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1. Introduction. Let $\{X_{j}\}$ be a sequence of random variables defined on a
probability space $(\Omega, A, P)$ . Let $S_{n}=X_{1}+\cdots+X_{n}$ for $n\geqq 1$ with $S_{0}=0$ . Let
$\{W(t), t\geqq 0\}$ be a standard Wiener process defined on that probability space. In
[6] Robbins and Siegmund proved an invariance theorem which states that if $\{X_{i}\}$

is i.i.d.r.v’s the limit of the probability that $S_{n}\geqq m^{1/2}g(\frac{n}{m})for$ some $n\geqq\tau m$ (or some
$n\geqq 1)$ is the probability that $W(t)\geqq g(t)$ for some $t\geqq\tau>0$ (or for some $t>0$) where
$g(t)$ is a function of a certain class of functions including functions which are
$\sim$ $(2t$ log log $t)^{1/2}$ as $ t\rightarrow\infty$ .

On the other hand, recently, many approximation theorems for partial sums of
independent and weakly dependent random vectors are proved. (See, for examples,
Major [4], Philipp and Stout [5] and Berkes and Philipp [1]). Using the theorems,
Shorack [8] proved the Darling and Erd\"os theorem on the maximum of normalized
sums of certain dependent $rv’ s$ (excepting the strong mixing case).

In this paper, modifying Shorack’s technique, we prove the above mentioned
Robbins and Siegmund theorems hold for some weakly dependent sample sums
(including the strong mixing case) (Theorems 1-3). The results contain an extension
of Shorack’s theorem (Corollary to Theorem 3). Examples are also shown.

2. Results. Define the random function on $[0, \infty$) by letting $S(t)=S_{int(t)}$

for $t\geqq 0$, where int $(\cdot)$ denotes the greatest integer function. We always assume that
the following conditions hold:

(2.1) $EX_{i}=0$ and $ E|X_{i}|^{2}\leqq M<\infty$ for $i\geqq 1$ , and

(2.2) $D(t)=t^{-1/2}|S(t)-W(t)|=O$(($\log$ log $t$) ) a.s. as $ t\rightarrow\infty$ for some $\alpha>\frac{1}{2}$ .
Theorem 1. Suppose that $g(t)$ is continuous for $t\geqq\tau>0$, that $t^{-1\prime 2}g(t)$ is

ultimately nondecreasing as $ t\rightarrow\infty$ and that
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(2.3) $\int_{\tau}^{\infty}t^{-3/2}g(t)$ exp $\{-g^{2}(t)/2t\}dt<\infty$ .

Then

(2.4) $\lim_{m\rightarrow\infty}P$($S_{n}\geqq m^{1/2}g(n/m)$ for some $n\geqq\tau m$)

$=P$( $W(t)\geqq g(t)$ for some $ t\geqq\tau$).

Theorem 2. Suppose that $g$ is continuous for $t>0$, that $t^{-1/2}g(t)$ is non-
increasing for $t$ sufficiently small, and that

(2.5) $\int_{0+}^{1}t^{-3/2}g(t)$ exp $\{-g^{2}(t)/2t\}dt<\infty$ .

Then, for all $\tau(>0)$ sufficiently small

(2.6) $\lim_{m\rightarrow\infty}P$($S_{n}\geqq m^{1/2}g(n/m)$ for some $1\leqq n\leqq\tau m$)

$=P$( $W(t)\geqq g(t)$ for some $ 0<t\leqq\tau$).

Theorem3. Suppose that g $(t)$ is continuous $for0<t\leqq\tau<\infty andthattheboth$

growth conditions of Theorems 2 and 3 hold for $t$ sufficiently small. Then, (2.4)

continues to hold with $n\geqq\tau m$ replaced by $n\geqq 1$ and $ t\geqq\tau$ by $t>0$ .
Remarks. (a) The same relations as in Theorems 1-3 are valid if $S_{n},$ $W(t)$

are replaced by $|S_{n}|,$ $|W(t)|$ .
(b) Instead of assuming that the continuous function $g$ satisfies the indicated growth
conditions, it is sufficient to assume that it majorizes some function which does.

To extend Theorem 1 in Shorack [8], we define normalizing functions $b$ and $c$

by

(2.7) $b(t)=(2\log\log t)^{1/2}$

and

(2.8) $c(t)=2\log\log t+2^{-1}\log\log\log t-2^{-1}\log(4\pi)$ for $t>e^{e}$ .

Let $E_{v}$ denote the extreme value distribution function defined by

(2.9) $E_{v}(t)=\exp(-\exp(-t))$ for $-\infty<t<\infty$ .
The following corollary is an extension of Shorack’s theorem.

Corollary. Define

(2.10) $u_{m}=\sup_{1\leqq s\leqq m}\frac{S(s)}{s^{1/2}}$ and $U_{m}=\sup_{1\leqq s\leqq m}\frac{|S(s)|}{s^{1/2}}$ .
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Then

(2.11) $b(m)u_{m}-c(m)\rightarrow^{D}E_{v}$ as $ m\rightarrow\infty$

and

(2.12) $b(m)U_{m}-c(m)\rightarrow^{D}E_{v}^{2}$ as $ m\rightarrow\infty$ .

3. Proofs.
We need a lemma which corresponds to Lemma4 of Robbins and Siegmund [7].

Lemma. For any $ 0<\tau<c<\infty$

$\lim_{m\rightarrow\infty}P(S_{n}\geqq m^{1/2}g(\frac{n}{m})$ for some $\tau m\leqq n\leqq cm)$

$=P$( $W(t)\geqq g(t)$ for some $\tau\leqq t\leqq c$).

Proof. The proof is easily deduced from Theorem 4.1 of Billingsley [1], (2.2)
and the fact

$P(\max_{\tau\leqq t\leqq c}(W(t)-g(t))=0)=0$

which has been obtained by Ylvisaker [9].

Proof of Theorem 1. By Lemma to prove Theorem 1 it is enough to show that
(2.4) holds for $\tau$ sufficiently large. Let

$ h(t)=t^{1/2}(\log$ llog $t|)^{-\alpha}$ .
Then there exists a constant $M(>1)$ such that

$\frac{1}{m^{1/2}}h(n)\leqq Mh(\frac{n}{m})$ for all $n\geqq\tau m$ .

Hence for all $m(\geqq 1)$

$P$ ( $W(n)\geqq m^{1/2}(g(\frac{n}{m})+\epsilon Mh(\frac{n}{m}))$ for sor some $n\geqq\tau m)-p_{m}$

$\leqq P$ ( $W(n)\geqq m^{1/2}g(\frac{n}{m})+\epsilon h(n)$ for some $n\geqq\tau m)-p_{m}$

(3.1) $\leqq P(S_{n}\geqq m^{1/2}g(\frac{n}{m})$ for some $n\geqq\tau m)$

$\leqq P$ ( $W(n)\geqq m^{1/2}g(\frac{n}{m})-\epsilon h(n)$ for some $n\geqq\tau m)+p_{m}$

$\leqq P$ ( $W(n)\geqq m^{1/2}(g(\frac{n}{m})-\epsilon Mh(\frac{n}{m}))$ for some $n\geqq\tau m)+p_{m}$
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where

(3.2) $p_{m}=P$($ h(n)\geqq\epsilon$ for some $n\geqq\tau m$).

It is obvious that by (2.2)

(3.3) $\lim_{m\rightarrow\infty}p_{m}=0$ .

Next, since the distribution of $W(n)$ is the same as that of $\sum_{i=1}^{n}Z_{t}$ where $\{Z_{i}\}$ is
a sequence of i.i. $d$ . $N(O, 1)$-random variables and $g(t)\pm\epsilon Mh(t)$ satisfies conditions
of Theorem 1, so applying Theorem 2 of Robbins and Siegmund [7] we have

(3.4) $\lim_{m\rightarrow\infty}P(W(n)\geqq m^{1/2}(g(\frac{n}{m})\pm\epsilon Mh(\frac{n}{m}))$ for some $n\geqq\tau m)$

$=P$( $W(t)\geqq g(t)\pm\epsilon Mh(t)$ for some $ t\geqq\tau$).

We note that for any $T(>\tau)$ and for any $\epsilon>0$

$P$( $W(t)\geqq g(t)+\epsilon Mh(t)$ for some $t\in[\tau,$ $T]$)

$\leqq P$( $W(t)\geqq g(t)\pm\epsilon Mh(t)$ for some $ t\geqq\tau$)
(3.5)

$\leqq P$( $W(t)\geqq g(t)-\epsilon Mh(t)$ for some $t\in[\tau,$ $T]$)

$+P$( $W(t)\geqq g(t)-Mh(t)$ for some $t\geqq T$).

As $g(t)$ and $h(t)$ are continuous on $[0, T]$ , so

$\lim_{\epsilon\dagger 0}P$( $W(t)\geqq g(t)\pm\epsilon Mh(t)$ for some $t\in[\tau,$ $T]$)
(3.6)

$=P$( $W(t)\geqq g(t)$ for some $t\in[\tau,$ $T]$).

Thus, by (3.5) and (3.6)

$P$( $W(t)\geqq g(t)$ for some $t\in[\tau,$ $T]$)

$\leqq\lim_{\epsilon t}\inf_{0}P$( $W(t)\geqq g(t)\pm\epsilon Mh(t)$ for some $ t\geqq\tau$)

(3.7) $\leqq\lim_{\downarrow\epsilon 0}\sup P$( $W(t)\geqq g(t)\pm\epsilon Mh(t)$ for some $ t\geqq\tau$)

$\leqq P$( $W(t)\geqq g(t)$ for some $t\in[\tau,$ $T]$)

$+P$( $W(t)\geqq g(t)-Mh(t)$ for some $t\geqq T$).

As (2.3) holds for the function $g(t)-Mh(t)$ , that is, $g(t)-Mh(t)$ belongs to the
upper class for the law of the iterated logarithm of $W(t)$ , so

(3.8) $\lim_{T\rightarrow\infty}P$( $W(t)\geqq g(t)-Mh(t)$ for some $t\geqq T$) $=0$ .

Hence, (2.4) follows from (3.1), (3.3), (3.4), (3.7) and (3.8).
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Proof of Theorem 2. It follows from the conditions on $g$ that there is an integer
valued function $q(m)$ such that $q(m)\uparrow\infty,$ $q(m)=o(m)$ and

(3.9)
$\sum_{j=1}^{q}\frac{j^{2}}{mg^{2}(\frac{j}{m})}\rightarrow 0$

as $ m\rightarrow\infty$ . We note that for any $\tau(0<\tau<\infty)$

(3.10) $p_{m}^{12)}\leqq P(S_{n}\geqq m^{1/2}g(\frac{n}{m})$ for some $1\leqq n\leqq\tau m)\leqq p_{m}^{(1)}+p_{m}^{(2)}$

where

(3.11) $p_{m}^{(1)}=P(S_{n}\geqq m^{1/2}g(\frac{n}{m})$ for some $1\leqq n\leqq q)$

and

(3.12) $p_{m}^{(2)}=P(S_{n}\geqq m^{1/2}g(\frac{n}{m})$ for some $q\leqq n\leqq\tau m)$ .

Now, by (3.9) and Chebyshev’s inequality

$p_{m}^{(1)}\leqq\sum_{n=1}^{q}P(S_{n}\geqq m^{1/2}g(\frac{n}{m}))$

(3.13) $\leqq\sum_{n=1}^{q}n^{-1}\{g(\frac{n}{m})\}^{-2}ES_{n}^{2}$

$\leqq Km^{-1}\sum_{n=1}^{q}n^{2}\{g(\frac{n}{m})\}^{-2}\rightarrow 0$

as $ m\rightarrow\infty$ , where $K$ is an absolute constant.
On the other hand, by the method of the proof of Theorem 1

(3.14) $\lim_{m\rightarrow\infty}p_{m}^{(2)}=P$( $W(t)\geqq g(t)$ for some $ 0<t\leqq\tau$).

Hence, (2.6) follows from (3.10), (3.13) and (3.14) and the proof is completed.
For proofs of Theorem 3 and Corollary are on the same lines of those of Theo-

rems 1 and 2 and so are omitted (cf. Shorack [8]).

4. Examples. For a class of functions $\{g\}$ considered in Section 2 many ex-
amples were shown in Robbins and Siegmund [7].

Philipp and Stout [6] showed that (2.2) holds for certain Gaussian$\cdot$, lacunary
trigonometric and $\phi$-mixing sequences, and Naresh et al. [5] showed that (2.2)
holds for some martingale differences sharping Strassen’s result. Further, in
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Yoshihara [10], it is proved that (2.2) also holds for sums of some functions of strong
mixing sequences. Thus, in these cases all results in Section 2 hold.

We state the hypotheses for these cases precisely.

Example 1. Let $\{X_{n}, n\geqq 1\}$ be a stationary Gaussian sequence with $0$ means
$andEX_{1}X_{n}=O(n^{-2})$ . Then D$(t)=O(t^{-\lambda})$ a.s. $ast\rightarrow\infty$ for some $\lambda>0$ .

Example 2. Let $\{n_{k}\}$ be a lacunary sequence of positive real numbers (not
necessarily integers), that is a sequence satisfying

$n_{k+1}/n_{k}\geqq q$ , $ k=1,2,\ldots$

for some $q>1$ . Let $\{\cos 2\pi n_{k}\omega\}$ be a sequence of random variables defined on the
probability space $([0,1),$ $B,$ $P$) where $P$ is Lebesgue-measure and $Bnsists$ of the
Lebesgue-measurable sets of $[0,1$). Then

(4.1) $S(t)=\sum_{k=1}^{[t]}\sqrt{2}$ cos $ 2\pi n_{k}\omega$

satisfies (2.2) with $D(t)=O(t^{-\lambda})$ for some $\lambda>0$ .
Example 3. Let $\{X_{n}\}$ be a stationary ergodic sequence of martingale differences.

It will be assumed that $EX_{1}^{2}=1$ . Let $V=\sum_{t=1}^{n}E\{X_{i}^{2}|M_{0}^{i-1}\}$ , where $M_{0}^{j}$ is the $\sigma-$

algebra generated by $X_{1},\ldots,$ $X_{j}$ . For a fixed $\alpha>\frac{1}{2}$ , let $f_{\alpha}(t)=t(\log|\log t|)^{-2\alpha}$ for
$t>0$ .
Assume that

(4.2) $|V_{n}-n|=o(f_{\alpha}(n))$ a.s.

(4.3) $\lim_{n\rightarrow\infty}(f_{\alpha}(n))^{-1}\sum_{k=1}^{n}E\{X_{n}^{2}I[X_{k}^{2}\geqq\delta f_{\alpha}(k)]|M_{0}^{k-1}\}=0$

for all $\delta>0$, and

(4.4) $ E\{X_{1}^{2}(\log|\log X_{1}^{2}|)^{2\alpha}\}<\infty$ .
Then, by Theorem 4.1 in Naresh et al. [5]

(4.5) $D(t)=o$(($\log|$ log $t|$) ) a.s.

Example 4. Let $\{\xi_{n}\}$ be a nonstationary strong mixing sequences, i.e., $\{\xi_{n}\}$

satisfies the strong mixing condition

(4.6)
$\alpha(n)=\sup_{4kdeM_{-}\sim}.\sup_{B\in M_{k+n}^{\infty}}|P(A\cap B)-P(A)P(B)|\downarrow 0$

$(n\rightarrow\infty)$ .
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Here, $M_{a}^{b}$ denotes the $\sigma$ -algebra generated by $\xi_{a},\ldots,$ $\xi_{b}$ . Let $\{f_{n}\}$ be a family of
measurable mappings from the space of infinite sequences $(a_{1}, a_{2},\ldots)$ of real numbers
into the real line. Let $\{X_{n}\}$ be a sequence of random variables defined by

(4.7) $X_{n}=f_{n}(\xi_{n}, \xi_{n+1},\ldots)$ $(n\geqq 1)$ .
Then, (2.2) holds for the sequence $\{X_{n}\}$ if the following conditions are satisfied:

(4.8) $EX_{n}=0$ and $ E|X_{n}|^{2+c+\delta}\leqq M_{1}<\infty$ $(n\geqq 1)$ ,

(4.9) $\inf_{n\geqq 1}n^{-1}E|\sum_{j=1}^{n}X_{j}|^{2}\geqq M_{2}>0$ ,

(4.10) $\sum_{j=1}j^{c/2}\{\alpha(j)\}^{\delta/\langle 2+c+\delta)}\infty<\infty$ , and

(4.11) $\sum_{j=1}^{\infty}j^{c/2}\sup_{n}\{E|X_{n}-E\{X_{n}|M_{n}^{n+j}\}|^{2+c}\}^{1/\langle 2+c+\delta)}<\infty$ .

Here, $c,$ $\delta,$ $M_{1}$ and $M_{2}$ are some positive constants. (cf. Philipp and Stout [6] and
Yoshihara [10]).
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