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1. Introduction

In [3], $Kluva_{n}ek$ has introduced the concept of the property $(\Sigma)$ of towlo $\cdot$

gical vector space as the generalization of metrizable topological vector space.
Drewnowski [2] has discussed the relation between the existence of control measure
for vector measure and the property $(\Sigma)$ of locally convex space which is the range
of vector measure. Recently $Kluva_{n}ek$ and Knowles [5] have proved the following
theorems.

Let $T$ be a set, $S$ a $\sigma$-algebra of subsets of $T,$ $X$ a quasi-complete, Hausdorff
locally convex space and $m:S\rightarrow X$ a vector measure.

(1) If $X$ is metrizable and $m$ is non-atomic, then the weak closure of range
$R(m)$ of $m$ coincides with $\overline{co}R(m)$ (Theorem V.6.1.).

(2) If $X$ is metrizable, then every vector measure $m$ is closed (Theorem
IV.7.1.).

In this paper we shall extend these results in the case $X$ has the Prooerty
$(\Sigma)$ . For this object, in \S 2 we shall consider the properties of $X$ with the pro-
perty $(\Sigma)$ . In \S 3, we shall consider the applications of it.

2. Locally convex spaces with the Property $(\Sigma)$

Let $X$ be a Hausdorff locally convex space.

Deflnition 2.1. We say that $X$ has the property $(\Sigma)$ if every family $\{x_{i}\}_{ieI}$ of
non-zero elements of $X$ such that every countable subfamily $\{x_{j}\}_{jeJ}(J\subset I)$ is
summable is at most countable.

If $X$ is metrizable, then $X$ has the property $(\Sigma)$ . Further, it is known that
the class of spaces with the Prooerty $(\Sigma)$ is effectively larger than the class of
metrizable spaces.

Let $T$ be a set, $R$ a ring of subsets of $T,$ $X$ a locally convex space and
$m:R\rightarrow X$ a countably additive vector measure.

Definition 2.2. We say that $m$ satisfies the countable chain condition (C.C.C.)
if each family of pairwise disjoint sets of the non-zero measure is at most countable.
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Proposition 2.1. The following statements are equivalent.
(1) $X$ has the property $(\Sigma)$ .
(2) For any set $T$ and any $\sigma-\dot{n}ng\varphi$ of subsets of $T$ , any vector measure

$m:\varphi\rightarrow X$ satisfies (C.C. $C$).

(3) For any set $T$, any a-ring $\varphi$ of subsets of $T$ and any vector measure $m$ :
$\varphi\rightarrow X$ there exists a set $ Q\in\varphi$ such that for any set $ E\in\varphi$ we have $m(E-Q)=0$ .

Proof. (1) $\Rightarrow(2)$ . It is obvious by Zorn’s Lemma.
(2) $\Rightarrow(3)$ . By hypothesis there exists a countable maximal family $\{E_{n}\}_{n\in N}$ of

pairwise disjoint sets with $m(E.)\neq 0$ for all $n$ . Put $Q=\bigcup_{\in N}E,$ . Then $Q$ has the
required property.

(3) $\Rightarrow(1)$ . See Kluvanek [3] Theorem 3.2.

Proposition 2.2. If any singleton set in $X$ is $G_{\delta}\cdot set$ , then $X$ has the property $(\Sigma)$ .
Proof. Let { $U_{l}\{f\in N$ be a sequence of neighborhoods of $0\in X$ with $\bigcap_{eN}U,.=\{0\}$ .

and let $\{x_{i}\}_{ieI}$ a family of non-zero elements of $X$ such that every countable
subfamily $tx_{j}\}_{j\cdot J}(J\subset D$ is summable. Put $I,=\{i\in I:X:\not\in U_{n}\}$ for any $n\in N$. Then
$I$, is a finite set. Put $J=\bigcup_{\iota eN}I,$ . Then $J$ is a countable set. Since $\bigcap_{eN}$

$U.=\{0\}$ ,

we have $I=J$.
Proposition 2.3. Let $H$ be a closed subspace of X. If $H$ and the quotient space

$X/H$ have the property $(\Sigma)$ , then $X$ has the property $(\Sigma)$ .
Proof. Let $\{x_{i}\}_{ieI}$ be a family of non-zero elements of $X$ such that every

countable subfamily $\{x_{j}\}_{jeJ}(J\subset D$ is summable and $\varphi:X\rightarrow X/H$ the canonical map-
ping. Then $\{\varphi(x_{j})\}_{jeJ}(J\subset I)$ is summable. Since $X/H$ has the property $(\Sigma),$ $\{\varphi(x_{i})\}_{ieI}$

is countable. Put $A=\{x::\varphi(x_{i})=\dot{a}eX/H,\dot{a}\neq\dot{0}\}$ . Then $A$ is a finite set. Further,

put $B=\{x_{i}:\varphi(x:)=\dot{0}\}$ . Since $H$ has the property $(\Sigma),$ $B$ is a countable set. There-
fore we have the assertion.

The following theorem is an extension of Musial [6] Theorem 2 and S. Ohba
[7] Theorem 1.

Let $\mathfrak{J}$ be a $\delta$-ring (that is, a ring closed under countable intersection) of
subsets of $T$ and $m:\mathfrak{J}\rightarrow X$ a countably additive vector measure. Put $N(m)=$

$\{E\in \mathfrak{J}:F\in \mathfrak{J}\rightarrow m(E\cap F)=0\}$ .
Theorem 2.1. If $\mathfrak{J}$ is a $\delta$-ring and $m:\mathfrak{J}\rightarrow X$ satisfies C.C.C., then there exists

a finite, non-negative measure $\nu$ on $\mathfrak{J}$ such that $N(\nu)=N(m)$ . In particular, if $\mathfrak{J}$

is a $\sigma$-ring, then the converse is true.

Proof. By Zoms Lemma and C.C.C. there exists a countable maximal family
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$\{E,\},eN$ of pairwise disjoint sets with $m(E.)\neq 0$ for all $n\in N$. Put $\varphi_{n}=\mathfrak{J}\cap E_{l}(n\epsilon N^{\neg})$ .
Then $\varphi_{n}$ is a a-ring.

Since $m$ on $\varphi_{n}$ satisfies C.C.C., there exists a finite, non-negative measure $\nu$.
on $\varphi$, such that $N(\nu_{n})=N(m|\varphi_{n})(n\in N)$ by Musial [6] Theorem 2. For any set
$Ee\mathfrak{J}$ put $\nu(E)=\sum_{eN}(1/2^{n})\cdot\nu_{n}(E\cap E_{n})/$($1+\sup\{\nu_{n}(A):$ A $e\varphi_{n}\}$) (since $\varphi$, is a $\sigma$-ring and
$\nu_{n}$ is finite, we have sup { $v.(A):$ A $e\varphi.$} $<\infty$) $N(m)\subset N(v)$ is obvious.

The $prf$ of $N(\nu)\subset N(m)$ . Let $E$ be a set of $N(\nu)$ . Then we have $ E\cap E_{l}\in$

$N(m|\varphi_{n})(neN)$ . Since $m(E\cap\bigcup_{eN}E_{n})=\sum_{eN}m(E\cap E_{r},)$ , we have $E\cap\bigcup_{eN}E$. $eN(m)$ .
$E-\bigcup_{eN}E_{n}\in N(m)$ is obvious. Therefore we have $EeN(m)$ . If $\mathfrak{J}$ is a a-ring, the
converse is obvious by Musial [6] Theorem 2.

Proposition 2.4. If $\tilde{X}$ has the property $(\Sigma)$ , then for any s-bounded vector
measure $m:\mathfrak{J}\rightarrow X$ ( $\mathfrak{J}$ is a $\delta$-ring) there exists a finite, non-negative measure $\nu$ on
$\mathfrak{J}$ such that $N(\nu)=N(m)$ where $\tilde{X}$ is the completion of $X$.

The proof is obvious.

3. Applications

Let $T$ be a set, $S$ a a-algebra of subsets of $T,$ $X$ a Hausdorff locally convex
space assumed quasi-complete, $X^{\prime}$ its dual and $m:S\rightarrow X$ a countably additive vector
measure. Set $R(m)=\{m(E):E\in S\},$ $R(m, E)=\{m(F):F\subset E, F\in S\}$ for every set
$EeS$ and $N(m)=\{E\in S:R(m, E)=\{0\}\}$ .

Deflnition 3.1. A vector measure $m$ is called absolutely continuous, if there
exists a finite non-negative measure $\nu$ on $S$ such that $N(v)\subseteqq N(m)$ . It is well known
that if $m$ is absolutely continuous, then there exists a finite non-negative measure
$\nu$ on $S$ such that $N(\nu)=N(m)$ .

Deflnition 3.2. A set $A\in S$ is called an atom of $m$ if $A\not\in N(m)$ and if $BeS$

implies that either $A\cap B\in N(m)$ or $A-B\in N(m)$ . If there are no atom of $m$ then
$m$ is called non-atomic.

Let $Y$ be a locally convex space and $\Phi:X\rightarrow Y$ a continuous linear map. Since
$m$ is a vector measure, $\Phi\circ m(E)=\Phi(m(E))$ is also a vector measure on $S$.

Proposition 3.1. If $m$ is an absolutely continuous, non-atomic vector measure,
then also $\Phi\circ m$ is a non-atomic vector measure.

Proof. Let $\nu$ be a finite non-negative measure on $S$ such that $N(\nu)=N(m)$ .
Since $m$ is non-atomic, $\nu$ is non-atomic. Then $\Phi\circ m$ is non-atomic by $Kluva_{n}ek$

and Knowles ([5] Lemma V.6.3).



52 SACHIO OHBA AND YOSHIHIKO NAGANO

Corollary. If $m$ is an absolutely continunus, non-atomic vector measure, then
for every $x^{\prime}eX^{\prime}x^{\prime}\circ m$ is non-atomic scalar measure.

Theorem 3.1. If $m$ is non-atomic vector measure and $X$ has the property $(\Sigma)$ ,
then the weak closure of $R(m)$ coincides with $\overline{co}R(m)$ where $\overline{co}R(m)$ is the closed
convex hull of $R(m)$ .

Proof. Since $X$ has the property $(\Sigma),$ $m$ is absolutely continuous. It is ob-
vious by the above Corollary and Kluv\’anek and Knowles ([51 Lemma V.6.5).

Corollary. If $m$ is non-atomic and $X$ is metrizable, then the weak closure of
$R(m)$ coincides with $\overline{co}R(m)$ . ($Kluva_{n}ek$ and Knowles [51 Lemma V.6.5).

Remark. Since $\overline{co}R(m)$ is weakly compact set in $X$ (Kluvanek and Knowles’
Theorem IV.6.1 ([5])), we have the followin$g$ .

If $m$ is non-atomic vector measure and $X$ has the property $(\Sigma)$ then the weak
closure of $R(m)$ is weakly compact convex set in $X$.

A set $E\in S$ is called m-null if $E\in N(m)$ . Two set $E,$ $FeS$ are m-equivalent

if $E\Delta F=(E-F)\cup(F-E)$ is m-null. If $E\in S$, then $[E]_{\hslash}$ is the class of all sets
$F\in S$ which are m-equivalent to $E$. We put $S(m)=\{[E]_{m}:E\in S\}$ .

On the set $S(m)$ we define a uniform structure $\tau(m)$ in the following way.
Let $P$ be a family of semi-norms defining the topology of $X$. For each $p\in P$ and
$E\in S$ we put $ p(m)(E)=\sup$ {$ p(x):x\in$ co $R(m,$ $E)$ } where co $R(m, E)$ is the convex
hull of $R(m, E)$ . Further, define the semi-distance $d_{p}$ on $S(m)$ by putting
$d_{p}([E]_{m}, [F]_{n})=p(m)(E\Delta F),$ $E,$ $F\in S$.

The family $\{d_{p}:P\in P\}$ gives the nniform structure $\tau(m)$ on $S(m)$ .
Deflnition 3.3. A vector measure $m$ is called closed if $S(m)$ is $\tau(m)$-complete.

Theorem 3.2. If $X$ has the Property $(\Sigma)$ , then every vector measure $m$ is closed.

Proof. Since $X$ has the property $(\Sigma)$ , there exists a finite non-negative measure
$\nu$ on $S$ such that $N(v)=N(m)$ . Then we can prove in the same way as the $prf$

of $Kluva_{n}ek$ and Knowles ([5] Theorem IV.7.1)).

Corollary. If $X$ is metrizable, then every vector measure $m$ is closed. $(Kluva_{n}ek$

and Knowles ([5] Theorem IV.7.1)).
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