ by $(F-F_{1})\mathcal{B}(F-F_{1})$ to get $F_{2}$ .

Observation 4. If $F_{1},$ $F_{2}$ are equivalent projections in $\mathcal{B}$ and $V$ is a partial
isometry in $g/I$ such that

$\eta(F_{1})=V^{*}V$, $\eta(F_{2})=VV^{*}$

then there exists a partial isometry $U\in \mathcal{B}$ such that

$F_{1}=U^{*}U$ , $F_{2}=UU^{*}$ and $\eta(U)=V$ .
Let $U^{\prime}$ be a partial isometry in $\mathcal{B}$ such that $F_{1}=U^{\prime*}U^{\prime},$ $F_{2}=U^{\prime}U^{\prime*}$ and define
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$V^{\prime}=\eta(U^{\prime})$ . Then $V^{\prime}$ is a partial isometry with $\eta(F_{1}),$ $\eta(F_{2})$ as initial and final pro-
jection, respectively, and henoe $VV^{\prime*}$ is a partial isometry with $\eta(F_{2})$ as both initial
and final projection. If we replaoe $\mathcal{B}$ by $F_{2}\mathcal{B}F_{2}$ in Observation 1 we get a partial
isometry $U^{\prime\prime}$ in $g$ with

$U^{\prime\prime*}U^{\prime\prime}=U^{\prime\prime}U^{\prime\prime*}=F_{2}$ and $\eta(U^{\prime\prime})=VV^{\prime*}$ .
Put $U=U^{\prime\prime}U^{\prime}$ . Then

$U^{*}U=U^{\prime*}F_{2}U^{\prime}=F_{1}$

$UU^{*}=U^{\prime\prime}F_{2}U^{\prime\prime*}=F_{2}$ ,

and

$\eta(U)=VV^{\prime*}V^{\prime}=V\eta(F_{1})=V$ .

Observation5. $Letg_{1},$ $g_{2},$ $g\in G/Iandh\in Hbepositiveelementssuchthat$

$g_{1}+g_{2}=g$ and $\eta(h)=g$ .
It follows that there exist positive elements $h_{1},$ $h_{2}\in H$ such that

$h_{1}+h_{2}\leq h$ and $\eta(h_{1})=g_{1},$ $\eta(h_{2})=g_{2}$ .

This is a consequenoe of the Riesz decomposition property for $H,$ $[10]$ . Since
$H/I=G/I$ there exist positive elements $h_{1}^{\prime},$ $h_{2}^{\prime}$ in $H$ such that $\eta(h_{\ell}^{\prime})=g_{\ell}$ for $i=1,2$ .
But then

$h_{1}^{\prime}+h_{2}^{\prime}=h+c$

where $c\in H\cap I$, and as $H\cap I$ is a ordered group there exist positive elements $c_{+},$ $c_{-}$

$\in H\cap I$ with $c=c_{+}-c_{-}$ . It follows that

$h_{1}^{\prime}+h_{2}^{\prime}+c_{-}=h+c_{+}$ .
But by the Riesz decomposition property there exist positive elements $a_{ij},$ $i=1,2$,
3, $j=1,2$ , in $H$ such that

$h_{1}^{\prime}=a_{11}+a_{12}$ , $h=a_{11}+a_{21}+a_{31}$ ,

$h_{2}^{\prime}=a_{21}+a_{22}$ , $c_{+}=a_{12}+a_{22}+a_{32}$ ,

$c_{-}=a_{3q}+a_{32}$ .

Define $h_{1}=a_{11},$ $h_{2}=a_{21}$ . Sinoe $a_{12},$ $a_{22}\leq c_{+}$ one has $a_{12},$ $a_{22}\in I$ and hence

$\eta(h_{\ell})=\eta(h_{i}^{\prime})=g_{i}$
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for $i=1,2$ . Also

$h_{1}+h_{2}+a_{31}=h$

so
$h_{1}+h_{2}\leq h$ .

Observation 6. Let $h_{1},$ $h_{2}$ be positive elements in $H$ such that $\eta(h_{1})=\eta(h_{2})$ . It

follows that there exists a positive element $h$ in $H$ such that

$h\leq h_{1},$ $h\leq h_{2}$ and $\eta(h)=\eta(h_{1})=\eta(h_{2})$ .
This is again a consequenoe of the Riesz decomposition property. One has

$h_{1}+c_{-}=h_{2}+c_{+}$

for suitable positive elements $c_{\pm}\in H\cap I$ , and then there exist positive elements $a_{ij}$ ,
$i,$ $j=1,2$ in $H$ such that

$h_{1}=a_{11}+a_{12}$ , $h_{2}=a_{11}+a_{21}$ ,

$c_{-}=a_{21}+a_{22}$ , $c_{+}=a_{12}+a_{22}$ .

The last two relations imply that $a_{21},$ $a_{12}\in I$ , and henoe $h=a_{11}$ has the correct
properties.

Observation 7. Let $\mathscr{A},$
$\mathcal{D}$ be finite-dimensional $C^{*}$-algebras such that $9\subseteq d$

and $d$ and $\mathcal{D}$ has a common identity. Then there exists a finite increasing
sequence

$\mathcal{D}=\mathcal{D}_{1}\subset \mathcal{D}_{2}\subset\cdots\subset \mathcal{D},,=\mathscr{A}$

offinite-dimensional $C^{*}$-algebras such that the diagram, [9], of the embedding of
$\mathcal{D}_{k}$ into $\mathcal{D}_{k+1}$ has one of the two forms

$XXX/\backslash |XXX\cdot.\cdot.\cdot.XXX||$

$or$

$XXX\backslash _{X^{/|}X}X\cdot..\cdot.XXX||$

.
We construct $\mathcal{D}_{1},$ $\mathcal{D}_{2},\ldots$ inductively. Put $\mathcal{D}_{1}=\mathcal{D}$ and assume $9_{1},\ldots,$ $9_{k}$

have been constructed. Sinoe $9_{k}\subseteq d$ we have
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$9_{k}^{\prime}\cap 9_{k}\subseteq 9_{k}^{\prime}\cap \mathscr{A}$

($9_{k}^{\prime}\cap f=the$ relative commutant of $9_{k}$ in $f$). There are two possibilities:

1. $9_{k}^{\prime}\cap \mathcal{D}_{k}\neq 9_{k}^{\prime}\cap d$ .
In this case, pick a minimal projection $P$ in $\mathcal{D}_{k}^{\prime}\cap \mathscr{A}$ such that $P\not\in 9_{k}^{\prime}\cap 9_{k}$ , and let
$9_{k+1}$ be the $C^{*}$-algebra generated by $\mathcal{D}_{k}$ and $P$ . The embedding of $9_{k}$ into $9_{k+1}$

then has the form

X X $X\cdots X$

$\swarrow_{XX}^{\backslash 1}X\cdots X||$ .
2. $9_{k}^{\prime}\cap 9_{k}=\mathcal{D}_{k}^{\prime}\cap$ si.

In this case one has

$9_{k}^{\prime}\cap \mathscr{A}=9_{k}^{\prime}\cap 9_{k}\supseteq \mathscr{A}^{\prime}\cap \mathscr{A}$

and there are two possibilities.

$2a$ . $d^{\prime}\cap d\neq 9_{k}^{\prime}\cap \mathscr{A}=\mathcal{D}_{k}^{\prime}\cap \mathcal{D}_{k}$ .
In this case each factor in $9_{k}$ is embedded in just one factor in $d$ and with multi-
plicity one. Let $P_{1}$ be a minimal projection in $9_{k}\cap 9_{k}^{\prime}$ such that $P_{1}\not\in d^{\prime}\cap d$ .
Let $P_{2}$ be another minimal projection in $9_{k}\cap \mathcal{D}_{k}^{\prime}$ such that $P=P_{1}+P_{2}$ is dominated
by a minimal projection in $d^{\prime}\cap \mathscr{A}$ , and let $\mathcal{D}_{k+1}$ be the $C^{*}$-algebra generated by
$9_{k}andP.\mathscr{A}P$ . The embedding of $\mathcal{D}_{k}into9_{k+1}$ then has the form

$XXX|XXX\cdots XX\cdots X||$

.
$2b$ . $\mathscr{A}^{\prime}\cap \mathscr{A}=9_{k}^{\prime}\cap d=\mathcal{D}_{k}^{\prime}\cap 9_{k}$ .
In this case one must have $9_{k}=d$ and the induction is finished.

Since $\mathscr{A}$ is finite-dimensional the induction must end after a finite number of
steps.

Observation 8. If $\mathscr{A}$ is a finite-dimensional subalgebra of $g/I$ with $\eta(1)\in d$ ,
and $\mathscr{C}_{1}$ is a finite-dimensional subalgebra of $\mathcal{B}$ such that $[E]\in H$ for all projec-
tions $E\in \mathscr{C}_{1}$ and $\eta(\mathscr{C}_{1})\subseteq \mathscr{A}$ , there exists a finite-dimensional subalgebra $q_{2}$ of $\mathcal{B}$

such that $C_{1}\subseteq \mathscr{C}_{2},$ $[E]\in H$ for all $E\in \mathscr{C}_{2}$ and $\mathscr{A}=\eta(\mathscr{C}_{2})$ .
By applying Observation 7 on the pair $\mathcal{D}=\eta(\mathscr{C}_{1})$ and $d$ and an induction argu-

ment, we may assume that the embedding of $\eta(\mathscr{C}_{1})$ in $d$ has one of the forms
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X X $X\cdots X$

1. $\bigwedge_{\chi}|XXX\cdots X||$

or

X $XXX\cdots X$

2.
$\backslash _{X}/$ $X|X\cdots X||$

We treat the two cases separately.

Case 1. Let $P$ be the minimal projection in $\mathscr{C}_{1}\cap \mathscr{C}_{1}^{\prime}$ such that $\eta(P)$ is the sum
of two minimal projections $P_{1}$ and $P_{2}$ in $\mathscr{A}\cap \mathscr{A}^{\prime}$ . Let $F$ be a minimal projection
in $P\mathscr{C}{}_{1}P$ , and define

$E_{1}=\eta(F)P_{1}$ , $E_{2}=\eta(F)P_{2}$ .
Then $E_{1},$ $E_{2}$ are minimal projections in the factors $\mathscr{A}P_{1},$ $\mathscr{A}P_{2}$ , respectively. Ob-
servation 5, applied to $g_{1}=[E_{1}],$ $g_{2}=[E_{2}],$ $g=[\eta(F)]$ and $h=[F]$ and Observation
3 imply the existence of projections $F_{1}$ and $F_{2}$ in $\mathcal{B}$ such that $[F_{1}],$ $[F_{2}]\in H,$ $F_{1}$

$+F_{2}\leq F$ and $\eta(F_{i})=E_{i}$ for $i=1,2$ . Define

$F_{3}=F-F_{1}-F_{2}$ .

Then $[F_{3}]\in H-H=H$ . Let $\wp_{2}$ be the $C^{*}$-algebra generated by $F_{1},$ $F_{2},$ $F_{3}$ and 9.
Then $\mathscr{C}_{2}$ is a direct sum of the three (two if $F_{3}=0$) factors $\mathscr{C}_{1}F_{1}\mathscr{C}_{1},$ $q_{1}F_{2}f_{1}$ ,
$\mathscr{C}_{1}F_{3}\mathscr{C}_{1}$ and the algebra $\mathscr{C}_{1}(1-P)$ . These factors have the same dimension as
$\mathscr{C}{}_{1}P$, hence $\mathscr{C}_{2}$ is finite-dimensional $\cdot$ Also $[Q]\in H$ for all projections $Q\in \mathscr{C}_{2}$ , and
$\eta(F_{1})=E_{1},$ $\eta(F_{2})=E_{2},$ $\eta(F_{3})=0$, hence $\eta(\mathscr{C}_{2})=\mathscr{A}$ .

Case 2. Let $P_{1},$ $P_{2}$ be the two distinct minimal projections in $l_{1}\cap \mathscr{C}_{1}^{\prime}$ such
that $\eta(P_{i})\neq 0$ for $i=1,2$ and $\eta(P_{1})+\eta(P_{2})=P$ is a minimal projection in $d\cap \mathscr{A}^{\prime}$ .
Let $F_{1}\leq P_{1},$ $F_{2}\leq P_{2}$ be minimal projections in $\mathscr{C}_{1}$ , and define $E_{1}=\eta(F_{1}),$ $E_{2}=\eta(F_{2})$ .
Then $E_{1},$ $E_{2}$ are minimal projections in the factor $\mathscr{A}P$ in $\mathscr{A}$ , and hence there is a
partial isometry $V$ in $\mathscr{A}$ with

$V^{*}V=E_{1}$ , $VV^{*}=E_{2}$ .
One has $[F_{1}],$ $[F_{2}]\in H,$ $\eta[F_{1}]=[E_{1}]=[E_{2}]=\eta[F_{2}]$ , and thus Observation 6 im-
plies the existence of a positive $h\in H$ such that $h\leq[F_{1}],$ $h\leq[F_{2}]$ and $\eta(h)=\eta[F_{1}]$

$=\eta[F_{2}]$ . By Observation 3 there exist projections $Q_{1},$ $Q_{2}$ in $\mathcal{B}$ such that $[Q_{1}]$

$=[Q_{2}]=h$ and

$Q_{1}\leq F_{1}$ , $Q_{2}\leq F_{2}$ .
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Define $Q_{3}=F_{1}-Q_{1},$ $Q_{4}=F_{2}-Q_{2}$ . Then $[Q_{\ell}]\in H-H=H$ for $i=3,4$ . By Obser-
vation 4 there exists a partial isometry $U\in \mathcal{B}$ such that

$U^{*}U=Q_{1}$ , $UU^{*}=Q_{2}$ and $\eta(U)=V$ .
Let $\mathscr{C}_{2}$ be the $C^{*}$-algebra generated by $U$ and $\mathscr{C}_{1}$ . Then $Q_{i}\in \mathscr{C}_{2}$ for all $i$ . The
algebra $\mathscr{C}_{2}$ is the direct sum of three (the two last of them may be zero) factors and
$(1-P_{1}-P_{2})\mathscr{C}_{1}(1-P_{1}-P_{2})$ . The factors are $\mathscr{C}_{1}Q_{1}\mathscr{C}_{1}+\mathscr{C}_{1}U\mathscr{C}_{1}+\mathscr{C}_{1}U^{*}\mathscr{C}_{1}+$

$\mathscr{C}_{1}Q_{2}\mathscr{C}_{1},$ $\mathscr{C}_{1}Q_{3}\mathscr{C}_{1}$ , and $\mathscr{C}_{1}Q_{4}\mathscr{C}_{1}$ . The equivalenoe classes of all projections in these
factors are in $H$, and as $\eta(Q_{1})=E_{1},$ $\eta(U)=V,$ $\eta(Q_{3})=\eta(Q_{4})=0$ one has $\eta(\mathscr{C}_{2})=\mathscr{A}$ .

Lemma 8.1 follows by considering an increasing sequenoe $d_{n}$ of finite-dimen-
sional subalgebras of $\mathcal{B}/I$ such that $\cup \mathscr{A}_{n}$ is dense in $\mathcal{B}/I$ . Using Observation 8

$n$

recursively we find an increasing sequenoe $\mathscr{C}_{n}$ of finite-dimensional $C^{*}$-subalgebras
of $\mathcal{B}$ such that $\eta(\mathscr{C}_{\hslash})=\mathscr{A}_{n}$ . Defining $\mathscr{C}=\overline{\cup \mathscr{C}_{n}}$ one has that $\eta(\mathscr{C})=\mathcal{B}/I$ and

$n$

sinoe each projection in $\mathscr{C}$ is equivalent to a projection in some $\mathscr{C}_{n}$ , it follows that
$[F]\in H$ for all projections $F\in \mathscr{C}$ .

Remark that the assumption in Lemma 8.1 that $H\cap I$ is ordered, i.e. $(H\cap I)_{+}$

$-(H\cap I)_{+}\subset H\cap I$ , does not follow from the other assumptions. This assumption
implies furthermore that $H\cap I$ is a Riesz group (by the decomposition property).

IX Representation of simplexes as faces in the state spaces of $AF$ algebras

In this section we will prove the result alluded to in the remark after Theorem
7.2, i.e.,

Proposition 9.1. There exists a simple, separable, unital $AF$ algebra $d$ such
that any metrizable simplex is affinely isomorphic to a face in the state space of $d$ .

Several results of a related nature have been proved by Batty, [3], [4]. It fol-
lows from [3], Corollary 3.4, that if $\mathscr{A}$ is a simple, separable, infinite-dimensional,
unital AF algebra, then the state space of $\mathscr{A}$ contains a face isomorphic to the
simplex $K_{\mu\infty}(\overline{N})$ , where $\mu$ is a probability measure on the one-point compactification
$\overline{N}$ of $N$ , and $K_{\mu\infty}(\overline{N})$ is the state spaoe of the order unit spaoe

$\{f\in C(\overline{N});f(\infty)=\int fd\mu\}$ .

Batty exhibited a canonical affine isomorphism between the set $E^{G}$, of invariant
states of a $C^{*}$-dynamical system $(\mathscr{A}, G, \alpha)$ and a faoe in the state space of the crossed
product $C^{*}(\mathscr{A}, \alpha)$ (where $G$ is equipped with the discrete topology). If$f\in L^{1}(d, G)$

$\subseteq C^{*}(\mathscr{A}, \alpha)$ , this correspondenoe is given by $\omega\in E^{G},-\tilde{\omega}$ , where
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$\tilde{\omega}(f)=\sum_{g\in G}\omega(f(g))$ .

If $\alpha$ is the Bemoulli shift on the CAR algebra $\mathscr{A}=\bigotimes_{z}M_{2}$ , one can show that $E^{z}$, is
a simplex where the set of extremal points is dense; see e.g. [6], Example 4.3.26.
It is known that a metrizable simplex with this property is unique up to affine iso-
morphism, and any metrizable simplex is isomorphic with a faoe in this simplex,
which is called the Poulsen simplex, [16]. Henoe, any metrizable simplex is iso-
morphic with a faoe in the state spaoe of $C^{*}(\mathscr{A}, \alpha)$ for this particular example, which
is due to Batty, [4]. $C^{*}(\mathscr{A}, \alpha)$ is simple by [14], but by [5] is not AF.

Our proof of Proposition 9.1 will be based on Batty’s method. Let $K$ be the
Poulsen simplex, and choose a countable dense subgroup $H$ of the additive group
$A(K)$ , equipped with the strict order, such that $H$ contains the constant function 1.
Then $H$ is a Riesz group. Let $\mathscr{A}$ be the unital AF algebra with dimension group $H$,

and such that the identity of $\mathscr{A}$ corresponds to $1\in H,$ $[10],$ $[12]$ . It follows that $\mathscr{A}$

is simple, and the traoe state spaoe of $\mathscr{A}$ is affinely isomorphic to $K$ .
If $G$ is the group of inner automorphisms of $\mathscr{A}$ , then $E^{G}$, is just the traoe state

space of $\mathscr{A}$ , and henoe the Poulsen simplex is a faoe in the state spaoe of the
$C^{*}$-crossed product $\mathscr{A}\times G$ . This crossed product is neither simple nor AF however.
It can be made AF by replacing $G$ by a large locally finite subgroup, but in order
to make the crossed product simple $G$ would have to act as outer automorphisms
on $\mathscr{A}$ . We will remedy this defect by replacing st by $\mathcal{B}=\mathscr{A}\otimes \mathscr{F}$ , where $\mathscr{F}$ is a
suitable UHF algebra, and then finding a group $G$ of outer automorphisms of ta
such that $E_{g}^{G}$ consists of just the traoe states of $\mathcal{B}$ .

Let $\mathscr{A}_{n}$ be an increasing sequenoe of finite-dimensional $C^{*}$-subalgebras of $\mathscr{A}$ ,

each containing the unit of $\mathscr{A}$ , and with dense union in $\mathscr{A}$ . Each $\mathscr{A}_{n}$ has the central
decomposition

$\mathscr{A}_{n}=\sum_{k}M_{(n,k)}$

$whereeachM_{\langle n.k)}$ isafull matrix algebra of order $[n, k]$ .
We define an increasing sequenoe $va_{n}$ of finite-dimensional $C^{*}$-algebras as

follows:

$\mathcal{B}_{1}=\mathscr{A}_{1}$

$\mathcal{B}_{2}=\mathscr{A}_{2}\otimes M_{K1)}$

$\mathcal{B}_{3}=d_{3}\otimes M_{\eta(1)}\otimes M_{\eta\langle 2)}$

$a_{n}=d_{n}\otimes M_{\eta\langle 1)}\otimes\cdots\otimes M_{\eta\langle n-1)}$
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where $\eta(n),$ $ n=1,2,\ldots$ are integers defined inductively by

$\eta(1)=\sum_{k}[1, k]$

and

$\eta(n)=\eta(1)\eta(2)\cdots\eta(n-1)\sum_{k}[n, k]$

for $ n=2,3,\ldots$ . The embedding of $g_{n}$ in $es_{n+1}$ is the canonical one determined
from the embedding of $sat_{n}$ into $d_{n+1}$ . We choose matrix elements for the sub-
factors $M_{(n.k)}$ of $\mathscr{A}_{n}$ inductively in such a way that these matrix elements are sums
of matrix elements for $d_{n+1}$ ; see [9].

It is clear that $\mathcal{B}=\mathscr{A}\otimes \mathscr{F}$ , where $\mathscr{F}$ is the UHF algebra $ M_{\eta\langle 1)\eta(2)}\ldots$ .
We next define an increasing sequence $ G_{1}\subseteq G_{2}\subseteq G_{3}\cdots$ of finite groups acting on

$\mathcal{B}$ . Note that the oentral decomposition of $\mathcal{B}_{n}$ has the form

$g_{n}\cong\bigoplus_{k}M_{\eta(1)\cdots\eta\langle n-1)[n,k]}$ .

We define

$G_{n_{k}^{=\times}}S_{\eta(1)\cdots\eta(n-1)[n.k]}$

where $S_{k}$ is the permutation group on $k$ elements. One has a representation of $G_{n}$

in the unitary group in $\mathcal{B}_{n}$ such that an element of the form $g=\times kg_{k}$ is represented
by a unitary operator of the form $U_{g^{\hslash}}^{()}=\oplus U_{g_{k}}^{(n,k)}$ , where $U^{\langle n,k)}$ is a representation
of $S_{\eta\langle 1)\cdots\eta(n-1)[n.k]}$ by permutation matrioes; i.e. each $U_{g}^{(n.k)}$ is a matrix with entries
just $0$ and 1, and 1 occurs exactly onoe in each row and in each column of the
matrix. One has a representation of $G_{n}$ in the automorphism group of $\mathcal{B}_{n}$ by
$g\vdash>AdU_{g}^{(n)}$ .

We next describe the embedding of $G_{n-1}$ into $G_{n}$ . The embedding of

$\mathcal{B}_{n-1}=d_{n-1}\otimes M_{\eta(1)}\otimes\cdots\otimes M_{\eta\langle n-2)}$

into

$g_{n}=d_{n}\otimes M_{\eta(1)}\otimes\cdots\otimes M_{\eta(n-2)}\otimes M_{\eta\langle n-1)}$

is such that the matrices in $g_{n-1}$ are represented by matrices of the form

$B\otimes 1$

in $\mathcal{B}_{n},$ $wherelistheidentityinM_{\eta(n-1)}$ . But

$\eta(n-1)=\eta(1)\cdots\eta(n-2)(\epsilon^{[n}-1, k])$
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is just the sum of the orders of the factors in the oentral decomposition of $\mathcal{B}_{n-1}$ .
Henoe, if $g\in G_{n-1}$ , then one can string the unitaries in the decomposition

$U_{g}^{tn-1)}=\bigoplus_{k}U_{lk}^{(n-1.k)}$

along the diagonal in $M_{\eta\langle n-1)}$ , and by setting all other matrix elements equal to zero
one obtains a permutation matrix $V_{g^{n}}^{()}$ in $M_{\eta\langle n-1)}$ , and $g\mapsto V_{l}^{1n}$

) is a faithful repre-
sentation of $G_{n-1}$ . Also, the embedding of

$\mathcal{B}_{n-1}=\mathscr{A}_{n-1}\otimes M_{\eta\langle 1)}\otimes\cdots\otimes M_{\eta\langle n-2)}$

into

$\mathscr{A}_{n}\otimes M_{\eta(1)}\otimes\cdots\otimes M_{\eta(n-2)}$

maps each central sum of permutation matrices into a central sum of permutation
matrioes, and hence $U_{g}^{tn-1)}$ is mapped into a unitary $W_{g^{n}}^{\langle)}$ which is a central sum of
permutation matrioes. Thus

$W_{g^{\hslash}}^{\langle)}\otimes V_{g^{\hslash}}^{()}$

is a oentral sum of permutation matrices and henoe there exists a unique $h=\varphi_{n,n-1}(g)$

$\in G_{n}$ such that

$U_{h^{n}}^{()}=W_{g}^{(n})_{\otimes V_{g^{\hslash}}^{\langle)}}$

The injective morphism $\varphi_{n.n-1}$ : $G_{n-1}\rightarrow G_{n}$ defines the embedding of $G_{n-1}$ in $G_{n}$ .
We define $G$ as the inductive limit of the $G_{n}$ , and write simply $G=\cup G_{n}$ . Since
$G_{n}$ acts on all the algebras $\mathcal{B}_{n},$ $\mathcal{B}_{n+1},\ldots$ in a consistent fashion, we $g^{n}et$ an action
of $G_{n}on\cup g_{m}$ and sinoe this is an action by isometries it extends by closure to an
action of $G_{n}m$ on $g=\overline{\cup \mathcal{B}_{m}}$. This defines an action $\alpha$ of $G$ on $g$ .

$m$

We prove Proposition 9.1 via a series of observations.

Observation 1. The action $\alpha$ is outer, and hence $C^{*}(\mathcal{B}, \alpha)$ is simple.

Proof. Assume that $g\in G_{n},$ $g\neq 1$ , and consider the decomposition

$\mathcal{B}=(d\otimes M_{\eta(1)}\otimes\cdots\otimes M_{\eta\langle n)})\otimes M_{\eta(n+1)}\otimes M_{\eta\langle n+2)}\otimes\cdots$

$=\mathscr{C}_{n}\otimes M_{\eta\langle n+1)}\otimes M_{\eta(n+2)}\otimes\cdots$

of 2. It follows from the construction of $\alpha$ that $\alpha_{g}$ leaves all of the factors in this
tensor product decomposition invariant, and on each factor $\alpha_{g}$ is implemented by
a nontrivial permutation matrix. If $\alpha_{g}$ were inner, it would be approximible in the
uniform norm by an inner automorphism implemented by a unitary operator in
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one of the finite sub-tensor-products in the decomposition of $\mathcal{B}$ , and henoe
$\Vert(\alpha_{g}-1)|_{M_{\eta(n+k)}}\Vert\rightarrow 0$ as $ k\rightarrow\infty$ . As this is not the case, $\alpha_{g}$ is outer (see [17] for
the details of a similar argument).

It follows from [14] that $C^{*}(\mathcal{B}, \alpha)$ is simple.

Observation 2. $C^{*}(\mathcal{B}, \alpha)$ is an $AF$ algebra.

Proof. Since all the $\mathcal{B}_{n}’ s$ are finite-dimensional and all the $G_{n}’ s$ are finite, and
$\alpha|_{G_{n}}$ leaves $\mathcal{B}_{n}$ invariant, the embeddings $\mathcal{B}_{1}\subseteq \mathcal{B}_{2}\subseteq \mathcal{B}_{3}\subseteq\cdots$ and $ G_{1}\subseteq G_{2}\subseteq G_{3}\subseteq\cdots$

define embeddings $ C^{*}(\mathcal{B}_{1}, \alpha|_{G_{1}})\subseteq C^{*}(\mathcal{B}_{2}, \alpha|_{G_{2}})\subseteq C^{*}(\mathcal{B}_{3}, \alpha|_{G_{3}})\subseteq\cdots$ , and it is easily
proved via the regular representations of the $L^{1}$ -algebras that the inductive limit of
these algebras is identffied with $C^{*}(\mathcal{B}, \alpha)$ . This proves that $C^{*}(\mathcal{B}, \alpha)$ is an AF
algebra.

Observation 3. A state $\omega$ on $\mathcal{B}$ is $\alpha$-invariant if and only if $\omega$ is a trace.

Proof. If $\omega$ is $\alpha$-invariant, then $\omega|_{g_{n}}$ is invariant under the action of $G_{n}$ . But
sinoe $G_{n}$ acts ergodically on each factor in the oentral decomposition of $\mathcal{B}_{n}$ , it follows
that the restriction of $\omega$ to each such factor is a scalar multiple of the trace on the
factor. It follows that $\omega|_{g_{n}}$ is a traoe, and henoe $\omega$ is a traoe.

Conversely, if $\omega$ is a traoe, then $\omega|_{g_{n}}$ is a traoe and sinoe $G_{n}$ acts on $g_{\hslash}$ by
inner automorphisms, it follows that $\omega|_{p_{n}}$ is $G_{n}$-invariant. As $\mathcal{B}=\overline{\bigcup_{n}\mathcal{B}_{n}},$ $G=\bigcup_{n}G_{n}$ ,
it follows that $\omega$ is G-invariant.

Observation 4. The trace state space of $\mathcal{B}$ is affinely isomorphic to the trace
state space of $\mathscr{A}$ , and hence it is affinely isomorphic to the Poulsen simplex.

Proof. Since $\mathcal{B}=\mathscr{A}\otimes \mathscr{F}$ , and $\mathscr{F}$ has the Dixmier property (i.e., if $A\in \mathcal{F}$ ,
there exists a sequenoe of convex combinations $\sum_{k}\lambda_{k}U_{k}AU_{k}^{*}$ of unitary translates of
$A$ converging in norm to $\tau(A)1$ , where $\tau$ is the unique traoe state on $\mathscr{F}$) it follows
that any traoe state $\omega$ on $\mathcal{B}$ has the form

$\omega=\varphi\otimes\tau$

where $\varphi$ is a traoe state on $\mathscr{A}$ . This establishes a one-one affine correspondence
between $\varphi$ and $\omega$ .

Alternatively, one could prove this from the fact that the dimension group of $\mathcal{B}$

is the tensor product of the dimension groups of $\mathscr{A}$ and $\mathscr{F}$ ,

$K_{0}(\mathcal{B})=K_{0}(d)\otimes K_{0}(\mathscr{F})$ ,

and $K_{0}(\mathcal{F})$ is a subgroup of $Q$, hence there is a one-one correspondence between
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additive positive functionals on $K_{0}(\mathcal{B})$ and $K_{0}(\mathscr{A})$ .
We conclude from Observations 1 and 2 that $C^{*}(\mathcal{B}, \alpha)$ is an AF algebra, and

Observations 3 and 4 combined with Batty’s result mentioned earlier imply that the
Poulsen simplex $K$ is affinely isomorphic to a faoe in the state spaoe of $C^{*}(\mathcal{B}, \alpha)$ .
Sinoe any metrizable simplex is affinely isomorphic to a faoe in $K$, this ends the
proof of Proposition 9.1, with the $\mathscr{A}$ of that Proposition equal to $C^{*}(\mathcal{B}, \alpha)$ .

X Remarks on ground and ceiling states

In Theorem 7.2 the groups $G^{\pm\infty}$ were assumed to be $untable$ , archimedian,

totally ordered abelian groups without minimal positive elements. The theorem
can be extended to the case where $G^{\pm\infty}$ are just countable, simple (with respect to
the order) Riesz groups, i.e. to the case where $\mathscr{A}^{\pm\infty}$ are general simple unital sepa-
rable AF algebras. In order to make this extension the Riesz group $G_{0}$ in Section 3
and the dimension group $G$ in Section 5 have to be defined more carefully. This
will be done in detail in a more general setting in a forthcoming paper, but the
construction can be outlined as follows: we may assume, by the remarks prior to
Definition 3.1, that $K_{\pm\infty}$ consists of at most one point $\omega_{0}$ . Assume that $ K_{\pm\infty}\neq\phi$ ,

and $G^{\pm\infty}\neq\{0\}$ . Let $g_{\pm}\in G^{\pm\infty}$ correspond to the unit in $\mathscr{A}^{\pm\infty}$ , and let $\omega\pm$ be an
additive positive functional on $G^{\pm\infty}$ such that $\omega_{\pm}(g_{\pm})=1$ . We replaoe $G_{0}$ in
Definition 3.1 by a oertain subgroup G\’o of

$(\bigoplus_{z}G^{-\infty})\oplus G_{0}\oplus(\bigoplus_{z}G^{+\infty})$

where $\oplus,$ $\oplus denote$ direct sum ( $=restricted$ direct product); i.e., G\’o consists of
triples

$((g_{n}^{-})_{n\in Z}, f, (g_{n}^{+})_{n\in Z})$

where $g_{\hslash}^{\pm}\in G^{\pm\infty},$ $f\in G_{0}$ , only a finite number of the $g_{n}^{\pm}$ are nonzero, the functions
$f_{n}^{\pm}$ in Definition 3.1 are all independent of $\omega$ (as we may assume when $K_{\pm\infty}$ consists
of one point), and the compatibility conditions

$f_{n}^{-}=\omega_{-}(g_{n}^{-}),$ $f_{n}^{+}=\omega_{+}(g_{n}^{+})$

are fulfilled. The order on G\’o is defined by: $((g_{k}^{-})_{keZ}, f, (g_{k}^{+})_{k\in Z})>0$ if and only if
there exist integers $n,$ $m$ such that

$i$ . $f(\beta, \omega)>0$ for $\beta\in R$ and $(\beta, \omega)\in$ rt
ii. $g_{k}^{+}=0$ for $k2n+1$

iii. $g_{n}^{+}>0$
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$iv$ . $g_{k}^{-}=0$ for $k\leq m-1$

$v$ . $g_{m}^{-}>0$ .

One proves as in Lemma 3.2 that G\’o is a Riesz group, and defines an auto-
morphism $\alpha$ of G\’o by

$\alpha((g_{n}^{-}), f, (g_{n}^{+}))=(\alpha(g_{n}^{-}), \alpha f, \alpha(g_{n}^{+}))$

where

$\alpha((g_{n}^{-})_{\hslash\in z})=(g_{n+1}^{-})_{\hslash\in z}$

$\alpha f(\beta, \omega)=e^{-\beta}f(\beta, \omega)$

$\alpha((g_{n}^{+})_{n\in Z})=(g_{n+1}^{+})_{n\in Z}$ .
One then chooses a suitable countable subgroup $G^{\prime}$ of G\’o as in Section 5, and pro-
ceeds to prove the generalized version of Theorem 7.2 with minor modifications in
the argument. This justifies the penultimate statement of the abstract of this paper.
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