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1. Introduction

In this paper, we shall discuss the explosion and the growth order of solutions
of stochastic differential equations;

(1.1) $dX(t)=b(t, X(t))dt+\sigma(t, X(t))dw(t)$ ,

where $b(t, x)=(b_{i}(t, x)),$ $i=1,\ldots,$ $d$ , is a d-vector function and $\sigma(t, x)=(\sigma_{ij}(t, x))$ ,
$i,$ $j=1,\ldots,$ $d$, is a $d\times d$-matrix, which is defined on $[0, \infty$) $\times R^{d}$ , is Borel meas-
urable with respect to the complete set of variables, and $w(t)=(w_{i}(t)),$ $i=1,\ldots,$ $d$,
is a d-dimensional Brownian motion process. Equation (1.1) is equivalent to the
system of $d$ equations;

(1.1) $dX_{i}(t)=b_{i}(t, X(t))dt+\sum_{j=1}^{d}\sigma_{ij}(t, X(t))dw_{j}(t)$ ,

$i=1,\ldots,$ $d$ . In the following, let $|x|$ be the Euclidean norm of $x\in R^{d}$ , and for a
$d\times d$-matrix $M=(m_{ij})$ define

$|M|=(\sum_{\ell,j=1}^{d}m_{\ell j}^{2})^{1/2}$ .

When $b(t, x)\equiv b(x)$ and $\sigma(t, x)\equiv\sigma(x)$ , that is, the coefficients do not depend on
time variable, (1.1) has the pathwise unique global solution on the entire interval
$[0, \infty)$ , provided only the global Lipschitz condition is satisfied: there exists a
positive constant $L$ such that, for all $x,$ $y\in R^{d}$ ,

$|b(x)-b(y)|+|\sigma(x)-\sigma(y)|\leqq L|x-y|$ .
From this global Lipschitz condition the restriction on the growth of $b$ and $\sigma$ follows:
there exists a positive constant $K$ such that, for all $x\in R^{d}$ ,

$|b(x)|^{2}+|\sigma(x)|^{2}\leqq K(1+|x|^{2})$ .

So, the satisfaction of a global Lipschitz condition (in fact, the growth restriction)
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on $b(x)$ and $\sigma(x)$ implies that $X(t)$ does not explode on $[0, \infty$) almost surely. A
second sufficient codition for non-occurrence of an explosion in the case of con-
tinuously differentiable $\sigma$ is that $b\equiv 0$ , that is, the systematic part be absent. This
follows from application of a sensitive test for explosion discovered by W. Feller.
(This test, as well as d-dimensional analogue discovered by Hasminskii, cam be
found in McKean [4, p. 65]). It should be emphasized that, for $d\geqq 2$ , the condition
$b\equiv 0$ is no longer in general sufficient to preclude an explosion if the growth of $\sigma$

is not restricted (see McKean [4, p. 106 (problem 3)]). Hasminskii studied the
problem also in the case where the coefficients depended on both time and space in
[3, pp. 112-119], but he restricted his attention in situation when the time dependence
was not so strong.

On this subject, when the coefficients depend on time, the author ([5], [6]) tried
to give sufficient conditions for non-occurrence of explosion, in terms of integral
condition and extreme condition of functions which appear in the restriction on the
growth of $b(t, x)$ and $\sigma(t, x)$ . In section 2, a sufficient condition for infinite explosion
time shall be obtained in simpler and best possible way by using a concave function.

In section 3, we shall prove a very simple theorem on the existence of the order
of growth of $X(t)$ . This theorem is a generalization of the one dimensional result
of Gihman and Skorohod [2, p. 130 (lemma 1)] who state in the following way:
if $X(t)$ satisfies $dX(t)=dt+\sigma(X(t))dw(t)$ , where $w(t)$ is an one dimensional Brownian
motion process and $\sigma(x)$ is defined on $R^{1}$ such that $\sigma^{2}(x)\leqq Const$ . $(1+|x|^{\gamma})$ for some
$\gamma<1$ , then $X(t)/t\rightarrow 1$ as $ t\rightarrow\infty$ with probability one.

A precise formulation is in the following.
Let $(\Omega, F, P)$ be a probability space with an increasing family $\{F_{t}; t\geqq 0\}$ of

$sub-\sigma$-algebras of $F$ and let $w(t)=(w_{i}(t))$ be a d- dimensional Brownian motion pro-
cess adapted to $F_{t}$ . Throughout this paper, we assume the following:
(1.2) $b(t, x)$ and $\sigma(t, x)$ are continuous in $(t, x)$ , and for any $T>0,$ $R>0$, there
exists a constant $C_{TR}>0$ depending only on $T$ and $R$ such that

$|b(t, x)-b(t, y)|+|\sigma(t, x)-\sigma(t, y)|\leqq C_{TR}|x-y|$

if $t\leqq T,$ $|x|\leqq R$ and $|y|\leqq R$ .
For any natural number $n$ , let $g_{n}(x)$ be the function on $R^{d}$ such that $g_{n}(x)=1$ for
$|x|\leqq n;g_{n}(x)=2-|x|/n$ for $n<|x|\leqq 2n;g.(x)=0$ for $2n<|x|$ . Set

$b^{\langle n)}(t, x)=g_{n}(x)b(t, x)$ and $\sigma^{\langle n)}(t, x)=g_{n}(x)\sigma(t, x)$ .

Then there is a constant $K_{n}>0$ depending only on $n$ such that
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(1.3) $|b^{\langle n)}(t, x)-b^{(n)}(t, y)|+|\sigma^{\langle n)}(t, x)-\sigma^{(n)}(t, y)|$

$\leqq K_{n}|x-y|$ , $t\leqq n,$ $x\in R^{d},$ $y\in R^{d}$ ,

(1.3) $|b^{\langle n)}(t, x)|^{2}+|\sigma^{(n)}(t, x)|^{2}\leqq K_{n}(1+|x|^{2})$ , $t\leqq n,$ $x\in R^{d}$ .
As is well known, by (1.3) and (1.3), there exists a pathwise unique solution
$X^{\langle n)}(t)=(X_{i^{n}}^{()}(t)),$ $i=1,\ldots,$ $d$, which is defined up to $t\leqq n$ of the stochastic differ-
ential equation

(1.4) $dX^{1n)}(t)=b^{\langle\prime t)}(t, X^{\langle n)}(t))dt+\sigma^{(n)}(t, X^{\langle n)}(t))dw(t)$ .
By $X^{(n)}(t;t_{O}, x_{0})$ we mean the solution of (1.4) with the initial $nditionX^{(n)}(t_{0})$

$=x_{0}\in R^{d}(t_{0}\geqq 0)$ . Define $\tau_{\hslash}(t_{0}, x_{0})$ by $\tau_{n}(t_{0}, x_{0})=\inf\{t;|X^{\langle n)}(t;t_{0}, x_{0})|\geqq n\}$ (define
$\tau_{n}(t_{0}, x_{0})$ by $\tau_{n}(t_{0}, x_{0})=\infty$ if there is no such time) and set $e_{n}(t_{0}, x_{0})=\min\{n$ ,
$\tau_{n}(t_{0}, x_{0})\}$ . Then, $\{e_{n}(t_{0}, x_{0});n\geqq 1\}$ is monotone increasing family of stopping
times, for which

$\sup_{to\leqq t\leqq e_{\hslash}\langle t_{0},x_{0})}|X^{\langle n)}(t;t_{0}, x_{0})-X^{\langle m)}(t;t_{0}, x_{0})|=0$

with probability one, if $m>n$ . Define arandom process $X(t;t_{0}, x_{O})$ by $X(t;t_{O}, x_{0})$

$=X^{(n)}(t;t_{0}, x_{0})$ for $t<e_{n}(t_{0}, x_{0})(n\geqq 1)$ . The process $X(t;t_{0}, x_{0})$ is called the
solution of (1.1) with the initial condition $X(t_{0})=x_{0}$ . A random time $e(t_{0}, x_{0})$

$=\lim_{n\rightarrow\infty}e_{\hslash}(t_{0}, x_{0})$ is called the explosion time of $X(t;t_{0}, x_{0})$ .
We are interested in whether $ e(t_{0}, x_{0})=\infty$ or not. Also we shall investigate

the asymptotic behavior of $X(t;t_{0}, x_{0})$ when $ e(t_{0}, x_{0})=\infty$ .

2. Growth restriction on $b$ and $\sigma$

Here we give a sufficient condition of infinite explosion time by using a concave
function.

Theorem 1.1. Let $b(t, x)$ and $\sigma(t, x)$ satisfy (1.2) and let

(2.1) $|b(t, x)|^{2}+|\sigma(t, x)|^{2}\leqq\alpha(t)\beta(|x|^{2})$

for all $ t\in[0, \infty$) and $x\in R^{d}$ , where $\alpha$ : $[0, \infty$) $\rightarrow[0, \infty$) is continuous and
$\beta:[0, \infty)\rightarrow[0, \infty)$ is monotone increasing, concave such that

(2.2) $\int_{0}^{\infty}\frac{du}{1+\beta(u)}=\infty$ .

Then, $P(e(t_{0}, x_{0})=\infty)=1$ for all $ t_{0}\in[0, \infty$) and $x_{0}\in R^{d}$ .
Proof. We consider the solution $X^{(n)}(t;t_{0}, x_{0})$ of (1.4) with the initial con-
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dition $X^{\langle n)}(t_{0})=x_{0}\in R^{d}$ for $n>\max\{|x_{0}|, t_{0}\}$ . Let $\tau_{n}(t_{0}, x_{0})$ be the first exit time
from the shell $\{x;x|<n\}$ for $X^{(n)}(t;t_{0}, x_{0})$ and set $e_{n}(t_{0}, x_{0})=\min\{n, \tau_{n}(t_{0}, x_{0})\}$ .
For notational simplicity we write as $X^{\langle n)}(t)=X^{(n)}(t;t_{0}, x_{0}),$ $\tau_{n}=\tau_{n}(t_{0}, x_{0})$ and
$e_{n}=e_{n}(t_{0}, x_{0})$ , omitting $t_{0}$ and $x_{0}$ . Put

$Q^{\langle n)}(t)=E(\sup_{to\leqq u\leqq t}|X^{\langle n)}(u)|^{2})$

for $t\in[t_{0}, n]$ . Then, by (1.3) and (1.3), $Q^{(n)}(t)$ is bounded (see [1, p. 102]).

Observe that $X^{(n)}(t)$ satisfies (1.4). Then, by Schwartz’s inequlity, we have,

$|X^{(n)}(u)|^{2}\leqq 3[|x_{0}|^{2}+u\int_{t_{O}}^{u}|b^{(n)}(v, X^{\langle n)}(v))|^{2}dv$

$+\sum_{i=1}^{d}\{\sum_{j=1}^{d}\int_{t_{0}}^{u}\sigma_{ij}^{(n)}(v, X^{(n)}(v))dw_{j}(v)\}^{2}]$

for all $u\in[t_{0}, n]$ . Take the supremum and the mathematical expectation in the
above. Then, by martingale inequality, we get,

$E(\sup_{to\leqq u\leqq t}|X^{\langle n)}(u)|^{2})\leqq 3[|x_{0}|^{2}+t\int_{t_{0}}^{t}E|b^{\langle n)}(u, X^{(n)}(u))|^{2}du$

+4 $\int_{to}^{t}E|\sigma^{\langle n)}(u, X^{(n)}(u))|^{2}du]$

$fora11t\in[t_{0}, n]$ . By the definition of b and $\sigma^{\langle n)}$ we note that

$|b^{\langle n)}(t, x)|^{2}+|\sigma^{(n)}(t, x)|^{2}\leqq|b(t, x)|^{2}+|\sigma(t, x)|^{2}\leqq\alpha(t)\beta(|x|^{2})$

for all $ t\in[0, \infty$) and $x\in R^{d}$ , since (2.1) holds. By the assumption, sinoe $\beta$ is mon-
otone increasing, we also note that

$\beta(|X^{\langle n)}(u)|^{2})\leqq\beta(\sup_{to\leqq vu}|X^{(n)}(v)|^{2})$ , $u\leqq n$ .

Hence, we have,

$Q^{(n)}(t)\leqq 3[|x_{0}|^{2}+(t+4)A(t)\int_{t_{0}}^{t}E\beta(\sup_{to\leqq v\leqq u}|X^{(n)}(v)|^{2})du]$

for all $t\in[t_{0}, n]$ , where $A(t)=\max_{0\leqq u\leqq t}\alpha(u)$ . By the assumption, since $\beta$ is concave,

by Jensen’s inequality, we obtain,

$Q^{(n)}(t)\leqq 3[|x_{0}|^{2}+(t^{\prime}+4)A(t^{\prime})\int_{t_{0}}^{t}\beta(Q^{\langle n)}(s))ds]$

for all $t\in[t_{0}, t^{\prime}](t^{\prime}<n)$ . Note that $1+\beta(Q^{(n)}(t))\geqq\beta(Q^{\langle n)}(t))$ . Then, the above
inequality, as is well known, implies
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(2.3) $\int_{3|xo|^{2}}^{Q^{\langle n)}\langle t)}\frac{du}{1+\beta(u)}\leqq H(t^{\prime} ; t_{0})$

for all $t\in[t_{0}, t^{\prime}](t^{\prime}<n)$ , where

$H(t;t_{0})=3(t+4)A(t)(t-t_{0})$ .

Now, let’s assume that there exist some $t_{0}$ and $x_{0}$ such that $P(e(t_{0}, x_{0})<T)\equiv\delta>0$

for some $\tau<\infty$ . Let $T^{\prime}$ be arbitrary such that $T^{\prime}>T$ and be fixed. We choose
$n$ so large that $n>\max\{|x_{0}|, T^{\prime}\}$ previously and consider $X^{(n)}(t;t_{0}, x_{0})$ for such
ninthe following. Lett be any such that T$<t\leqq T^{\prime}$ . Then, since

$\{\tau_{n}<t\}=\{e_{n}<1\}\underline{\supseteq}\{e_{n}<T\}\underline{\supseteq}\{e(t_{0}, x_{0})<T\}$ ,

we see that

$Q^{\langle n)}(t)\geqq E[\sup_{to\leqq u\leqq t}|X^{(n)}(u)|^{2};\sup_{to\leqq u\leqq t}|X^{(n)}(u)|^{2}>n-1]$

$\geqq(n-1)P(\sup_{to\leqq u\leqq t}|X^{(n)}(u)|>n)$

$=(n-1)P(\tau_{n}<t)$

$\geqq(n-1)\delta$

for all $t\in(T, T^{\prime}$]. Accordingly, by (2.3), we obtain,

(2.4) $\int_{3|x_{O}|^{2}}^{(n-1)\delta}\frac{du}{1+\beta(u)}\leqq H(T^{\prime} ; t_{0})$ .

Letting $n$ tend to infinity in the above, we see that the right-hand side of (2.4) is finite,
while the left-hand side becomes infinity since (2.2) holds. So, we are led to con-
tradiction. Therefore, for any $t_{0}\geqq 0,$ $x_{0}\in R^{d}$ and $T,$ $P(e(t_{0}, x_{0})\geqq T)=1$ , and the
proof is complete.

Example 2.2. Let $b(t, x)$ and $\sigma(t, x)$ satisfy the conditions;

$\sup_{|x|\leqq 1}\{|b(t, x)|^{2}+|\sigma(t, x)|^{2}\}\leqq k_{1}(t)$ for $t\geqq 0$,

$|b(t, x)|^{2}+|\sigma(t, x)|^{2}\leqq k_{2}(t)(1+|x|^{2\delta})$ $(\delta\leqq 1)$

for $t\geqq 0$ and $|x|\geqq 1$ , where $k_{1}$ and $k_{2}$ are nonnegative and continuous. Then,
Theorem 2.1 will apply if we take $\alpha(t)=k_{1}(t)+k_{2}(t)$ and $\beta(u)=1+u^{\delta}$ for $0\leqq\delta\leqq 1$ ;
$\beta(u)=2$ for $\delta<0$ .

Theorem 2.1 remains true in one dimension and the conditions (2.1) and (2.2)
are best possible in a sense, as we can imagine from the following due to McKean
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[4, p. 66]: consider the one dimensional stochastic differential equation

$dX(t)=b(X(t))dt+dw(t)$ ,

where $b(x)=|x|^{\gamma}$ near large $|x|$ , then the explosion time is almost surely infinite or
finite according as $\gamma\leqq 1$ or not.

3. Asymptotic behavior
In this section, let $b(t, x)=(b_{i}(t, x))$ be such that

$b_{\ell}(t, x)=c_{i}(t)a_{i}(x)$ , $i=1,\ldots,$ $d$ .

For such drift coefficient we treat with the solution $X(t;t_{0}, x_{0})$ of (1.1) with the

initial condition $X(t_{0})=x_{0}\in R^{d}$ , whose explosion time is denoted by $e(t_{0}, x_{0})$ . In

the following we set $a(x)=(a_{\ell}(x)),$ $i=1,\ldots,$ $d$, and for continuous $c_{i}(t),$ $i=1,\ldots,$ $d$,

we set

$B(t)=[\sum_{\ell=1}^{d}(\int_{t_{0}}^{t}|c_{\ell}(s)|ds)^{2}]^{1/2}$

To begin with, we state on a moment estimate for $X(t;t_{0}, x_{0})$ .

Lemma 3.1. Let $b(t, x)=(c_{i}(t)a_{i}(x))$ and $\sigma(t, x)$ satisfy (1.2) and let the fol-
lowing conditions hold;

(3.1) $|a(x)|\leqq D$ with a constant $D>0$

for all $x\in R^{d}$ ,

(3.2) $|\sigma(t, x)|^{2}\leqq\alpha(t)\beta(|x|^{2})$

for all $ t\in[0, \infty$) and $x\in R^{d}$ , where $\alpha:[0, \infty$) $\rightarrow[0, \infty$) is nonnegative and continuous
such that

(3.3) $\lim_{\vec{t}\infty}B(t)=\infty$ ,

(3.3) $\lim_{\ell\rightarrow\infty}A(2t)/B(t)$ exists $(A(t)\equiv\int_{to}^{t}\alpha(u)du)$

and $\beta:[0, \infty$) $\rightarrow[0, \infty$) is a monotone increasing, concave function of $u$ which is

twice continuously differentiable in $u>0$ such that

(3.4) $\lim_{u\rightarrow\infty}u\beta^{\prime}(u^{2})=0$ .

Then, there exist some constants $L_{1}>0$ and $L_{2}>0$ such that
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$\sup_{\ell 0\leqq u\leqq t}E|X(u;t_{0}, x_{0})|^{2}\leqq L_{1}+L_{2}B(t)^{2}$

for all $ t\in[t_{0}, \infty$) and $x_{0}\in R^{d}$ .
Proof. For notational simplicity we write as $X(t)=X(t;t_{0}, x_{0})$ and $e_{n}=e_{n}(t_{0}$ ,

$x_{0}),$ $omittingt_{0}andx_{0}$ . $Byu\wedge vwemeanthesmallerofuandvinthefollowing$ .
Since $X(t)=(X_{i}(t))$ satisfies (1.1), by (3.1) and (3.2), we see, for any $t\geqq t_{0}$ ,

$E|X(t\wedge e_{n})|^{2}\leqq 3[|x_{0}|^{2}+D^{2}\sum_{\ell=1}^{d}E(\int_{t_{0}}^{tAe_{\hslash}}|c_{i}(u)|du)^{2}$

$+\sum_{i=1}^{d}E\{\sum_{j=1}^{d}\int_{\ell_{O}}^{\ell\wedge e_{\hslash}}\sigma_{ij}(u, X(u))dw_{j}(u)\}^{2}]$

$\leqq 3[|x_{0}|^{2}+D^{2}B(t)^{2}+\int_{t_{O}}^{t}E|\sigma(u, X(u\wedge e_{n}))|^{2}du]$

$\leqq 3[|x_{0}|^{2}+D^{2}B(t)^{2}+\int_{t_{0}}^{t}\alpha(u)E\beta(|X(u\wedge e_{n})|^{2})du]$ .

By the assumption, since $\beta$ is concave, we have, by Jensen’s inequality and the fact
that $\beta$ is monotone increasing,

$E\beta(|X(u\wedge e_{\hslash})|^{2})\leqq\beta(E|X(u\wedge e_{n})|^{2})\leqq\beta(\sup_{t_{O}\leqq u\leqq t}E|X(u\wedge e_{n})|^{2})(t_{0}\leqq u\leqq t)$ .
Set $q_{n}(t)=\sup_{to\leqq u\leqq t}E|X(u\wedge e_{n})|^{2}$ . Then above inequalities imply that

(3.5) $q_{n}(t)\leqq 3[|x_{0}|^{2}+D^{2}B(t)^{2}+A(t)\beta(q_{n}(t))]$ .
Let $\delta>0$ be arbitrary, and set $ p_{n.\delta}(t)=q_{n}(t)/3+B(t)^{2}+\delta$ . By (3.3), there exists some
$t_{1}>0$ such that $3B(t)^{2}>1$ for all $t>t_{1}$ . If $t>t_{1}$ , then, by (3.3) and (3.4), we have,

$0\leqq A(t)\beta^{\prime}(3B(t)^{2})\leqq(A(2t)/B(t))B(t)\beta^{\prime}(3B(t)^{2})\rightarrow 0$ $(t\rightarrow\infty)$ .
Thus we find some $t_{2}>i_{1}$ such that

$1-3A(t)\beta^{\prime}(3B(t)^{2})>0$

for all $t>t_{2}$ . In the following let $t$ be arbitrary such that $t>\max\{t_{0}, t_{2}\}$ . Then
we take care of that

$3p_{n.\delta}(t)>q_{n}(t)$ and $3p_{n_{*}\delta}(t)>3B(t)^{2}$ .
Therefore, since $\beta$ is monotone increasing, by (3.5), we get,

$q_{n}(t)\leqq 3[|x_{0}|^{2}+D^{2}B(t)^{2}+A(t)\beta(3p_{n.\delta}(t))]$ ,

which implies,
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(3.6) $p_{n.\delta}(t)\leqq\delta+|x_{0}|^{2}+(D^{2}+1)B(t)^{2}+A(t)\beta(3p_{n.\delta}(t))$ .

Remember that $\beta(u)$ is concave and twice continuously differentiable in $u>0$ . Then,

for any $u_{2}>u_{1}>0,$ $\beta(u_{2})\leqq\beta(u_{1})+(u_{2}-u_{1})\beta^{\prime}(u_{1})$ . Set $r(t)=3B(t)^{2}$ and note that

$\beta(3p_{n.\delta}(t))\leqq\beta(r(t))+(3p_{n,\delta}(t)-r(t))\beta^{\prime}(r(t))$

$=\beta(1)+(r(t)-1)\beta^{\prime}(r_{\theta}(t))$

$+(3p_{n,\delta}(t)-r(t))\beta^{\prime}(r(t))$ ,

where $r_{\theta}(t)=1+\theta(r(t)-1)(0<\theta<1)$ . Substituting the above to the right-hand

side of (3.6), we obtain the following;

$p_{n.\delta}(t)[1-3A(t)\beta^{\prime}(r(t))]$

$\leqq\delta+|x_{0}|^{2}+(D^{2}+1)B(t)^{2}+A(t)[\beta(1)+(r(t)-1)\beta^{\prime}(r_{\theta}(t))-r(t)\beta^{\prime}(r(t))]$ ,

which implies,

$[q_{n}(t)/3+B(t)^{2}][1-3A(t)\beta^{\prime}(r(t))]$

$\leqq|x_{0}|^{2}+(D^{2}+1)B(t)^{2}+A(t)[\beta(1)+(r(t)-1)\beta^{\prime}(r_{\theta}(t))-r(t)\beta^{\prime}(r(t))]$ ,

since we can let $\delta$ tend to zero. Accordingly,

(3.7) $[q_{n}(t)/3+B(t)^{2}]/B(t)^{2}\leqq I(t)/[1-3A(t)\beta^{\prime}(r(t))]$ ,

where

$I(t)=|x_{0}|^{2}/B(t)^{2}+D^{2}+1+(A(t)/B(t))J(t)$

and

$J(t)=\beta(1)/B(t)+[\frac{3(r(t)-1)}{r(t)r_{\theta}(t)}]^{1/2}r_{\theta}(t)^{1/2}\beta^{\prime}(r_{\theta}(t))-(3r(t))^{1/2}\beta^{\prime}(r(t))$ .

Remember again that $\beta(u)$ is concave and twice continuously differentiable in $u>0$ .
Then we have that $\beta(u)\leqq\beta(\epsilon)+(u-\epsilon)\beta^{\prime}(\epsilon)(u>\epsilon)$ . Thus, by (3.1) and (3.2), we see,

$|b(t, x)|^{2}+|\sigma(t, x)|^{2}\leqq D^{2}\sum_{\ell=1}^{d}c_{i}(t)^{2}+\alpha(t)\beta(|x|^{2})\leqq\gamma(t)(1+|x|^{2})$

with some continuous function $\gamma(t)$ . Hence, by Theorem 2.1, we have,

(3.8) $P(e(t_{0}, x_{0})=\infty)=1$ .

Let $n$ tend to infinity in (3.7). Then, (3.8) and Fatou’s lemma imply that

(3.9) $[\frac{1}{3}\sup_{\ell 0\leqq u\leqq t}E|X(u)|^{2}+B(t)^{2}]/B(t)^{2}\leqq I(t)/[1-3A(t)\beta^{\prime}(r(t))]$ ,
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for all t $>\max\{t_{0}, t_{2}\}$ . By (3.3), (3.3) and (3.4), note that

$0\leqq(A(t)/B(t))|J(t)|\leqq(A(2t)/B(t))|J(t)|\rightarrow 0$ $(t\rightarrow\infty)$ ,

and

$0\leqq A(t)\beta^{\prime}(r(t))\leqq(A(2t)/B(t))(r(t)/3)^{1/2}\beta^{\prime}(r(t))\rightarrow 0$ $(t\rightarrow\infty)$ .
Then, we get,

(3.10) $I(t)/[1-3A(t)\beta^{\prime}(r(t))]\rightarrow D^{2}+1$ $(t\rightarrow\infty)$ .
Hence, letting $t$ tend to infinity in (3.9), we obtain, by (3.10),

$\lim_{t\rightarrow}\sup_{\infty}\frac{1}{B(t)^{2}}[\sup_{to\leqq u\leqq t}E|X(u)|^{2}]\leqq 3D^{2}$ .

This implies that, for some constants $L_{1}>0$ and $L_{2}>0$,

$\sup_{to\leqq u\leqq t}E|X(u)|^{2}\leqq L_{1}+L_{2}B(t)^{2}$ ,

and the proof is complete.

Theorem 3.2. Under the same assumptions as in Lemma 3.1, let the following
conditions hold;

(I) $thereexistssomei_{0}(1\leqq i_{0}\leqq d)suchthata_{i_{O}}(x)\equiv 1and$

(3.11) $\lim_{t\rightarrow\infty}\frac{1}{B(t)}\int_{t_{0}}^{t}c_{\ell_{O}}(u)du=\tilde{c}_{i_{O}}$ $(|\tilde{c}_{i_{O}}|<\infty)$ ,

(II) for any large number $N$,

$f(N)\equiv\sum_{k=0}^{\infty}\beta(B(N2^{k+1})^{2})/B(N2^{k})$ exists and

(3.12) $\lim_{N\rightarrow\infty}f(N)=0$ .

Then, for the $i_{0^{-}}th$ component $X_{i_{O}}(t;t_{0}, x_{0})$ of $X(t;t_{0}, x_{0})$ , we have,
$P(\lim_{t\rightarrow\infty}X_{i_{O}}(t;t_{0}, x_{0})/B(t)=\tilde{c}_{i_{O}})=1$ .

Proof. For notational simplicity we write as $X(t)=X(t;t_{0}, x_{0})$ omitting $t_{0}$

and $x_{0}$ . Then, by (3.8), $X_{\ell_{O}}(t)$ satisfies

$X_{\ell_{0}}(t)=x_{\ell 0}+\int_{\ell_{0}}^{t}c_{i_{O}}(u)du+M_{\ell_{O}}(t)$

for all $t\geqq t_{0}$ , where $x_{i_{0}}$ is the $i_{0^{-}}th$ component of $x_{0}=(x_{1},\ldots, x_{d})$ and
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$M_{i_{0}}(t)=\sum_{j\Rightarrow 1}^{d}\int_{to}^{\ell}\sigma_{i_{0}j}(u, X(u))dw_{j}(u)$ .

Hence, by (3.11), we have only to show that

(3.13) $P$($M_{i_{0}}(t)/B(t)\rightarrow 0$ as $ t\rightarrow\infty$) $=1$ .
Now set $e_{n}=e_{n}(t_{0}, x_{0})$ and consider the process $|X(u\wedge e_{n})|^{2}$ . Then we observe the
$proofofLemma3.1$ . By (3.7), we have, for large t

$\sup_{n}[\{q_{n}(t)/3+B(t)^{2}\}/B(t)^{2}]\leqq I(t)/[1-3A(t)\beta^{\prime}(r(t))]$ .

Take the superior limit as $t$ tends to infinity in the above and note (3.10). Then,

it is easy to see that $supq_{n}(t)\leqq L_{2}^{\prime}+L_{2}^{\prime}B(t)^{2}$ for some $nstantsL_{1}^{\prime}>0$ and $L_{2}^{\prime}>0$ .
$n$

It is no loss of generality to take $L_{1}^{\prime}=L_{1}$ and $L_{2}^{\prime}=L_{2}$ , where $L_{1}$ and $L_{2}$ are constants
appeared in Lemma 3.1. Therefore,

(3.14) $\sup_{r}[\sup_{to\leqq u\leqq t}E|X(u\wedge e_{n})|^{2}]\leqq L_{1}+L_{2}B(t)^{2}$

for all $t\geqq t_{0}$ . Accordingly, sinoe (3.2) holds and since $\beta$ is concave, monotone
increasing, by Jensen’s inequality and (3.14), we get,

$E\int_{\ell_{0}}^{\ell\wedge e_{\hslash}}\sum_{j=1}^{d}\sigma_{i_{0}j}^{2}(u, X(u))du=E\int_{to}^{tAe_{n}}\sum_{j=1}^{d}\sigma_{\ell oj}^{2}(u, X(u\wedge e_{n}))du$

$\leqq E\int^{\ell\bigwedge_{to}\epsilon_{n}}\alpha(u)\beta(|X(u\wedge e_{n})|^{2})du$

$\leqq\int_{\ell_{0}}^{\ell}\alpha(u)E[\beta(|X(u\wedge e_{n})|^{2})]du$

$\leqq\int_{to}^{t}\alpha(u)\beta(E|X(u\wedge e_{n})|^{2})du$

$\leqq A(t)\beta(\sup_{to\leqq u\leqq t}E|X(u\wedge e_{n})|^{2})$

$\leqq A(t)\beta(L_{1}+L_{2}B(t)^{2})$ .

Let $n$ tend to infinity in the above and take care of (3.8). Then Fatou’s lemma

implies that

$E\int_{t_{O}}^{t}\sum_{j=1}^{d}\sigma_{ioj}^{2}(u, X(u))du\leqq A(t)\beta(L_{1}+L_{2}B(t)^{2})$ .

Because $\beta(u)$ is monotone increasing, concave and twice continuously differentiable
in $u>0$, we find some constant $L>\max\{L_{1}+L_{2}+1, \beta(L_{1}+L_{2}+1)/\beta(1)\}$ such that

$\beta(L_{1}+L_{2}u)\leqq\beta((L_{1}+L_{2}+1)u)\leqq L\beta(u)$
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$ifu\geqq 1$ . Moreover, by (3.3) and (3.3), we find some t’ $>0suchthat$

$B(t)^{2}\geqq 1$ and $A(2t)/B(t)\leqq C$

for all $t>t^{\prime}$ with a constant $C>0$ . Thus, we get,

(3.15) $E\int_{t_{0}}^{t}\sum_{j=1}^{d}\sigma_{i_{0}j}^{2}(u, X(u))du\leqq LA(t)\beta(B(t)^{2})$

for all $t>t^{\prime\prime}=\max\{t_{0}, t^{\prime}\}$ . Let $\epsilon>0$ be arbitrary and let $r_{2}>\tau_{1}>1^{\prime\prime}$ . Then, by
martingale inequality and (3.15), we have the following:

$P(\sup_{T_{1}\leqq t\leqq T_{2}}|\frac{M_{i_{O}}(t)}{B(t)}|>\epsilon)$

$\leqq P(\frac{1}{B(T_{1})}\sup_{T_{1}\leqq t\leqq T_{2}}|M_{i_{0}}(t)|>\epsilon)$

$\leqq\frac{1}{\epsilon^{2}B(T_{1})^{2}}E\int_{to}^{T_{2}}\sum_{j=1}^{d}\sigma_{ioj}^{2}(u, X(u))du$

$\leqq\frac{L\Lambda(T_{2})}{\epsilon^{2}B(T_{1})^{2}}\beta(B(T_{2})^{2})$ .
Let $N$ be arbitrary such that $N>t^{\prime\prime}$ . Then, it follows from above inequalities that

$P(su_{\ovalbox{\tt\small REJECT}_{t}}N|\frac{M_{\ell_{O}}(t)}{B(t)}|>\epsilon)$

$\leqq\sum_{k=0}^{\infty}P(\sup_{N2^{k}\leqq t<N2^{k+1}}|\frac{M_{\ell_{O}}(t)}{B(t)}|>\epsilon)$

$\leqq\frac{L}{\epsilon^{2}}\sum_{k=0}^{\infty}\frac{A(N2^{k+1})}{B(N2^{k})^{2}}\beta(B(N2^{k+1})^{2})$

$\leqq\frac{CL}{\epsilon^{2}}f(N)$ ,

here we used the fact that $A(2t)/B(t)\leqq C$ for all $t>t^{\prime\prime}$ .
Since $Z_{N}=\sup_{N\leqq t}|\frac{M_{\ell_{0}}(t)}{B(t)}|is$ monotone decreasing as $N$ increases, the limit $Z=\lim_{N\rightarrow\infty}Z_{N}$

exists, and then (3.12) implies that $P(Z>\epsilon)=\lim_{N\rightarrow\infty}P(Z_{N}>\epsilon)=0$ . Therefore, we obtain
(3.13) and the proof is $mplete$ .

Theorem 3.2 is a generalization of the result of Gihman and Skorohod [2],
which is introduoed in section 1, as we can imagine from the following example.

Example 3.3. Suppose that $c_{i}(t)\equiv 1,$ $a_{\ell}(x)\equiv 1,$ $i=1,\ldots,$ $d$, and $\sigma(t, x)$ satisfies
(1.2), and let

$1^{x|}Su_{P_{1}^{|\sigma(t,x)|^{2}\leqq K}}$
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for all $t\geqq 0$ and

$|\sigma(t, x)|^{2}\leqq K(1+|x|^{\gamma})$

for all $t\geqq 0$ and $|x|\geqq 1$ with some constants $K>0$ and $\gamma<1$ . Then, as we have
already seen in Example 2.2, the explosion time of the solution $X(t;t_{0}, x_{0})=(X_{i}(t$ ;
$t_{0},$ $x_{0}$)) of (1.1) corresponding to such coefficients is infinite with probability one.
Clearly, $\sigma(t, x)$ satisfies (3.2), where we take $\alpha(t)\equiv K;\beta(u)=1+u^{\gamma/2}(0\leqq\gamma<1)$ ;
$\beta(u)=2(\gamma<0)$ . Also, $A(t)=K(t-t_{0})$ and $B(t)=d^{1/2}(t-t_{0})$ satisfy (3.3) and $(3.3)^{\prime\prime}$ ,
and $\beta(u)$ satisfies (3.4). Therefore, Lemma 3.1 implies that

$\sup_{to\leqq u\leqq t}E|X(u;t_{0}, x_{0})|^{2}\leqq L_{1}+L_{2}d(t-t_{0})^{2}$

for certain constants $L_{1}>0$ and $L_{2}>0$ . Moreover, we see that

$\frac{1}{B(t)}\int_{t_{0}}^{\ell}c_{\ell}(u)du=d^{-1/2}$

for $i=1,\ldots,$ $d$ . Furthermore, let $f(N)$ be defined in (II) of Theorem 3.2, where
$\beta(u)$ is replaced by our example. Let $N$ be so large that $N>\max\{2t_{0}, (t_{0}+d^{-1/2})/2\}$ .
Then, we see that $1\leqq B(N2^{k+1})=d^{1/2}(N2^{k+1}-t_{0})\leqq d^{1/2}N2^{k+1}$ and $B(N2^{k})$

$=d^{1/2}(N2^{k}-t_{0})>d^{1/2}N2^{k-1}$ for $k\geqq 0$ . If $\beta(u)=1+u^{v/2}(0\leqq\gamma<1)$ , then $\beta(u)$

$\leqq 2u^{\gamma/2}$ for $u\geqq 1$ , and then,

$f(N)\leqq\sum_{k=0}^{\infty}\frac{2[B(N2^{k+1})]^{\gamma}}{B(N2^{k})}$

$\leqq\sum_{k=0}^{\infty}\frac{2[d^{1/2}N2^{k+1}]^{\gamma}}{d^{1/2}N2^{k-1}}$

$=2^{\gamma+2}d^{-(1-\gamma)/2}N^{-(1-\gamma)}\sum_{k=0}^{\infty}2^{-(1-\gamma)k}$ .
If $\beta(u)=2$ , then

$f(N)=\sum_{k=0}^{\infty}\frac{2}{d^{1/2}(N2^{k}-t_{0})}\leqq 2^{2}d^{-1/2}N^{-1}\sum_{k=0}^{\infty}2^{-k}$

Thus, the $ndition(3.12)$ is satisfied and Theorem 3.2 implies that

$P(X(t;t_{0}, x_{0})/(t-t_{0})\rightarrow\tilde{c}$ as $ t\rightarrow\infty$) $=1$ ,

where $\tilde{c}=(1,1,\ldots, 1,1)$ is a d-vector.

Remark 3.4. When the drift and diffusion coefficients are bounded, it is well
known that the following holds (see [1.. p. 194]): let $X(t;t_{0}, x_{0})$ be the solution of
(1.1) with the initial condition $X(t_{0})=x_{0}\in R^{d}$ and assume that $|\sigma(t, x)|\leqq C$ ,
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$|b(t, x)|\leqq C(C=Const),$ $|b(t, x)-\tilde{b}|\rightarrow 0$ if $ t\rightarrow\infty$ , uniformly with respect to, $x$

then, $P(X(t;t_{0}, x_{0})/(t-t_{0})\rightarrow b$ as $ t\rightarrow\infty$ ) $=1$ .
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