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1. Introduction

In [3], Kluvanek has introduced the concept of the property (2) of topolo-
gical vector space as the generalization of metrizable topological vector space.
Drewnowski [2] has discussed the relation between the existence of control measure
for vector measure and the property (Z) of locally convex space which is the range
of vector measure. Recently Kluvének and Knowles [5] have proved the following
theorems.

Let T be a set, S a g-algebra of subsets of T, X a quasi-complete, Hausdorff
locally convex space and m: S—X a vector measure.

(1) If X is metrizable and m is non-atomic, then the weak closure of range
R(m) of m coincides with co R(m) (Theorem V.6.1.).

(2) If X is metrizable, then every vector measure m is closed (Theorem
IV.7.1.).

In this paper we shall extend these results in the case X has the property
(2). For this object, in §2 we shall consider the properties of X with the pro-
perty (2). In §3, we shall consider the applications of it.

2. Locally convex spaces with the property (J)

Let X be a Hausdorff locally convex space.

Definition 2.1. We say that X has the property (2) if every family {x;:};e; of
non-zero elements of X such that every countable subfamily {®ilies (JcI) is
summable is at most countable.

If X is metrizable, then X has the property (2). Further, it is known that
the class of spaces with the property (J) is effectively larger than the class of
metrizable spaces.

Let T be a set, R a ring of subsets of 7, X a locally convex space and
m: R—X a countably additive vector measure.

Definition 2.2. We say that m satisfies the countable chain condition (C.C.C)
if each family of pairwise disjoint sets of the non-zero measure is at most countable.
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Proposition 2.1. The following statements are equivalent.

(1) X has the property (3).

(2) For any set T and any o-ring ¢ of subsets of T, any vector measure
m: 9—X satisfies (C.C.C).

(3) For any set T, any o-ring ¢ of subsets of T and any vector measure m:
o—X there exists a set Q € ¢ such that for any set E € ¢ we have m(E—Q)=0.

Proof. (1)=(2). It is obvious by Zorn’s Lemma.

(2=(3). By hypothesis there exists a countable maximal family {E.}scn of
pairwise disjoint sets with m(E,)+#0 for all n. Put Q=”l6JN E,. Then @ has the
required property.

(3)=(1). See Kluvének

Proposition 2.2. If any singleton set in X is G;-set, then X has the property (2).
Proof. Let {U,{.ex be a sequence of neighborhoods of 0 € X with nN U.={0}.

and let {x;}iey a family of non-zero elements of X such that ever;f countable
subfamily {x;}jes (J<I) is summable. Put I,={iel: x;¢ U,} for any e N. Then
I, is a finite set. Put /= UN I.. Then J is a countable set. Since nN U,.={0},

we have I=].

Proposition 2.3. Let H be a closed subspace of X. If H and the quotient space
X/H have the property (2), then X has the property (2). ‘

Proof. Let {x;};c; be a family of non-zero elements of X such that every
countable subfamily {x;};es (J<I) is summable and ¢: X—X/H the canonical map-
ping. Then {¢(x;)};es (J<I) is summable. Since X/H has the property (2), {¢(2;)}ier
is countable. Put A={z;: ¢(x:)=d € X/H, d+0}. Then A is a finite set. Further,
put B={x;: go(x;):(')}. Since H has the property (2), B is a countable set. There-
fore we have the assertion.

The following theorem is an extension of Musial [6] Theorem 2 and S. Ohba
Theorem 1.

Let & be a d-ring (that is, a ring closed under countable intersection) of
subsets of 7 and m: J—X a countably additive vector measure. Put N(m)=
{EeJ: Fe 3—»m(ENF)=0}.

Theorem 2.1. If  is a 0-ring and m: J—X satisfies C.C.C., then there exists
a finite, non-negative measure v on § such that Nv)=N(m). In particular, if I
is a o-ring, then the converse is true.

Proof. By Zorns Lemma and C.C.C. there exists a countable maximal family
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{Ealnen of pairwise disjoint sets with m(E,.);EO for allne N. Put p,=3JNE, (neN).
Then ¢, is a o-ring.

Since m on ¢, satisfies C.C.C., there exists a finite, non-negative measure v,
on ¢, such that N(v,)=N(m|e,) (neN) by Musial [6] Theorem 2. For any set
EeJ put v(E):n};N (1/2") - va(EN E,)/(1+sup {va(A): A€ ¢n}) (sinqe ¢y is a o-ring and
v, is finite, we have sup {v,(A4): A € ¢,} <o) N(m)c N(v) is obvious.

~ The proof of N()CN(m). Let E be a set of N(). Then we have ENE,e
N(m|y,) (ne N). Since m(E n”l;JNE,.)=”§N m(ENE,), we have E n”lEJNE,.eN(m).
E— ;LJNE,.GN(m) is obvious. Therefore we have Ee€ N(m). If ¥ is a o-ring, the
converse is obvious by Musial Theorem 2.

Proposition 2.4. If X has the property (3), then for any s-bounded vector
measure m: I—X (I is a 0-ring) there exists a finite, non-negative measure v on
S such that N(v)=N(m) where X is the completion of X.

The proof is obvious.

3. Applications

Let T be a set, S a o-algebra of subsets of 7', X a Hausdorff locally convex
space assumed quasi-complete, X’ its dual and m: S—X a countably additive vector
measure. Set R(m)={m(E): E€S}, R(m, E)= {m(F) FcE, FeS} for every set
EeS and N(m)={E € S: R(m, E)={0}}.

Definition 3.1. A vector measure m is called absolutely continuous, if there
exists a finite non-negative measure v on S such that N)S N(m). It is well known
that if m is absolutely continuous, then there exists a finite non-negative measure
v on S such that N(v)=N(m).

Definition 3.2. A set A€ S is called an atom of m if A¢ N(m) and if BeS
implies that either ANBe N(m) or A—Be N(m). If there are no atom of m then
m is called non-atomic.

Let Y be a locally convex space and @: X—Y a continuous linear map. Since
m is a vector measure, Pom(E)=®P(m(E)) is also a vector measure on S.

Proposition 3.1. If m is an absolutely continuous, non-atomic vector measure,
then also ®om is a non-atomic vector measure.

Proof. Let v be a finite non-negative measure on S such that N{)=N(m).
Since m is non-atomic, » is non-atomic. Then @om is non-atomic by Kluvanek
and Knowles Lemma V.6.3).
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Corollary. If m is an absolutely continunus, non-atomic vector measure, then
for every z' e X' x'om is non-atomic scalar measure. ' : ‘

Theorem 3.1. If mis non-atomié vector measure and X has the properiy 2),
then the weak closure of R(m) coincides with co R(m) where co R(m) is the closed

convex hull of R(m).

Proof. Since X has the property (), m is absolutely continuous. It is ob;
vious by the above and Kluvanek and Knowles ([5] Lemma V.6.5).

Corollary. If m is non-atomic and X is metrizable, then the weak closure of
R(m) coincides with co R(m). (Kluvanek and Knowles [5] Lemma V.6.5).

Remark. Since co R(m) is weakly compact set in X (Kluvinek and Knowles’

Theorem 1V.6.1 ([5]), we have the following.
If m is non-atomic vector measure and X has the property (2) then the weak

closure of R(m) is weakly compact convex set in X.

A set EeS is called m-null if E€ Nm). Two set E, Fe S are m-equivalent
if EAF=(E—F)U(F—E) is m-null. If EeS, then [E]. is the class of all sets
Fe S which are m-equivalent to E. We put S(m)={[E]a: E€S}.

On the set S(m) we define a uniform structure z(m) in the following way.
Let P be a family of semi-norms defining the topology of X. For each p¢€P and
EeS we put p(m)(E)=sup {p(x): x €co R(m, E)} where co R(m, E) is the convex
hull of R(m, E). Further, define the semi-distance d, on S(m) by putting
d,((Elm, [Fla)=p(m)(EAF), E, FeS.

The family {d,: p € P} gives the nniform structure z(m) on S(m).

Definition 3.3. A vector measure m is called closed if S(m) is z(m)-complete.

Theorem 3.2. If X has the property (2), then every vector measure m is closed.

Proof. Since X has the property (2), there exists a finite non-negative measure
v on S such that N(»)=N(m). Then we can prove in the same way as the proof
of Kluvanek and Knowles ([5] Theorem IV.7.1)).

Corollary. If X is metrizable, then every vector measure m is closed. (Kluvanek
and Knowles ([6] Theorem IV.7.1)).

The authors wish to express their appreciation to Professor I. Kluvének for

his encouragement.
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