ON LINKS WITH PROPERTY P^*

By

KAZUO YOKOYAMA

(Received August 24, 1976)

0. Introduction

We are interested in the following problem in piecewise-linear 3-dimensional topology.

Problem Is it possible to construct the counterexample to the Poincaré conjecture by removing a finite number of mutually disjoint solid tori from S^s and sewing them back in a different way?

To the purpose above, we will consider a problem as follows;

Let C(l) be the closure of the complement in S^3 of a regular neighborhood of a link l. If every homotopy 3-sphere Σ^3 obtained by refilling C(l) by solid tori with suitable identification of the boundary surface is a 3-sphere, then we say that l has $Property\ P^*$.

Conjecture. Every link has Property P*.

It has been shown [12] that every closed, connected, orientable 3-manifold can be constructed by removing a finite number of mutually disjoint solid tori from S^3 and sewing them back in a different way. In paticular, every homotopy 3-sphere can be obtained by this way; thus this conjecture is equivalent to the Poincaré conjecture.

In [1][5][8] and [11], the problem above is discussed for a knot and it is obtained that some knots have Property P (stronger than Property P^*). We can show that there are many links without property P. So, considering a link with Property P^* will be meaningful.

In this paper we will prove the following theorem;

Theorem 1. If links l and l' have Property P^* , then $l \cdot l'$ is a link with Property P^* , where $l \cdot l'$ means any product of links l and l', see [6].

As an immediate consequence, we have;

Corollary 2. Every link has Property P^* if every prime link [6] has Property P^* .

This implies that it is enough to decide whether the conjecture above is true for only prime links.

By Theorem 1, we will obtain that;

Theorem 3. Every torus link has Prorerty P*.

In 1, we will show that some elementary links have Property P^* . In 2, Lemma 3 which plays a important role, and Theorem 1 will be obtained. In 3, some corollaries of Theorem 1 will be given, and some links with Property P^* will be obtained. The author is indebted to Professor T. Homma, F. Hosokawa and F. Gonzáles-Acuña for their kind suggestions.

1. Some elementary links with Property P*

Throughout this paper, let us denote the boundary, the interior and the closure of a manifold M by ∂M , int M and $\operatorname{cl} M$ respectively. A regular neighborhood of a submanifold A in a manifold M will be denoted by N(A; M). For two loops f and g on a surface, S(f, g) denotes the absolute value of the homological intersection number of an oriented chains f and g.

Let l be a link $k_1 \cup k_2 \cup \cdots \cup k_{\mu}$ in S^3 , and $N(k_i; S^3)$ be a regular neighborhood of k_i in S^3 such that $N(k_i; S^3) \cap (l-k_i) = \phi$. Let m_i be a simple closed curve on $\partial N(k_i; S^3)$ which bounds 2-cell in $N(k_i; S^3)$ and l be a simple closed curve on $\partial N(k_i; S^3)$ which is homologous to 0 in S^3 —int $N(k_i; S^3)$. We call m_i and l_i a meridan and a longitude of $N(k_i; S^3)$, respectively.

Let T_1, T_2, \dots, T_s be mutually disjoint solid tori in the interior of a connected, orientable 3-manifold M. We may then construct the 3-manifold

$$M'=\operatorname{cl}\{M-(T_1\cup T_2\cup\cdots\cup T_s)\}\cup\{T_1\cup T_2\cup\cdots\cup T_s\}$$

where h is a union of homeomorphisms h_i : $\partial T_i \rightarrow \partial T_i$. The manifold M' is said to be the result of a surgery on $\{T_1, T_2, \cdots, T_s\}$ in M, and h is said to be a surgery homeomorphism. When $T_1 \cup T_2 \cup \cdots \cup T_{\mu}$ is a regular neighborhood of a link l of μ components in int M, the manifold M is said to be the result of a surgery on a link l and $\{T_{\mu+1}, \cdots, T_s\}$ in M; $1 \le \mu \le s$.

As a consequence of definition, we have;

Proposition 1. If a link $l=k_1 \cup k_2 \cdots \cup k_{\mu}$ has Property P^* , then every sublink $l'=k_{i_1} \cup k_{i_2} \cup \cdots \cup k_{i_{\nu}}$ of l has Property P^* , where $\{i_1, i_2, \cdots, i_{\nu}\} \subset \{1, 2, \cdots, \mu\}$ and $i_k \neq i_l(k \neq l)$.

Suppose that for a link l, there is a 3-cell B^3 such that $\partial B^3 \cap l = \emptyset$. Let l_1 be a link $l \cap B^3$ and l_2 be a link $l \cap \operatorname{cl}(S^3 - B^3)$. Then, we easily have;

Proposition 2. If l_1 and l_2 have Property P^* , then a link l has Property P^* .

We will show that the following links O_1 , O_2 and O_3 , described in Fig. 1, have Property P^* . For the components of O_i , we write k_j as described in Fig. 1.

Lemma 1. The links O₁ and O₂ have Property P*.

Proof. By Proposition 1, if the link O_2 has Property P^* , then the link O_1 has Property P^* . So it is enough to prove that the link O_2 has Property P^* .

Let Σ be a homotopy 3-sphere obtained by doing surgery on the link O_2 in S^3 , F be the boundary of a regular neighborhood of a component k_1 of the link O_2 in S^3 , and M, N be two components of $\Sigma - F$, see Fig. 2. Both cl M and cl N are solid tori. Since $\Sigma = \operatorname{cl} M \cup \operatorname{cl} N$, Σ is homeomorphic to one of S^3 , $S^2 \times S^1$ and lens space. Hence Σ is homeomorphic to S^3 , for $\pi_1(\Sigma) = \{1\}$.

Lemma 2. The link O₃ has Property P*.

Proof. Let C be the closure of the complement of a regular neighborhood of the link O_3 in S^3 . Let m_i be a meridian of $N(k_i; S^3)$, and l_i be a longitude of $N(k_i; S^3)$, i=1,2,3, see Fig. 3.

Suppose that Σ^3 is a homotopy 3-sphere obtained by doing surgery on the link O_3 in S^3 and h is a surgery homeomorphism $\bigcup_{i=1}^3 \{h_i : \partial (D^2 \times S^1)_i \to \partial N(k_i; S^3)\}$. Let overpasses a_i represent generators and crossing points give the relators, see Fig. 3. There is a presentation of $\pi_1(C)$;

$$\{a_1, a_2, a_3; a_2a_1=a_1a_2, a_1a_3=a_3a_1\}$$

Since $h_i(\partial D_i^2) = h_i(\partial (D^2 \times \{p\})_i)$, where p is a point in S^1 , is a simple closed curve on $\partial N(k_i; S^3)$, $h_i(\partial D_i^2)$ is represented by m_i and l_i on $\partial N(k_i; S^3)$, i=1,2,3.

So $h_i(\partial D_i^2)$ is represented as an element having the form $m_i^{p_i} l_i^{q_i}$, i=1,2,3. Let x_i be an arc joining a base point of C to arbitrary one point in $h_i(\partial D_i^2)$ and γ_i be a closed curve represented as $x_i m_i^{p_i} l_i^{q_i} x_i^{-1}$. $\pi_1(\Sigma^3)$ is obtained from $\pi_1(C)$ by adding relations $\gamma_1 = a_1^{\epsilon_1 p_1} (a_2 a_3)^{\epsilon_1' q_1} = 1$, $\gamma_2 = a_2^{\epsilon_2 p_2} a_1^{\epsilon_1' q_2} = 1$ and $\gamma_3 = a_3^{\epsilon_3 p_3} a_1^{\epsilon_1' 3 q_3} = 1$, where ϵ_i , $\epsilon'_i = \pm 1$. This yields the following;

$$\pi_1(\Sigma^3) = \{a_1, a_2, a_3; a_2a_1 = a_1a_2, a_3a_1 = a_1a_3, a_1^{\epsilon_1 p_1}(a_2a_3)^{\epsilon'_1 q_1} \\ = a_2^{\epsilon_2 p_2} a_1^{\epsilon'_2 q_2} = a_3^{\epsilon_3 p_3} a_1^{\epsilon'_3 q_3} = 1\}$$

Consider the group $G=\{R,S;\ R^{\epsilon_2p_2}=S^{\epsilon_3p_3}=(SR)^{-\epsilon'_1q_1}=1\}$. If $p_2,p_3,q_1\neq\pm 1$, this group is nontrivial [2]. A nontrivial representation η of $\pi_1(\Sigma^3)$ onto G is given by $\eta(a_1)=1,\ \eta(a_2)=R,\ \eta(a_3)=S$. Note that $\eta(a_2a_1)=R=\eta(a_1a_2),\ \eta(a_3a_1)=S=\eta(a_1a_3),\ \eta(a_1^{\epsilon_1p_1}(a_2a_3)^{\epsilon'_1q_1})=(SR)^{-\epsilon'_1q_1}=1,\ \eta(a_2^{\epsilon_2p_2}a_1^{\epsilon'_2q_2})=R^{\epsilon_2p_1}=1$ and $\eta(a_3^{\epsilon_3p_3}a_1^{\epsilon'_3q_3})=S^{\epsilon_3p_3}=1$. Hence η is a homomorphism. This gives the contradiction that $\pi_1(\Sigma^3)$ is trivial. We have that $p_2=\pm 1,\ p_3=\pm 1$ or $q_1=\pm 1$. We will prove Lemma 2 in respective cases.

Case 1 $p_2=\pm 1$. Since $\partial N(k_1; S^3)$ is a surface of genus 1, there is an embedding f of $S^1\times S^1\times I$ in S^3 such that $f(S^1\times S^1\times I)\cap N(k_1; S^3)=f(S^1\times S^1\times I)\cap \partial N(k_1; S^3)=f(S^1\times S^1\times I)\cap \partial N(k_2; S^3)=\emptyset=f(S^1\times S^1\times I)\cap N(k_2; S^3)$. Let M be a solid torus cl $[S^3-\{N(k_1; S^3)\cup f(S^1\times S^1\times I)\}]$ and M' be the result of a surgery on a link $k_2\cup k_3$ in M by surgery homeomorphism $h_2\cup h_3$, see Fig. 4.

If M' is a solid torus, then Σ^3 is regarded as a homotopy 3-sphere obtained by removing solid tori $N(k_1; S^3)$ and M from S^3 , and refilling solid tori $(D^2 \times S^1)_1$ and M' with suitable identification of boundary surface. Hence Σ^3 is the result of a surgery on the link O_2 in S^3 . Since the link O_2 has Property P^* by Lemma 1, Σ^3 is homeomorphic to 3-sphere.

We will show that M' is a solid torus. Let A be an annulus properly embedded

in M such that A separates $N(k_1; S^3)$ and $N(k_2; S^3)$ in M. Since an annulus A is properly embedded in M', A divides M' into two parts, say V and W, see Fig. 5. Note that $\operatorname{cl} V$ and $\operatorname{cl} W$ are solid tori. There are simple closed curves v on ∂V , and w on ∂W , respectively, such that M' is homeomorphic to a 3-manifold obtained by pasting $\operatorname{cl} V$ and $\operatorname{cl} W$ along $N(v;\partial V)$ and $N(w;\partial W)$. Since $\operatorname{cl} \{V-(D^2\times S^1)_2\}$ is homeomorphic to $S^1\times S^1\times I$ and there are level preserving isotopies H_i : $S^1\times I \to S^1\times S^1\times I$, i=1,2; such that $H_1(S^1\times \{0\})=g(v)$, $H_1(S^1\times \{1\})=g(l_2)$, $H_2(S^1\times \{0\})=g(\mu)$ and $H_2(S^1\times \{1\})=gh_2(\partial D_2^2)$, then $S(v,\mu)=S(l_2,h_2(\partial D_2^2))=|p_2|=1$, where μ is a meridian of $\operatorname{cl} V$, and g is a homeomorphism of $\operatorname{cl} \{V-(D^2\times S^1)_2\}$ onto $S^1\times S^1\times I$. Hence M' is a solid torus, see Fig. 6.

Fig. 5.

Fig. 6.

Case 2 $p_3 = \pm 1$. In this case, Lemma 2 is obtained by the same way as those in the case 1.

Case 3 $q=\pm 1$. We convert k_1 into k_2 , and apply the same argument for $N(k_2; S^3)$ as those in the case 1. Then, we show that Σ^3 is homeomorphic to 3-sphere see Fig. 7.

2. Proof of the main theorem

Let l be a link $k_1 \cup k_2 \cup \cdots \cup k_{\mu}$ in S^3 , and $N(k_1; S^3)$ be a regular neighbor-

Fig. 8.

hood of k_1 in S^3 such that $N(k_1; S^3 \cap (k_2 \cup k_3 \cup \cdots \cup k_{\mu}) = \emptyset$. Suppose that m is a meridian curve of a solid torus $N(k_1; S^3)$. We may then construct a new link $m \cup k_1 \cup k_2 \cup \cdots \cup k_{\mu}$, which is said to be a *-link of l (in respect to k_1) and denoted by l^* , see Fig. 8.

We will show the following lemma, which will play an important role in the proof of Theorem 1. **Lemma 3.** Let l^* be a *-link of a link l. If l has Property P^* , then l^* has Property P^* .

Proof. Let Σ^s be a homotopy 3-sphere obtained by doing surgery on a link l^* in S^s . Let N be a regular neighborhood of k_1 in S^s such that $m \subset N$ and $N \cap \{N(k_2; S^s) \cup N(k_3; S^s) \cup \cdots \cup N(k_{\mu}; S^s)\} = \emptyset$, and F be the boundary of N, see Fig. 9. Since the intersection of F and $N(l^*; S^s)$ is empty, F may be embedded in Σ^s . Let M', N' be the closure of components of $\Sigma^s - F$. N' may be a 3-manifold obtained by doing surgery on $m \cup k_1$ in N, M' be the others. By [4][9][10], one of M' and N' is a homotopy solid torus. We will prove Lemma 3 in respective cases.

Case 1 Suppose that N' is a homotopy solid torus.

In respect of a homotopy solid torus N', we apply the following operation (Δ) .

Operation (4) Since N' is a homotopy solid torus, there is a 2-cell \tilde{D}^2 in N' such that $\tilde{D}^2 \cap \partial N' = \tilde{D}^2 \cap F = \partial \tilde{D}^2$ is a simple closed curve which is not homolo-

Fig. 9.

Fig. 10.

gous to 0 on F. Let a be a simple closed curve on F such that $a \cap \partial \tilde{D}^2$ is one point. Let $h: \partial D^2 \times S^1 \to F$ be a homeomorphism of the boundary of a solid torus $D^2 \times S^1$ onto F, such that $h(\partial D^2 \times \{p\}) = a$, where p is a point in S^1 . We may then construct the 3-manifold $\tilde{\Sigma}^3 = N' \cup D^2 \times S^1$, see Fig. 10.

Note $\tilde{\Sigma}^3$ is a homotopy 3-sphere obtained by doing surgery on the link O_3 in S^3 . Since the link O_3 has Property P^* , $\tilde{\Sigma}^3$ is homeomorphic to 3-sphere. Hence N' is a solid torus. Σ^3 is regarded as a homotopy 3-sphere obtained by doing surgery on a link $k_2 \cup k_3 \cup \cdots \cup k_{\mu}$ and a solid torus N in S^3 . Hence Σ^3 is the result of a surgery on a link l in S^3 . Since a link l has Property P^* , Σ^3 is homeomorphic to 3-sphere.

Case 2 Suppose that M' is a homotopy solid torus.

In respect of a homotopy solid torus M', we apply the operation (Δ) and we may then construct a homotopy 3-sphere $\tilde{\Sigma}=M'\cup D^2\times S^1$. Note $\tilde{\Sigma}$ is the result of a surgery on a link $k_2\cup k_3\cup\cdots\cup k_\mu$ and a solid torus N in S^3 , hence a surgery on a link l in S^3 , see Fig. 11. Since a link l has Property P^* , $\tilde{\Sigma}$ is homeomorphic to 3-sphere. Hence M' is a solid torus.

Fig. 11.

A homotopy 3-sphere Σ^s is a union of N' and M', where N' is the result of a surgery on a link $m \cup k_1$ in N. Σ^s is the result of a surgery on the link O_3 in S^3 . Hence Σ^s is homeomorphic to 3-sphere.

Let Q be a 3-cell in S^s and $l=k_1 \cup k_2 \cup \cdots \cup k_{\mu}$ be a link which has an arc v of k_i in common with ∂Q , the remaining l-v lying wholly within Q except for v. Similarly, let Q' be a 3-cell in S^s such that $Q \cap Q' = \emptyset$, and $l'=k'_1 \cup k'_2 \cup \cdots \cup q$

 k'_{λ} be a link which has an arc v' of k'_{i} in common with $\partial Q'$, the remaining l'-v' lying wholly within Q' except for v'.

Let B be a 2-cell in $\operatorname{cl}(S^3-Q\cup Q')$ such that $B\cap\partial Q=\partial B\cap\partial Q=v$ and $B\cap\partial Q'=\partial B\cap\partial Q'=v'$. We may then construct a new link $\tilde{l}=(l-v)\cup(\partial B-v\cup v')\cup(l'-v')$ and \tilde{l} is said to be a product of l and l' associated with (k_i,k_j') , see [6]. Since we take no notice of the locality of product in this paper, we say merely that \tilde{l} is a product of l and l' and denote \tilde{l} by $l\cdot l'$. Let us denote a component $(k_i-v)\cup(\partial B-v\cup v')\cup(k_j'-v')$ of a link \tilde{l} by $k_i\#k_j'$.

Theorem 1. Suppose that l and l' are links with Property P^* . Then, a product $l \cdot l'$ of l and l' is a link with Property P^* .

Proof.. By renumbering the k_i 's and k'_i 's, we may assume that $l \cdot l'$ is a product associated with (k_1, k'_1) .

Let Σ^s be a homotopy 3-sphere obtained by doing surgery on a link $l \cdot l'$ in S^s . Let C be a component of $N(l \cdot l'; S^s)$ containing $k_1 \sharp k_1'$ and C' be a regular neighborhood of C such that $C' \cap N(l \cdot l'; S^s) = C$. $M = Q \cup C'$ is a solid torus and $F = \partial M$ is a closed surface of genus 1. F may be embedded in Σ^s . Let M', N' be the closure of components of $\Sigma^s - F$. M' may be a 3-manifold obtained by doing surgery on a link $(k_1 \sharp k_1') \cup k_2 \cup \cdots \cup k_{\mu}$ in M and N' be the others, see Fig. 12. By [4][9][10], one of M' and N' is a homotopy solid torus. We will prove Theorem 1 in respective cases.

Fig. 12.

Case 1. Suppose that M' is a homotopy solid torus.

Apply an operation (1) in respect of a homotopy solid torus M', and let $\tilde{\Sigma} = M' \cup D^2 \times S^1$ be the result. Note $\tilde{\Sigma}$ is a homotopy 3-sphere obtained by doing surgery on a link $(k_1 \sharp k'_1) \cup k_2 \cup \cdots \cup k_{\mu}$ and a solid torus in S^3 , see Fig. 13. Hence there is a *-link l^* of l such that $\tilde{\Sigma}$ is the result of a surgery on a link l^* in S^3 . By Lemma 3, a link l^* has Property P^* . Hence $\tilde{\Sigma}$ is homeomorphic to 3-sphere, and M' is a solid torus.

A homotopy 3-sphere Σ^s may be a union of a solid torus M' and a 3-manifold N' obtained by doing surgery on a link $k'_2 \cup k'_3 \cup \cdots \cup k'_{\lambda}$ in $S^s - M$. Hence Σ^s is the result of a surgery on a link l' in S^s . Since a link l' has Property P^* , Σ^s is homeomorphic to 3-sphere.

Case 2. Suppose that N' is a homotopy solid torus.

Apply an operation (1) in respect of a homotopy solid torus N', we construct a homotopy 3-sphere $\tilde{\Sigma} = N' \cup D^2 \times S^1$. Note $\tilde{\Sigma}$ is the result of a surgery on a link $k'_2 \cup k'_3 \cup \cdots \cup k'_{\lambda}$ and a solid torus M in S^3 , hence a surgery on a link l' in S^3 , see Fig. 14. Since a link l' has Property P^* , $\tilde{\Sigma}$ is homeomorphic to 3-sphere. Hence N' is a solid torus.

A homotopy 3-sphere Σ^3 may be a union of a solid torus N' and a 3-manifold M' obtained by doing surgery on a link $(k_1 \sharp k_1') \cup k_2 \cup \cdots \cup k_{\mu}$ in M. Hence, there is a *-link l^* of a link l such that Σ^3 is the result of a surgery on a link l^* in S^3 . By Lemma 3, a link l^* has Property P^* . Hence Σ^3 is homeomorphic to 3-sphere.

Since every link has a factorization into links called prime link [6], we obtain the following corollary of Theorem 1;

Corollary 2. Every link has Property P^* if every prime link has Property P^* .

3. Some links with Property P^*

By Theorem 1, we will obtain that;

Theorem 3. Every torus link has Property P*

Proof. Let l be a torus link of type (p, q), $p, q \ge 0$. If pq = 0, by Lemma 1 and Proposition 2, Theorem 3 is obvious. Suppose pq > 0. Let α be the greatest common divisor of p, q. Since l is a torus link, there is a unknotted solid torus R in S^3 , such that l is contained on a boundary ∂R of R. Let α be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be a core of the solid torus R and R be the greatest R and R be a core of R and R be the greatest R and R be a core of R and R and

will show that a link $\tilde{l}=l\cup a\cup b$ has Property P^* . Clearly there is a torus link l_0 of type $(0,\alpha)$ or $(\alpha,0)$ on ∂R such that the complement of \tilde{l} is homeomorphic to the complement of a link $\tilde{l}_0=l_0\cup a\cup b$, see Fig. 15 and 16.

Fig. 15.

Fig. 16.

Let Σ^8 be the result of a surgery on a link \tilde{l} . Since $\operatorname{cl}(S^8-\tilde{l})$ is homeomorphic to $\operatorname{cl}(S^8-\tilde{l}_0)$, Σ^8 is the result of a surgery on a link \tilde{l}_0 .

By induction on α , we will prove that a link \tilde{l}_0 has Property P^* . If $\alpha=1$, then \tilde{l}_0 is ambient isotopic to the link O_3 . Hence \tilde{l}_0 has Property P^* . Suppose $\alpha>1$. Let \tilde{l}'_0 be a link $l'_0 \cup a \cup b$, where l'_0 is a torus link of type $(0, \alpha-1)$ or $(\alpha-1, 0)$ on ∂R . By induction, \tilde{l}'_0 has Property P^* . A link \tilde{l}_0 is a product of the link O_2 and a link \tilde{l}'_0 . By Theorem 1, a link \tilde{l}_0 has Property P^* . Hence Σ^3 is homeomorphic to 3-sphere, and \tilde{l} has Property P^* . By Proposition 1, a torus link l of type (p,q) has Property P^* .

Let $B_1^8, B_2^8, \dots, B_n^8$ be mutually disjoint 3-cells in S^8 and $H_1 = (D^2 \times I)_1$, $H_2 = (D^2 \times I)_2$, \dots , $H_m = (D^2 \times I)_m$ be mutually disjoint 1-handles of $B_1^8 \cup B_2^8 \cup \dots \cup B_n^8$ in

 S^{3} satisfying the following condition;

(*) For any i, $1 \le i \le m$, there are exactly two numbers p(i), q(i) such that a 1-handle H_i joins $B_{p(i)}^s$ and $B_{q(i)}^s$.

Let M be a 3-manifold obtained by attaching 1-handles H_1, H_2, \dots, H_m to $B_1^3 \cup B_2^3 \cup \dots \cup B_n^3$ in S^s ; and for each 3-cell B_{λ}^3 , $B_{\lambda}^3 \cap \bigcup_{i=1}^m H_i$ are 2-cells on ∂B_{λ}^3 , say $C_{\lambda,1}, C_{\lambda,2}, \dots, C_{\lambda r(\lambda)}$.

Let l_{λ} be a link in B_{λ}^{s} which has arcs $v_{\lambda 1}, v_{\lambda 2}, \dots, v_{\lambda, r(\lambda)}$ of l_{λ} in $C_{\lambda 1}, C_{\lambda 2}, \dots, C_{\lambda, r(\lambda)}$, respectively, the remaining $l_{\lambda} - (v_{\lambda, 1} \cup v_{\lambda, 2} \cup \dots \cup v_{\lambda, r(\lambda)})$ lying wholly within B_{λ}^{s} except for $v_{\lambda, 1} \cup v_{\lambda, 2} \cup \dots \cup v_{\lambda, r(\lambda)}$. Let $C_{p, s}, C_{q, t}$ be 2-cells $H_{t} \cap (B_{\lambda}^{s} \cup B_{\lambda}^{s} \cup \dots \cup B_{n}^{s})$; and β_{t} and β_{t}' be disjoint arcs in H_{t} satisfying the following conditions;

- (1) an arc β_i joins two points $\partial v_{p,i}$.
- (2) an arc β'_i joins two points $\partial v_{q,i}$.
- (3) $v_{p,i} \cup \beta_i$ and $v_{q,i} \cup \beta'_i$ make together a torus link of type $(2, p_i)$ where p_i is even positive number for $i=1, 2, \dots, m$.

We may construct a new link $l = \bigcup_{\lambda=1}^n \{l_{\lambda} - (v_{\lambda,1} \cup v_{\lambda,2} \cup \cdots \cup v_{\lambda,\tau(\lambda)})\} \cup \bigcup_{i=1}^m (\beta_i \cup \beta_i')$ and l is said to be a union of l_{λ} winded along $v_{p,i}$ and $v_{q,i}$ with the winding number p_i . We will consider the following graph G;

- (a) Take a point corresponding to a 3-cell B_{λ}^{s} , say b_{λ} , $\lambda=1,2,\cdots n$. Let $\{b_{\lambda}\}$ be the set of vertices of G.
 - (b) Take a line corresponding to a 1-handle H_i , say a_i , $i=1,2,\cdots,m$, such

that a_i joins $b_{p(i)}$ and $b_{q(i)}$, where p(i) and q(i) are two numbers for i by a condition (*) above. Let $\{a_i\}$ be the set of lines of G, see Fig. 17.

A graph G is said to be a corresponding graph of a union of a link l.

Corollary 4. If every link l_{λ} has Property P^* for $\lambda=1,2,\dots,n$, and the corresponding graph of a union of a link l_{λ} is tree, then a union l of l_{λ} is a link with Property P^* .

Proof. By induction on n, the number of the vertices of G. If n=1, this consequence is obvious. So we assume that $n\geq 2$. Suppose Corollary 4 is true for $n\leq k$. Then we will prove Corollary 4 for n=k+1.

Since the corresponding graph G is tree, there are a 3-cell B_{λ}^{3} and a 1-handle H_{i} such that $B_{\lambda}^{3} \cap \bigcup_{i=1}^{m} H_{i} = B_{\lambda}^{3} \cap H_{i}$. By renumbering the B_{λ}^{3} 's, the H_{i} 's and $C_{\lambda,\mu}$'s, we may assume i=1, $\lambda=p=1$, s=1, q=2 and t=1. Let D^{3} be a 3-cell such that $D^{3} \cap M = D^{3} \cap (B_{\lambda}^{3} \cup H_{i}) = B_{\lambda}^{3} \cup H_{i}$. Then l is a product link $[l_{1} \cdot (\{v_{1,1} \cup \beta_{1}\} \cup \{v_{2,1} \cup \beta_{1}\})] \cdot \tilde{l}$, where \tilde{l} is a sublink $l \cap (S^{3} - D^{3})$ of l, see Fig. 18. By induction, l is a link with Property P^{*} .

Fig. 18.

 $v_{1,1} \cup \beta_1$ and $v_{2,1} \cup \beta'_1$ make together a torus link in H_1 , hence, by Theorem 3, this is a link with Property P^* . By assumption, a link l_1 has Property P^* . Hence by Theorem 1, a link l has Property P^* .

REFERENCES

- [1] R. H. Bing and J. M. Martin; Cubes with knotted holes, Trans. Amer. Math. Soc., 155 (1971) 217-237.
- [2] H.S.M. Coxeter and W.O. Moser; Generators and relations for discrete groups, Springer, Berlin, 1957.
- [3] R. H. Crowell and R. H. Fox; Knot theory, Ginn, 1963.

- [4] R. H. Fox; On the imbedding of polyhedra in 3-space, Ann. of Math., 49 (1948) 462-470.
- [5] F. González-Acuna; Dehn's construction of knots, Bol. Soc. Mat. Mexicana, 15 (1970) 58-79.
- [6] Y. Hashizume; On the uniqueness of the decomposition of a link, Osaka Math. Jour., 10 (1958) 283-300.
- [7] J. Hempel; Construction of orientable 3-manifolds, Topology of 3-manifolds, Prentice-Hall, 1962.
- [8] ——; A simple connected 3-manifold is S³ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc., 15 (1964) 154-158.
- [9] T. Homma; On the existence of unknotted polygons on 2-manifolds in E³, Osaka Math. Jour., 6 (1954) 129-134.
- [10] S. Kinoshita; On Fox's property of a surface in a 3-manifold, Duke Math. Jour., 33 (1966) 791-794.
- [11] J. Simon; Some classes of knots with property P, Topology of Manifolds' 1970, Markham, 195-199.
- [12] A. H. Wallace; Modifications and cobounding manifolds, Canad. Jour. Math., 12 (1960) 503-528.

Sophia University Kioi-cho, Chiyoda-ku, Tokyo