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1. Introduction.

Let m$’ denote the k-th maximum of the first n terms from a sequence
{€nyn=>1} of real random variables and write m, for m®>. When &,’s are i.i.d.
the class of all possible nondegenerate limit laws of (m,—b,)/a,, where a,>0
and b, are constants, is well-known. In this case Lamperti showed that if
(m,—b,)/a, has a nondegenerate limit distribution then the sequence {M,, n>1}
of random functions M, defined by M.,(t)=(m(,,1;—b,)/a,, each M, being considered
as an element of the space Dla,b], 0<a<b<co, of nondecreasing right-continu-
ous functions endowed with the Skorohod J, topology, converges in distribution
to an extremal process.

Recently Resnik [9], Mori and Oodaira [8] considered point process @, on R:
consisting of random points (k/n, (¢.—b,)/a,), k>1. They showed that if &.’s are
ii.d. and if (m,—b,)/a, has a nondegenerate limit distribution then @, converges
to a Poisson point process. Weissman [10,11] used this approach to nonidenti-
cally distributed &,’s.

When {¢,} is a stationary strong-mixing sequence Loynes [5] proved that the
only possible limit laws for (m,—b,)/a, are the same types that occur in the
independent case. Welsch showed that the class of possible limit laws of
(mP—b,)/an, (mP—b,)la,) is larger than that occur in the independent case.

The purpose of this paper is to determine the class of all possible limit
distributions of point processes @, when underlying sequences {¢,} are stationary
strong-mixing. Contrary to the i.i.d. case weak convergence of (m,—b,)/a, does
not imply weak convergence of @,, and the class of all limit laws for D, is
fairly larger than that occur in the independent case. In fact it contains infini-
tely divisible point processes invariant under certain transformations.

In §2 we describe a class of infinitely divisible point processes which may
appear as limits of point processes @,. The main theorems are stated in §8 and
proved in §4 and §5. Our method relies heavily on the theory of KLM
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(=Kerstan-Lee-Matthes) measures (or queue measures) for infinitely divisible
point processes which was developed extensively in the recent book of Kerstan,
Matthes and Mecke [3].

2. A class of infinitely divisible point processes.

Throughout this paper « is a real parameter. Let R, denote R,=(0, o),
R=(—o00, 00) or R.=(—00,0) according as a>0, a=0 or a<0. Let X,=R,XR,.
A point of X, is denoted by x=(t, u). The topology of X, is the usual Euclidean
topology. The topological s-algebra of X, is denoted by 7.

Let us define mappings 7T,,., 7€ R,, and S,,,, c€ R,, from X, to itself by

Ta.r(t’ u)=(t+79 ’M/)

and
(at, o*/*u) if a>0
Sa,o(t, u)=1 (o, u-+log o) if a=0
(ot, o*/*u) if a<0.
respectively.

Let M, denote the set of all integer-valued nonnegative locally finite
measures ¢ on &, For a€X, denote by 4,=d(-;a) the probability measure
concentrated on {a}. Every ¢oeM, is represented as ¢=23 md(-; ), where
{x;, >1} is an enumeration of all atoms of ¢ and m,=¢({x,}). The mappings T,,.
and S.,, induce mappings from M, to M, which are also denoted by T, and
S, resp. In this paper the topology of M, is the vague topology. The topo-
logical o-algebra of M, is denoted by -#,. A point process P on X, is a pro-
bability measure on #,.

For a finite number of point processes P, ---, P, on X, their convolution is
denoted by Pyx---xP, or II?., P, When P,=-..-=P,=P write P* for II}, P;.
If the convolution of a sequence {P,, n>>1} of point processes on X, exists then
it is denoted by II:-: P.. A point process P on X, is infinitely divisible if for
every n>1 there exists a point process P, on X, such that P3=P. Denote by
P the KLM measure of an infinitely divisible point process P. This is a o-finite
measure on 4, For a definition of KLM measure see [2, 3, 6].

Let P, denote the Poisson point process on X, with intensity measure m,,

where
u-*dtdu if a>0

w.(dtdu) = {e *dtdu if a=0
|ul~*dtdu if a<0
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It is easy to prove the following:

Lemma 1. A o-finite measure v on &, is invariant under T,,. and Sg.
>0, 6>0, 2ff v 18 a scalar multiple of =,.

By the mapping z—d, =, induces a measure on -#, which is denoted by Q..
The Poisson point process P, is infinitely divisible and P,—Q,. Both P, and Q,
are invariant under T,,. and S,,,.

Let N be the set of all integer-valued (nonnegative, locally finite) measures
¢ on R.=[0, ) such that ¢({0})>1. Endow N with the vague topology and let
¥ denote the topological s-algebra of N. Denote by & the set of all probability
measures q¢ on 4.

For each x=(t, u) € X define a mapping f.,.: B.—X, by

(t, ue v'®) if a>0
fa.z(v) =1, u—v) if a=0
(t, ue*®) if a<0

for ve R,.. Every f,.., induces a mapping from N to M, which is also denoted
by f... It is easy to verify that

2.1) Tn.rfa,:c:fa,z' ’ x'= Ta.rw ’
and
(2.2) Sa,afa.x:fa.z" ’ w,’zsa,aw .

By a mapping f.,, from N to M, every g€ & induces a probability measure
qfs!. on A, which will be denoted by x,,.(:|x). For each ge & and a€ R the
class {x,,,(-1%), x€ X} of point processes on X, determines a shower field on X,
with the state space X, (see [3].

Given g€ & and o= ;m(+; x,) € M, define £,,(lp) by

’Ca,q(' I¢):H{{xa.q(' Ix‘)}""’i ’
if the convolution on the right exists. In particular
’ca,q(° la:c):’ca.q( . Iw) ’ xre Xa .

The set of ¢ € M, for which x,.(-lp) exists is equal to M4i={p; pe M., ¢((0,%)X
(U, Ug))<oo for every t>0 and ue R,}, where u,= or 0 according as a>0 or

a<0. Since P, is concentrated on M/ we can define a point process P,,, on X,
by

@.3) P.= Sx.,,quso)Pa(d@
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(see 5.1.2 of [3]). It is known that P,, is infinitely divisible and
Peo={red100Pudp)={se.- 10)Qud0)

(see 5.2.3 of [3]). Hence

2.9 B,,= Sx,,,q(- (w)a(de) .

In particular if ¢g=d(-; d,) then £,,(:|l¢)=0, and therefore P,,,=P,, ﬁ,,q=Qa. Let

Ae={p; € My, ¢9=/fo,:¢ for some x€ X, and ¢€ N}. Then P,, is concentrated
on A,€.#,. Define a mapping g.:. X, X N-M by

92, ¢):fa,z(¢) , xeX, y €N,

which is a homeomorphism from X,XN onto 4,. Denote by k, the inverse of
g.. Then we have

Lemma 2. ﬁa,qhglznan where n,Xq 18 the product measure on 2, x4
Proof. Since h.f,,.(¢)=(x,¢) we have for Aec 2, and Ee .+
falha (AXE)={¢; (v, §) e AXE},
and therefore
Fa,olha (AX E)l2)=qf 31 .h (AX E)=2,(x)q(E) .
where X, is the indicated of A. Hence

B, hil(AXE)= Sxa,.,(h,:l(A X B)|@)n.(dn)=r(A)a(E) .

Lemma 3. P,, and P,,, are invariant under T,,. and S,,,.

Proof. By we have
’ca,q(T;}t"|x)=qf;}.tT;}r(')=qf;}x’(')=xa,q(°Iw’)
where %’=T,,.x. Hence by and we have

ﬁa,q T;}r = Sxa,q(T;.lr ¢ Ix)n’a(dx)
= Sxa,q( 3 Ta.rx)”a(dx) = S’Ca,q( . Ix)”a(dx):?a,q-

By the same argument as in [3] p. 148 P, =P, ,T,!. is infinitely divisible and
P';,,q=f’,,,qT;},=?a,q. Hence P, T.:.=P,, Invariance under S,, is similarly
proved.
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3. Strong-mixing sequences and main results.

Let {£., n>1} be a stationary strong-mixing sequence of real random varia-
bles defined on a probability space (2, &, P). Let {8(m), m>1} be mixing coeffi-
cients for {&,}, i.e. B(m) satisfies f(m)—0 and

@3.1) |P{AN B}—P{A}P{B}| <p(m)

whenever n>1, Ae & (¢, -++,&,) and Be F (§,4m) -+*+), wWhere F (£, ---) stands
for the os-algebra generated by &, ---

Let m,=max (&, --+,&,). Loynes [6] proved that the nondegenerate limit
distribution function of (m,—b,)/a, is of the same type as one of the following
G

0 <0

Ga(x)={ if a>0,
exp(—z™®% x>0

3.2) G.(x)=exp (—e™) ,

exp (—(—=2)™® z<0
{ if 2<0.

Ga(x):
1 x>0
Throughout the rest we assume that there exist two sequences {a.}, @,>0, and

{b,} such that
(3-3) (mn_bn) /an_d)Ga .

For each we 2 let p,,(w) denote the point (j/n, (£ (w)—b,)la,), j=1, n>1,
and let @,(w)=X%06(+; D.;w), where ) ¥denote the sum over all j satisfying
Pns®) € X,. Then &, is an M,-valued random element. Let P,=P®;' denote the
distribution of 9,.

When &,’s are independent identically distributed the following theorem was
obtained by Resnik [9], Mori and Oodaira [8].

Theorem 0. Let {¢,} be a sequence of i.t.d. random variables. If (3.3)
holds for some a then P,5P,.

It is well known that for every a€ R there exists a sequence {£,} of i.i.d.
random variables satisfying (8.3) with suitable {a,} and {b,}. Hence the class
of all limit laws of &, generated by i.i.d. random variables &, coincides with
{P,, a € R} (except for scale and location parameters).

When ¢&,’s are not independent (8.8) does not imply the weak convergence
of P,. Example 2 of serves as a counterexample. In this case the class of
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all possible limit laws of @, is given by the following two theorems.

Theorem 1. Suppose that a stationary strong-mixing sequence {¢,} satisfies

(3.3). If P, converges weakly to a point process P on X, then there exists
g€ & such that P=P,,,.

Theorem 2. For every ac€R and qe& there exists a strong-mixingﬂ
sequence {£.} such that for suitably chosen {a.} and {b,} (8.8) holds and P,ﬁ)Pm.

Let D, denote the space of R,-valued nondecreasing right-continuous func-
tions on R,. Endow D, with the weak topology which is derived from the

Lévy metric. We may choose this metric as the one defined in p. 204 when
a=0. The modification needed for the case a0 will be obvious.
For each integer k>1 let

m® (o, t)=sup {u; (0, ] X (u, u)) >k}, 0eM,, t>0.
Note that

m(k)(¢1u t):(m([’:u)t]_bn)/a'n ) n_>_1 ’ tZO o

Since ¢—>m*(p, :) is a continuous mapping from M, to D, (see [8]) we have
immediately from the following:

Corollary 1. If {¢.} satisfies (8.3) and P,>P,, then m® (®,, -) converges
in distribution to the distribution of m®(p, -) with respect to P,,..

Remark 1. Note that the limit distribution of m®(®,, -) is the distribution
of an extremal process [4] and does not depend on g.

Remark 2. Let D,,; denote the space D, with Skorohod J, topology. If
{¢.} satisfies (8.3) and if P,>P, as in the i.i.d. case then m(D,, -)(and also
every m®*(®,, -) converges in distribution in D, s (see [4,9]). This follows from
the fact that the set K of discontinuity points of ¢— m(p, -) considered as a
mapping from M, to D, has P,-measure zero. However P, (E)>0 unless
P,,,=P,. Hence in the space D,,s the sequence m(®,, -) does not converge in
general.

Corollary 2. Let m$ denote the k-th maximum of &, ++-,&.. If {¢,} satis-
fies (8.8) and P,>P,,, then the sequence (m®—b,)/a,, - - -, (m®—b,)/a,) converges
in distribution to the distribution of (m®“(p,1), «-+,m™®(p,1)) with respect to
P,,,.

Remark 3. As a particular case of this corollary we can see that the
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assumptions of imply

(304) lim P{(mg)_bn)/anguly (m(uz)'_bn)/ansuﬁ}
{Ga(ux) if Uy Uy

Go(us)[1—p(log Ga(u,)/10g G(%,)) log Ga(us)] if u,>u,

where

p(s)=§1(1—F(——log u)du, 0<s<1,
and
F@)y=ql¢: ¢[0,t]1>2}, t>0.
Welsch proved that if {£,} satisfies (8.3) and if the limit on the left of

(3.4) exists then the limit must have the form on the right of (8.4). Although
this corollary does not include Welsch’s result it seems to give an insight into

his result.

4. Proof of Theorem 1.

We begin with some lemmas. Throughout this section suppose that {&,}
satisfies [(3.1), (8.3) and {®,} converges in distribution to a point process P on X,:
(4.1) P3P.

For every interval IC R, denote by -,(I) the smallest o-algebra of subsets
of M, with respect to which every mapping ¢—¢(A) is measurable, where A is
a Borel subset of IXR,. In particular #Z,(R,)=A,.

Lemma 4. If I;=(c,,d;], 1<j<r, are monempty disjoint bounded inter-
vals then A(L), -, #(I,) are independent with respect to P.

Proof. Since # (I)c #,J) if IcJ, it suffices to show that #,(I,) and
A(I;) are independent where I,=(c,,c;] and I,=(c;, ¢s], 0<c,<c:<cs<oco. Let
L™ =(c;+m™ ¢]. For Ae #,(I) and Be #,(I,™) it follows from (3.1) that

4.2) [P.(AN B)—P,(A)P,(B)|<B([n/m]) .

Hence if P(6A)=P((B)=0 then P(AN B)=P(A)P(B). The class of sets A c #£,(I)
such that P(0A)=0 forms an algebra and generates -#,(I). This shows that
AI) and A#,(I,') are independent for m>1. Since Uz.,.#(I,™) is an
algebra generating . #,(I,), -#,(I,) and -#,(I;) must be independent.

Lemma 5. P is invariant under T,,..

Proof. Let >0 and z,=[nz]/n, n>1. By the stationarity of {£.} we have
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P.T3 =P, .

If {¢.}, ¢.€M,, is a sequence tending to o€ M, then T, . ¢,—>T,,.¢. Thus by
the continuous mapping theorem ([1] Theorem 5.5) we have PT;!.=P.

Lemma 6. P s invariant under S.,,.
Proof. For each n>1 define a mapping S* from X, onto X, by
Si(E, w)=(t/n, (u—>,)/n) .

By the convergence of types theorem it can be shown that for each integer
k>1 S*S* ! converges as n— to S¥ . defined by

(kt, kV*u) if a>0
S* (&, w)y=1(kt, u+log k) if a=0
(kt, k*/*u) if a<0

for (t,u)e X, (see Welsch [10]). The restriction of S¥, to X, coincides with

Sa, -
The mapping from M, to M, induced by S* is also denoted by S%. Let

P* denote the distribution of @¥(w)=2.0(:; P.:(w) on X,. It is easy to see
that P*=P#*S*-!, Hence for k>1
PL,=PiSESE: .
Let A,, ---, A, be disjoint intervals of X, such that fT, is compact in X,.
Suppose Pfp; ¢(0A,)>1}=0, 1<j<r. Then noticing that by the mapping from
M, to M, sending ¢ to ¢(-NX,) P¥ induces P, we have

Plo; oe M., p(A)=k;, 1<j<r}
= n{§0: ¢eMa, ?(stk*n_lAl)Zkh 1£jS'r} .

By letting n-—>cc we obtain
P{¢; SDEMM gp(Aj):k.h ISjS'r}
:P{QD; gDeMcu go(Sa,kAl):kh 1_<..j_<_'r} .
This shows P=PS;!, for k>1. Thus for every pair of integers k>1 and I>1
PS;1.=PS3! and therefore
4.3) P=PS;, _
for rational ¢>0. Suppose ,—0>0. If ¢,—¢ then S,,,,¢,—S...¢ and therefore

by the continuous mapping theorem PS;!,, ->PS;!,. This shows that holds
for every ¢>0.
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Lemma 7. P is an infinitely divisible point process.

Proof. By Satz 1.4.12 of [3] it suffices to show that the distribution of
random vector (p(A,), --+,¢(4,)) on the probability space (M,, -#,, P) is infinitely
divisible, where A, ---, A, are disjoint semi-open intervals of X,. For this
purpose suppose at first that A,=IxJ,, ---, A,=IxJ,, where I=(¢,c+h]C R, and
Jy, -+, J, are disjoint intervals of R,. For each n>1 let Aj=(c+(k—1)k/n,
ct+kh/nlxJ;, 1<j<r, 1<k<n. By [Lemma 4 and [Lemma 5 the random vectors
(p(A), « -+, 0(A), 1<k<n, are i.i.d. and

(@(Al), R SD(A,.)): i (¢(A1k)y Sty gD(Ark)) .

Hence in this particular case our assertion is proved. In view of [Lemma 4 the
general case follows from this particular case.

Lemma 8. ?(Ag)zo.

Proof. Let I and J be disjoint subintervals of R, and let Kc R, be com-
pact. By [Lemma 4 ¢(IXK) and ¢(JxK) are independent with respect to P.
This implies by Hilfssatz 2.8.6 of [3] that

4.4) Plo; o(IXK)>0, o xK)>0)=0.
Let for n>1

Aun={p; o€ M,, 00, o((k—1)27", k2 "1 X R,)=0 except for one k>1},
and for a sequence {c,} such that c, T u, let

Noym,n=1p; o€ My, ¢((0, m] X (Cns a))=0}, m>1, n>1.
Then

A,=(N n=1 a,'n) N(Nm=1U :=1Na,m.n) .
It follows from that P(45,,)=0, »>1. It is known that (see [3] p. 93)

exp [—Plp; ¢((0, 11X (¢, %) >0}]
=P{§0; 90«07 1] X (cm ua)):o} = 1_Ga(cn) .

Hence for every m>1, n>1 13(N2,,,,,,.)=0 and therefore P(4%)=0.
Lemma 9. P is invariant under T,,. and S,,,.
Proof. Apply the same argument as Hilfssatz 8.3.1 of [3].
Proof of Theorem 1. The following two relations are easily verified:
Toha (AX E)=h;' (T3 A) X E)
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and

Szleha (AX E)=h'((Sz}s A) X E)

for every Ae 2, and Ec 7"
Fix Ee€ .4 and write Ph;(AXE)=ygz(A). vz is a o-finite measure on 2,
and by vy satisfies

ve(T 7 A)=Ph; (T ;. AX E)=PT;..h;(AXE)
=Ph; (AXE)=vg(A), AeZ,.

Similarly
ve(Szl,A)=vz(4), AecZ,.

It follows from that there exists a constant g(X)>0 such that
Phi(AX E)=v3(4)=q(E)ma(4) .

It is easy to see that ¢ determines a measure on .. If Ae&2, is compact
then since
hz'(AXN)={p; p€ 4., 9(A)>0},

we have by Hilfssatz 2.2.1 of [3] that
q(N)m(A) < Plp; o(4)>0}< oo .
Hence ¢ is finite. By (3.3) and we have

Plp; ¢(A,)=0}= lim P.{p; p(A,)=0}
=lim P {(m,—b,)/a,<u}=Ga(w) , A.,=0,1)X U, %s), uck,.

Hence by an argument in p. 93 of [3]

q(N)mo(A)=Phz (A, x N)=Plg; ¢(4.)>0}
=—log P{p; ¢(A.)=0}=—log G,(u) .
By the definition of 7z, and G, we have ¢q(N)=1, i.e. q€&. Thus in view of
we have
Phz'=P, h;'.

Since ?(A,;)=Pa,q(/1§)=0 we have ?-:f’a,q. This completes the proof.

5. Proof of Theorem 2.

Let {Z,}.>; be i.i.d. random variables having common exponential distribu-

tion with mean one. Let g€ & and let {=(,{®, ---) be an infinite dimensional
random vector such that 0<{®W<L®<L . <00, lém {*®=co w.p.l, and the distri-




LIMIT DISTRIBUTIONS 165

bution of the point process };,6(-; {®) coincides with ¢. By convention 6(-; o)
is the zero measure. Let {{,}.>; be i.i.d. random vectors each having the same
distribution as {. Suppose {Z,} and {{,} are independent.

Let ¢(u), u>0, be a continuous increasing function satisfying

lim p(u)=c0 , lim o(u)/u=0,
and
6.1) ne S“’ P{L{® <ue*du<co .
o Yk)

The existence of such a function is obvious. Let

oo {an if k<eo(Z,)

"l i k>e(Z)
for n>1, k>0, and define
§n=8UDx20(Znsx—Lhsna) , n2=1.

We can show that £,<o w.p.l. In fact
(5.2) P {¢n<a}=IIi_o P{Z,— {1 <a}=TI7- 1P ({1 < Z,—2, ¢(Z))>FK}] .
It follows from and

6.3) P {Lu<Zi—2, p(Z)>k)= S“’ P {{u<u—ale*du

o—1(k)

that the infinite product in [(56.2) converges. Since the integral on the right of
(6.3) converges to zero monotonically as x—oco, we have

lim P {¢,<x}=1.
It is easy to see that the sequence {£,}.», is stationary. Furthermore we
have
Lemma 10. {¢,} is strong-mizing.

Proof. Let »>1, m>1. Define &, k>1, by
& if k>n+m
&=

SUPo<s<n+m-2(Zrss—Chs1.9) if k<n+m

Let us define an event C,, m>1, by
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Co=1{0(Z, s n1r)<m+Fk for every k>0}.
Then

P{Cal=II, {1—e ¢ ®}

Since ¢(k)<k for large k, the infinite product on the right converges. Hence
for every ¢>0 there exists m (independent of n) satisfying P{C,}>1—e. By
definition we have

(5.4) =6 on C, for 1<k<n.

Let Ae &# (¢, +++,¢,) and Be F (imery +++). It follows from that there
exists A e s (¢,-+,¢£,) such that

(5.5) ANC,=A'NC,.
By and we have
|P{A}—P {A4’}|<2¢ and |P{ANB}—P{4A’NB}|<2¢.
Since A’ and B are independent this implies
[P {AN B}—P{A}P{B}|<4e .

This proves that {,} is strong-mixing.

Finally we show that {£,} satisfies the assertion in Theorem 2. Let &, be a
point process consisting of random points (k/n,&:—logn), k>1. Let @, be a
point process consisting of random points ((k—3j)/n, Z,—{.,;—logn), 7>0, k>1,
and let ¥, denote a point process consisting of random points (k/n, Z,—log n),
k>1. We show that for every interval A=(t, t.) X (U, u,) P {D,.(A)+D,(A)}—0.

Lemma 11. For every ¢>0 and u,c€ R there exist M>0 and h>0 such
that for large n

and
(6.7) P {¥.(((¢, t,+R)U (s ta+h)) X (uyy M))=0}>1—¢ .

Proof. It is well known that ¥, converges in distribution to the Poisson
point process P, with intensity z,. Hence the left sides of and con-
verges as n—oo to

exp {—(t,+1)e ¥} and exp{—2h(e “1—e ¥)}

respectively. Choose M sufficiently large and then h sufficiently small so that
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both of the above quantities are less than ¢/2. Then [(5.6) and [(5.7) holds for
sufficiently large n.

Lemma 12. For every ¢>0 there exists h/ >0 such that
(5.8) P {T.((38, (G+2)1") X (u,, M)<1 for every j<k} > 1—e,
for large n, where k=[t;/h’14+1 .
Proof. The probability on the left of (5.8) is not smaller than
1— 25 P{¥..((GH, (G+2)h") X (u,, M)) =2} .
This converges as n—cc to

1—(k+1)[1—exp (—2h'(e"“1—e ¥))—2h' (e~ *1—e ¥) exp (—2h/ (e *1—e™¥))]
>1—(k+1{2h (e *1—e ¥)}2>1—5t,(e “1—e~H)2h/ .

This implies the lemma.

Lemma 13. Let K, be the set {k; (k/n, Z,—log n) €(0, t;) X (4, M)}. Then for
every ¢>0 and for large n

(5.9 P{ o+ 108 y>M—u, for every jeK,} >1—¢.
Proof. Choose K so large that P {card (K,)>K}<e/2. Then for large n
P{Cioars 106 m<M—u,}<e/(4K) ,
and the left side of is greater than

P{oca+ 108 y>M—u, for je K,, and card (K,)<K}
> (1—e/2)1—e/AK )T > 1—c¢.

Lemma 14. For A=(t, t;) X (U, )
lim P {9,(A)+9,(A)}=0.

Proof. Given ¢>0 choose M, h, h’ so as to satisfy and
12. Let E, E. E,, E, denote the events on the right of [5.6), (56.7), (5.8) and
resp. and E=E NE,NE;NE,. Then it is easy to see that 9,(A)=97,(A) on
E. By Lemma 11, 12 and 13 P {E}>1—4¢ for large n.

Proof of Let £,(-|x) be the distribution of point process con-
sisting of random points (t—j/n, u—{?), 0<i<[p(u-+log n)]. Then

PO = Sm- o) P, (do) .

Let E denote the set of the form {p; ¢(A,)=Fk;, 1<1<r}, where A/s are bounded
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disjoint intervals of X, and ks are nonnegative integers. Choose a bounded
interval A, such that A4,DU7.; A;. Let D={p; ¢(dA)>0 for some 7, 0<i<r}.
If a sequence {p,} of elements of M converges to oM and if ¢€D then
£ (E|@,)—k,,(Elp). Since P,—P, and since P,(D)=0 we have

¢;3>Po,,=§xo.,<-|¢>1’o(d;o> .

Together with this proves the theorem in the case a=0. When a#0
we can replace &, constructed above by exp (a7'£,) or —exp (a~!¢,) according as

a>0 or a<0 resp. to obtain examples of strong-mixing sequence satisfying the
assertion of the theorem.
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