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0. Introduction
We are interested in the following problem in piecewise-linear 3-dimensional

topology.

Problem Is it possible to construct the counterexample to the $P_{0\dot{j}}ncar\acute{e}$

conjecture by removing a finite number of $mutuau_{y}$ disjoint solid tori from
$S^{8}$ and sewing them back in a different way?

To the purpose above, we will consider a problem as follows;

Let $C(l)$ be the closure of the complement in $S^{8}$ of a regular $neighborh\ovalbox{\tt\small REJECT} d$

of a link $l$ . If every homotopy 3-sphere $\Sigma 8$ obtained by refilling $C(l)$ by solid
tori with suitable identification of the boundary surface is a 8-sphere, then we
say that $l$ has Property $P^{*}$ .

Conjecture. Every $hnk$ has Property $P^{*}$ .
It has been shown [12] that every closed, connected, orientable 3-manifold

can be constructed by removing a finite number of mutually disjoint solid tori
from $S^{8}$ and sewing them back in a different way. In paticular, every homotopy
3-sphere can be obtained by this way; thus this conjecture is equivalent to
the Poincar\’e conjecture.

In $[1][5][8]$ and [11], the problem above is discussed for a knot and it is
obtained that some knots have Property $P$ (stronger than Property $P^{*}$). We
can show that there are many links without property $P$. So, con8idering a link
with Property $P^{*}$ will be meaningful.

In this paper we will prove the following theorem;

Theorem 1. If links $l$ and $l^{\prime}$ have Property $P^{*}$ , then $l\cdot l^{\prime}$ is a link with
Property $P^{*}$ , where $l\cdot l^{\prime}$ means any product of links $l$ and $l^{\prime}$ , see [6].

As an immediate consequence, we have;

Corollary 2. Every link has Property $p*$ if every prime link [6] has
Property $P^{*}$ .

This implies that it is enough to decide whether the conjecture above is
true for only prime links.
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By Theorem 1, we will obtain that;

Theorem 3. Every torus link has Prorerty $P^{*}$ .
In 1, we will show that some elementary links have Property $P^{*}$ . In 2,

Lemma 3 which plays a important role, and Theorem 1 will be obtained. In 3,
some corollaries of Theorem 1 will be given, and some links with Property $P^{*}$

will be obtained. The author is indebted to Professor T. Homma, F. Hosokawa
and F. Gonz\’ales-Acuna for their kind suggestions.

1. Some elementary links with Property $P*$

Throughout this paper, let us denote the boundary, the interior and the
closure of a manifold $M$ by $\partial M$, int $M$ and cl $M$ respectively. A regular

neighborhood of a submanifold $A$ in a manifold $M$ will be denoted by $N(A;M)$ .
For two loops $f$ and $g$ on a surface, $S(f, g)$ denotes the absolute value of the
homological intersection number of an oriented chains $f$ and $g$ .

Let $l$ be a link $k_{1}\cup k_{2}\cup\cdots\cup k_{\mu}$ in $S^{8}$ , and $N(k_{:};S^{s})$ be a regular neighbor-

hood of $k_{\ell}$ in $S^{8}$ such that $ N(k_{l};S^{8})\cap(l-k_{\ell})=\phi$ . Let $m_{:}$ be a simple closed curve
on $\partial N(k_{i};S^{8})$ which bounds 2-cell in $N(k_{\ell};S^{8})$ and $l$ be a simple closed curve
on $\partial N(k_{:};S^{8})$ which is homologous to $0$ in $S^{3}$ –int $N(k_{\ell};S^{8})$ . We call $m_{\ell}$ and $l_{\ell}$

a meridan and a longitude of $N(k;S^{8})$ , respectively.

Let $T_{I},$ $T_{2},$
$\cdots,$

$T_{l}$ be mutually disjoint solid tori in the interior of a connected,

orientable 3-manifold $M$. We may then construct the 3-manifold

$M^{\prime}=c1\{M-(T_{1}\cup T_{2}\cup\cdots\cup T.)\}\bigcup_{h}\{T_{1}\cup T_{2}\cup\cdots\cup T_{\iota}\}$

where $h$ is a union of homeomorphisms $h_{\ell}:\partial T_{i}\rightarrow\partial T_{\ell}$ . The manifold $M^{\prime}$ is said
to be the result of a surgery on $\{T_{1}, T_{2}, \cdots, T_{\epsilon}\}$ in $M$, and $h$ is said to be $a$

surgery homeomorphism. When $T_{1}\cup T_{2}\cup\cdots\cup T_{\mu}$ is a regular neighborhood of
a link $l$ of $\mu$ components in int $M$, the manifold $M$ is said to be the result of a
surgery on a link $l$ and $\{T_{\mu+1}, \cdots, T.\}$ in $M;1\leq\mu\leq s$ .

As a consequence of definition, we have;

Proposition 1. If a link $l=k_{1}\cup k_{2}\cdots\cup k_{\mu}$ has Property $P^{*}$ , then every

sublink $l^{\prime}=k_{i_{1}}\cup k_{i_{2}}\cup\cdots\cup k_{\ell_{\nu}}$ of $l$ has Property $P^{*}$ , where $\{i_{1}, i_{2}, \cdots, i_{\nu}\}\subset\{1,2,$ $\cdots$ ,
$\mu\}$ and $i_{k}\neq i_{\ell}(k\neq l)$ .

Suppose that for a link $l$ , there is a 3-cell $B^{3}$ such that $\partial B^{3}\cap l=\emptyset$ . Let $l_{1}$

be a link $l\cap B^{3}$ and $l_{2}$ be a link $ l\cap$ cl $(S^{3}-B^{3})$ . Then, we easily have;

Proposition 2. If $l_{1}$ and $l_{2}$ have Property $P^{*}$ , then a link $l$ has Property
$P^{*}$ .
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We will show that the following links $O_{1},$ $O_{2}$ and $O_{3}$ , described in Fig. 1,
have Property $P^{*}$ . For the components of $0.$ , we write $k_{j}$ as described in Fig. 1.

Lemma 1. The links $O_{1}$ and $O_{2}$ have Property $P^{*}$ .
Proof. By Proposition 1, if the link $O_{2}$ has Property $P^{*}$ , then the link $O_{1}$

has Property $p*$ . So it is enough to prove that the link $O_{2}$ has Property $P^{*}$ .
Let $\Sigma$ be a homotopy 3-sphere obtained by doing surgery on the link $O_{2}$ in

$S^{3},$ $F$ be the boundary of a regular $neighborh\ovalbox{\tt\small REJECT} d$ of a component $k_{1}$ of the link
$O_{2}$ in $S^{8}$ , and $M,$ $N$ be two components of $\Sigma-F$, see Fig. 2. Both cl $M$ and cl $N$

are solid tori. Since $\Sigma=c1M$ ucl $N,$ $\Sigma$ is homeomorphic to one of $S^{8},$ $S^{2}\times S^{1}$

and lens space. Hence $\Sigma$ is homeomorphic to $S^{8}$ , for $\pi_{1}(\Sigma)=\{1\}$ .

$o_{O_{1}}^{k_{1}}$
$o_{O_{2}}^{1}O^{k_{2}}k$ $c_{O_{3}}^{k_{1}k_{3}}\cap^{k_{2}}$

Fig. 1.

Lemma 2. The link $0_{8}$ has Property $P^{*}$ .
Proof. Let $C$ be the closure of the complement of a regular $neighborh\ovalbox{\tt\small REJECT} d$

of the link $O_{8}$ in $S^{3}$ . Let $m_{i}$ be a meridian of $N(k_{i};S^{3})$ , and $l_{i}$ be a longitude

of $N(k_{i};S^{3}),$ $i=1,2,3$ , see Fig. 3.

Fig. 3.

Suppose that $\Sigma^{3}$ is a homotopy 3-sphere obtained by doing surgery on the
3

link $O_{8}$ in $S^{3}$ and $h$ is a surgery homeomorphism $\bigcup_{i=1}\{h_{i}:\partial(D^{2}\times S^{1})_{\ell}\rightarrow\partial N(k_{:};S^{3})\}$ .
Let overpasses $a_{\ell}$ represent generators and crossingpoints give the relators, see
Fig. 3. There is a presentation of $\pi_{1}(C)_{1}$.

$\{a_{1}, a_{2}, a_{8};a_{2}a_{1}=a_{1}a_{2}, a_{1}a_{3}=a_{8}a_{1}\}$

Since $h_{l}(\partial D_{i}^{2})=h_{i}(\partial(D^{2}\times\{p\})_{\ell})$ , where $p$ is a point in $S^{1}$ , is a simple closed
curve on $\partial N(k_{\ell};S^{8}),$ $h_{i}(\partial D_{i}^{2})$ is represented by $m_{i}$ and $l_{i}$ on $\partial N(k_{i};S^{8}),$ $i=1,2,3$ .



74 KAZUO YOKOYAMA

So $h_{i}(\partial D_{:}^{2})$ is represented as an element having the form $m_{\ell}^{p_{i}}l_{:}^{q}\ell,$ $i=1,2,3$ . Let
$x_{\ell}$ be an arc joining a base point of $C$ to arbitrary one point in $h_{\ell}(\partial D_{\ell}^{2})$ and $\gamma_{\ell}$

be a closed curve represented as $x_{\ell}m_{\ell}^{p_{i}}l_{i}^{q}x_{i}^{-1}$ . $\pi_{1}(\Sigma 3)$ is obtained from $\pi_{1}(C)$ by
adding relations $\gamma_{1}=ai1^{p}1(a_{2}a_{8})_{1}^{\prime}q_{1}=1,$ $\gamma_{2}=a_{2^{2}}^{*p_{2}}a_{1^{2^{q}2}}^{\epsilon\prime}=1$ and $\gamma_{3}=a_{8^{8^{P}8}}a_{1}^{*}s^{q_{8}}’=1$ , where
$\epsilon_{l},$

$\epsilon_{\ell}^{\prime}=\pm 1$ . This yields the following;

$\pi_{1}(\Sigma^{\epsilon})=\{a_{1},$ $a_{2},$ $a_{3};a_{2}a_{1}=a_{1}a_{2},$ $a_{8}a_{1}=a_{1}a_{8},$ $a_{1^{1}}^{*p_{1}}(a_{2}a_{8})^{\prime}1^{q}1$

$=a_{2}^{e_{2}p_{2}}a_{1}^{\epsilon\prime}2^{q}2=a_{8^{8}}^{\iota p_{3}}a_{1}^{\epsilon\prime}s^{q}8=1\}$

Consider the group $G=\{R, S;R\cdot 2^{p}2=S\cdot 3^{p}S=(SR)^{-e_{1}^{\prime}q_{1}}=1\}$ . If $p_{2},$ $p_{8},$ $q_{1}\neq\pm 1$ ,

this group is nontrivial [21. A nontrivial representation $\eta$ of $\pi_{1}(\Sigma^{\epsilon})$ onto $G$ i8
given by $\eta(a_{1})=1,$ $\eta(a_{2})=R,$ $\eta(a_{8})=S$ . Note that $\eta(a_{2}a_{1})=R=\eta(a_{1}a_{2}),$ $\eta(a_{8}a_{1})=S=$

$\eta(a_{1}a_{8}),$ $\eta(ai1^{p}1(a_{2}a_{8})^{*}\prime 1^{q}1)=(SR)^{-*}\prime 1^{q}1=1,$ $\eta(a_{\dot{2}}2^{p}2ai^{\prime}2^{q}2)=R\cdot 2^{p}1=1$ and $\eta(a_{\epsilon^{8}}^{lp_{3}}ai^{\prime}8^{q}\epsilon)=$

$s*s^{p_{8}}=1$ . Hence $\eta$ is a homomorphism. This gives the contradiction that $\pi_{1}(\Sigma^{s})$

is trivial. We have that $p_{2}=\pm 1,$ $p_{3}=\pm 1$ or $q_{1}=\pm 1$ . We will prove Lemma 2

in respective cases.
Case 1 $p_{2}=\pm 1$ . Since $\partial N(k_{1}; S^{8})$ is a surfaoe of genus 1, there is an

embedding $f$ of $S^{1}\times S^{1}\times I$ in $S^{8}$ such that $ f(S^{1}\times S^{1}\times I)\cap N(k_{1};S^{8})=f(S^{1}\times S^{1}\times I)\cap$

$\partial N(k_{1};S^{s})=f(S^{1}\times S^{1}\times\{0\})$ and $f(S^{1}\times S^{1}\times I)\cap N(k_{2};S^{3})=\emptyset=f(S^{1}\times S^{1}\times I)\cap N(k_{\epsilon};S^{s})$ .
Let $M$ be a solid torus cl $[S^{3}-\{N(k_{1}jS^{8})\cup f(S^{1}\times S^{1}\times I)\}]$ and $M^{\prime}$ be the result of

a surgery on a link $k_{2}\cup k_{8}$ in $M$ by surgery homeomorphism $h_{2}\cup h_{s}$ , see Fig. 4.

Fig. 4.

If $M^{\prime}$ is a solid torus, then $\Sigma 3$ is regarded as a homotopy 3-sphere obtained
by removing solid tori $N(k_{1};S^{8})$ and $M$ from $S^{8}$ , and refilling solid tori $(D^{2}\times S^{1})_{1}$

and $M^{\prime}$ with suitable identification of boundary surface. Hence $\Sigma 8$ is the result
of a surgery on the link $O_{2}$ in $S^{8}$ . Since the link $O_{2}$ has Property $P^{*}$ by Lemma
1, $\Sigma^{8}$ is homeomorphic to 3-sphere.

We will show that $M^{\prime}$ is a solid torus. Let $A$ be an annulus properly embedded



ON LINKS WITH PROPERTY $p*$ 75

in $M$ such that $A$ separates $N(k_{1};S^{3})$ and $N(k_{2};S^{s})$ in $M$. Since an annulus
$A$ is properly embedded irr $M^{\prime},$ $A$ divides $M^{\prime}$ into two parts, say $V$ and $W$, see
Fig. 5. Note that cl $V$ and cl $W$ are solid tori. There are simple closed curves
$v$ on $\partial V$, and $w$ on $\partial W$, respectively, such that $M^{\prime}$ is homeomorphic to a 3-mani-
fold obtained by pasting cl $V$ and cl $W$ along $N(v;\partial V)$ and $N(w;\partial W)$ . Since
cl $\{V-(D^{2}\times S^{1})_{2}\}$ is $hom\ovalbox{\tt\small REJECT} morphic$ to $S^{1}\times S^{1}\times I$ and there are level preserving
isotopies $H_{\ell}:S^{1}\times I\rightarrow S^{\iota}\times S^{1}\times I,$ $i=1,2$ ; such that $H_{1}(S^{1}\times\{0\})=g(v),$ $H_{1}(S^{1}\times\{1\})=$

$g(l_{2}),$ $H_{2}(S^{\iota}\times\{0\})=g(\mu)$ and $H_{2}(S^{1}\times\{1\})=gh_{2}(\partial D_{2}^{2})$ , then $S(v, \mu)=S(l_{f}, h_{2}(\partial D_{a}^{2}))=|p_{2}|=$

$1$ , where $\mu$ is a meridian of cl $V$, and $g$ is a homeomorphism of cl $\{V-(D^{2}\times S^{1})_{2}\}$

onto $S^{1}\times S^{1}\times I$. Hence $M^{\prime}$ is a solid torus, see Fig. 6.

Fig. 5.

$v$ $w$

Fig. 6.

Case 2 $p_{8}=\pm 1$ . In thi8 case, Lemma 2 is obtained by the same way as
those in the case 1.

Case 3 $q=\pm 1$ . We convert $k_{\iota}$ into $k_{2}$ , and apply the same argument for
$N(k_{2};S^{8})$ as those in the case 1. Then, we 8how that $\Sigma 8$ is homeomorphic to
3-sphere see Fig. 7.

2. Proof of the main theorem
Let $l$ be a link $k_{1}\cup k_{2}\cup\cdots\cup k_{\mu}$ in $S^{8}$ , and $N(k_{1};S^{8})$ be a regular neighbor-
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Fig. 7.

$l$

$l^{*}$

Fig. 8.

hood of $k_{1}$ in $S^{3}$ such that $ N(k_{1};S^{3}\cap(k_{2}\cup k_{s}\cup\cdots\cup k_{\mu})=\emptyset$ . Suppose that $m$ is
a meridian curve of a solid torus $N(k_{1};S^{3})$ . We may then construct a new link
$m\cup k_{1}\cup k_{2}\cup\cdots\cup k_{\mu}$ , which is said to be a $*$-link of $l$ (in respect to $k_{1}$ ) and
denoted by $l^{*}$ , see Fig. 8.

We will show the following lemma, which will play an important role in
the proof of Theorem 1.
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Lemma 3. Let $l^{*}$ be a $*$-link of a link $l$ . If $l$ has Property $P^{*}$ , then $l^{*}$

has Property $P^{*}$ .
Proof. Let $\Sigma 3$ be a homotopy 3-sphere obtained by doing surgery on a link

$l^{*}$ in $S^{3}$ . Let $N$ be a regular neighborhood of $k_{1}$ in $S^{3}$ such that $m\subset N$ and
$ N\cap\{N(k_{2};S^{3})\cup N(k_{3};S^{8})\cup\cdots\cup N(k_{\mu};S^{8})\}=\emptyset$ , and $F$ be the boundary of $N$,
see Fig. 9. Since the intersection of $F$ and $N(l^{*};S^{8})$ is empty, $F$ may be
embedded in $\Sigma^{s}$ . Let $M^{\prime},$ $N^{\prime}$ be the closure of components of $\Sigma^{s}-F$. $N^{\prime}$ may
be a 3-manifold obtained by doing surgery on $m\cup k_{1}$ in $N,$ $M^{\prime}$ be the others.
By $[4][9][10]$ , one of $M^{\prime}$ and $N^{\prime}$ is a homotopy 8olid torus. We will prove
Lemma 3 in respective cases.

Case 1 Suppose that $N^{\prime}$ is a homotopy solid torus.
In respect of a homotopy solid torus $N^{\prime}$ , we apply the following operation

$(\Delta)$ .
$0$peration $(\Delta)$ Since $N^{\prime}$ is a homotopy solid torus, there is a 2-cell $\tilde{D}^{2}$ in $N^{\prime}$

such that $\tilde{D}^{2}\cap\partial N^{\prime}=\tilde{D}^{2}\cap F=\partial\tilde{D}^{2}$ is a simple closed curve which is not homolo-

Fig. 9.

Fig. 10.
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gous to $0$ on $F$. Let $a$ be a simple closed curve on $F$ such that $a\cap\partial\tilde{D}^{2}$ is one
point. Let $h:\partial D^{2}\times S^{1}\rightarrow F$ be a homeomorphism of the boundary of a solid torus
$D^{2}\times S^{1}$ onto $F$, such that $h(\partial D^{2}\times\{p\})=a$ , where $p$ is a point in $S^{1}$ . We may
then construct the 8-manifold $\tilde{\Sigma}^{3}=N^{\prime}\bigcup_{h}D^{2}\times S^{1}$ , see Fig. 10.

Note $\tilde{\Sigma}3$ is a homotopy 3-sphere obtained by doing surgery on the link $O_{s}$

in $S^{s}$ . Since the link $O_{s}$ has Property $p*$ $\tilde{\Sigma}^{g}$ is homeomorphic to 3-sphere.
Hence $N^{\prime}$ is a solid torus. $\Sigma 8$ is regarded as a homotopy 3-sphere obtained by
doing surgery on a link $k_{2}\cup k_{3}\cup\cdots\cup k_{\mu}$ and a solid torus $N$ in $S^{8}$ . Hence $\Sigma 8$

is the result of a surgery on a link $l$ in $S^{3}$ . Since a link $l$ has Property $P^{*}$ ,
$\Sigma 3$ is homeomorphic to 3-sphere.

Case 2 Suppose that $M^{\prime}$ is a homotopy solid torus.
In respect of a homotopy solid torus $M^{\prime}$ , we apply the operation $(\Delta)$ and we

may then construct a homotopy 3-sphere $\Sigma^{\approx}=M^{\prime}\bigcup_{h}D^{2}\times S^{1}$ . Note $\Sigma^{\approx}$ is the result

of a surgery on a link $k_{2}\cup k_{3}\cup\cdots\cup k_{\mu}$ and a solid torus $N$ in $S^{3}$ , hence a surgery
on a link $l$ in $S^{3}$ , see Fig. 11. Since a link $l$ has Property $P^{*},$

$\Sigma^{\approx}$ is homeomorphic
to 8-sphere. Hence $M^{\prime}$ is a solid torus.

Fig. 11.

A homotopy 3-sphere $\Sigma 3$ is a union of $N^{\prime}$ and $M^{\prime}$ , where $N^{\prime}$ is the result
of a surgery on a link $m\cup k_{1}$ in N. $\Sigma 8$ is the result of a surgery on the link
$O_{3}$ in $S^{3}$ . Hence $\Sigma 8$ is homeomorphic to 3-sphere.

Let $Q$ be a 3-cell in $S^{8}$ and $l=k_{1}\cup k_{2}\cup\cdots\cup k_{\mu}$ be a link which has an arc $v$

of $k_{i}$ in common with $\partial Q$ , the remaining $l-v$ lying wholly within $Q$ except for
$v$ . Simillary, let $Q^{\prime}$ be a 3-cell in $S^{8}$ such that $ Q\cap Q^{\prime}=\emptyset$ , and $ l^{\prime}=k_{1}^{\prime}\cup k_{2}^{\prime}\cup\cdots\cup$
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$k_{\lambda}^{\prime}$ be a link which has an arc $v^{\prime}$ of $k_{j}^{\prime}$ in common with $\partial Q^{\prime}$ , the remaining $l^{\prime}-v^{\prime}$

lying wholly within $Q^{\prime}$ except for $v^{\prime}$ .
Let $B$ be a 2-cell in cl $(S^{8}-Q\cup Q^{\prime})$ such that $B\cap\partial Q=\partial B\cap\partial Q=v$ and $B\cap\partial Q^{\prime}=$

$\partial B\cap\partial Q^{\prime}=v^{\prime}$ . We may then construct a new link $l^{-}=(l-v)\cup(\partial B-v\cup v^{\prime})\cup(l^{\prime}-v^{\prime})$

and $\tilde{l}$ is said to be a product of $l$ and $l^{\prime}$ associated with $(k_{\ell}, k_{j}^{\prime})$ , see [6]. Since
we take no notice of the locality of product in this paper, we say merely that
$\overline{l}$ is a product of $l$ and $l^{\prime}$ and denote $\tilde{l}$ by $l\cdot l^{\prime}$ . Let us denote a component
$(k_{\ell}-v)\cup(\partial B-v\cup v^{\prime})\cup(k_{f}^{\prime}-v^{\prime})$ of a link $\overline{l}$ by $k_{t}\# k_{j}^{\prime}$ .

Theorem 1. SuPpose that $l$ and $l^{\prime}$ are links with Property $P^{*}$ . Then, $a$

product $l\cdot l^{\prime}$ of $l$ and $l^{\prime}$ is a link with Property $P^{*}$ .
Proof.. By renumbering the $k_{l}’ s$ and $k_{j}^{\prime}’ s$ , we may assume that $l\cdot l^{\prime}$ is a

product associated with $(k_{1}, k_{1}^{\prime})$ .
Let $\Sigma 3$ be a homotopy 3-sphere obtained by doing surgery on a link $l\cdot l^{\prime}$ in

$S^{8}$ . Let $C$ be a component of $N(l\cdot l^{\prime};S^{8})$ containing $k_{1}\# k^{\prime}$ and $C^{\prime}$ be a regular

neighborhood of $C$ such that $C^{\prime}\cap N(l\cdot l^{\prime};S^{3})=C$ . $M=Q\cup C^{J}$ is a solid torus and
$F=\partial M$ is a closed surface of genus 1. $F$ may be embedded in $\Sigma^{s}$ . Let $M^{\prime},$ $N^{\prime}$

be the closure of components of $\Sigma^{3}-F$. $M^{\prime}$ may be a 3-manifold obtained by
doing surgery on a link $(k_{1}\# k_{1}^{\prime})\cup k_{2}\cup\cdots\cup k_{\mu}$ in $M$ and $N^{\prime}$ be the others, see
Fig. 12. By $[4][9][10]$ , one of $M^{\prime}$ and $N^{\prime}$ is a homotopy solid torus. We will
prove Theorem 1 in respective cases.

Fig. 12.

Case 1. Suppose that $M^{\prime}$ is a homotopy solid torus.
Apply an operation $(\Delta)$ in respect of a homotopy solid torus $M^{\prime}$ , and let $\tilde{\Sigma}=$

$M^{\prime}\bigcup_{h}D^{2}\times S^{1}$ be the result. Note $\tilde{\Sigma}$ is a homotopy 3-sphere obtained by doing
surgery on a link $(k_{1}\# k_{1}^{\prime})\cup k_{2}\cup\cdots\cup k_{\mu}$ and a solid torus in $S^{s}$ , see Fig. 13.
Hence there is a $*$-link $l^{*}$ of $l$ such that $\sum$ is the result of a surgery on a link
$l^{*}$ in $S^{8}$ . By Lemma 3, a link $l^{*}$ has Property $P^{*}$ . Hence $\tilde{\Sigma}$ is homeomorphic
to 3-sphere, and $M^{\prime}$ is a solid torus.
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Fig. 13. Fig. 14.

A homotopy 3-sphere $\Sigma 3$ may be a union of a solid torus $M^{\prime}$ and a 3-mani-
fold $N^{\prime}$ obtained by doing surgery on a link $k_{2}^{\prime}\cup k_{3}^{\prime}\cup\cdots\cup k_{\lambda}^{\prime}$ in $S^{8}-M$. Hence
$\Sigma 3$ is the result of a surgery on a link $l^{\prime}$ in $S^{3}$ . Since a link $l^{\prime}$ has Property
$P^{*},$ $\Sigma 8$ is homeomorphic to 3-sphere.

Case 2. Suppose that $N^{\prime}$ is a homotopy solid torus.
Apply an operation $(\Delta)$ in respect of a homotopy solid torus $N^{\prime}$ , we construct

a homotopy 3-sphere $\Sigma=N^{\prime}\bigcup_{h}D^{2}\approx\times S^{1}$ . Note $\Sigma^{\approx}$ is the result of a surgery on a
link $k_{2}^{\prime}\cup k_{3}^{\prime}\cup\cdots\cup k_{\lambda}^{\prime}$ and a solid torus $M$ in $S^{3}$ , hence a surgery on a link $l^{\prime}$

in $S^{3}$ , see Fig. 14. Since a link $l^{\prime}$ has Property $P^{*}$ , $\Sigma^{\approx}$ is homeomorphic to 3-
sphere. Hence $N^{\prime}$ is a solid torus.

A homotopy 3-sphere $\Sigma 3$ may be a union of a solid torus $N^{\prime}$ and a 3-mani-
fold $M^{\prime}$ obtained by doing surgery on a link $(k_{1}\# k_{1}^{\prime})\cup k_{2}\cup\cdots\cup k_{\mu}$ in $M$. Hence,

there is a $*$-link $l^{*}$ of a link $l$ such that $\Sigma 3$ is the result of a surgery on a link
$l^{*}$ in $S^{3}$ . By Lemma 3, a link $l^{*}$ has Property $P^{*}$ . Hence $\Sigma 8$ is homeomorphic

to 3-sphere.

Since every link has a factorization into links called prime link [61, we obtain
the following corollary of Theorem 1;

Corollary 2. Every link has Property $P^{*}$ if every prime link has Pro-
perty $P^{*}$ .

3. Some links with Property $P^{*}$

By Theorem 1, we will obtain that;

Theorem 3. Every torus link has Property $p*$

Proof. Let $l$ be a torus link of type $(p, q),$ $p,$ $q\geq 0$ . If $pq=0$ , by Lemma 1
and Proposition 2, Theorem 3 is obvious. Suppose $pq>0$. Let $\alpha$ be the greatest

common divisor of $p,$ $q$ . Since $l$ is a torus link, there is a unknotted solid torus
$R$ in $S^{3}$ , such that $l$ is contained on a boundary $\partial R$ of $R$ . Let $a$ be a core of
the solid torus $R$ and $b$ be a core of the solid torus cl $(S^{3}-R)$ , see Fig. 15. We
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will show that a link $\overline{l}=l\cup a\cup b$ has Property $P^{*}$ . Clearly there is a toru8 link
$l_{0}$ of type $(0, \alpha)$ or $(\alpha, 0)$ on $\partial R$ such that the complement of $\tilde{l}$ is homeomorphic
to the complement of a link $l_{0}^{-}=l_{0}\cup a\cup b$ , see Fig. 15 and 16.

Fig. 15.

Fig. 16.

Let $\Sigma 8$ be the result of a surgery on a link $\tilde{l}$. Since cl $(S^{s}-l^{\sim})$ is homeomor-
phic to cl $(S^{8}-l_{0}^{\sim}),$ $\Sigma 8$ is the result of a surgery on a link $\tilde{l}_{0}$ .

By induction on $\alpha$ , we will prove that a link $l_{0}^{\sim}$ has Property $P^{*}$ . If $\alpha=1$ , then
$l_{0}^{\sim}$ is ambient isotopic to the link $0_{8}$ . Hence $l_{0}^{\sim}$ has Property $p*$ . Suppose $a>1$ .
Let $ l_{0}^{\prime}\sim$ be a link $l_{0}^{\prime}\cup a\cup b$ , where $l_{0}^{\prime}$ is a torus link of tyPe $(0, \alpha-1)$ or $(\alpha-1,0)$

on $\partial R$ . By induction, $ l_{0}^{\prime}\sim$ has Property $P^{*}$ . A link $\tilde{l}_{0}$ is a product of the link
$O_{a}$ and a link $\tilde{l}_{0}^{\prime}$ . By Theorem 1, a link $\iota_{0}^{\sim}$ has Property $P^{*}$ . Hence $\Sigma$ is homeo-
morphic to 3-sphere, and $\tilde{l}$ has Property $P^{*}$ . By Proposition 1, a torus link $l$

of type $(p, q)$ has Property $P^{*}$ .
Let $B_{1}^{8},$ $B_{2}^{8},$

$\cdots,$
$B_{n}^{s}$ be mutually disjoint 3-cells in $S^{8}$ and $H_{1}=(D\times I)_{1},$ $H,=$

$(D^{2}\times I)_{2},$
$\cdots,$ $H_{m}=(D^{2}\times I)_{f\hslash}$ be mutually disjoint l-handles of $B_{1}^{8}\cup B_{2}^{8}\cup\cdots\cup B_{n}$ in
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$S^{8}$ satisfying the following condition;
$(^{*})$ For any $i,$ $1\leq i\leq m$ , there are exactly two numbers $p(i),$ $q(i)$ such that

a l-handle $H_{\ell}$ joins $B_{p(\ell)}^{8}$ and $B_{q(\ell)}^{8}$ .
Let $M$ be a 3-manifold obtained by attaching l-handle8 $H_{1},$ $H_{t},$

$\cdots,$ $H_{n}$ to
$B_{1}^{3}\cup B_{2}^{8}\cup\cdots\cup B_{n}^{3}$ in $S^{8}$ ; and for each $3<el1B_{\lambda}^{8},$ $B_{\lambda}^{3}\cap\bigcup_{\ell=1}^{m}H$ are 2-cells on $\partial B_{\lambda}^{8}$ ,
say $C_{\lambda.1},$ $C_{\lambda.2},$

$\cdots,$
$C_{\lambda r(\lambda)}$ .

Let $l_{\lambda}$ be a link in $B_{\lambda}^{8}$ which has arcs $v_{\lambda 1},$ $v_{\lambda 2},$ $\cdots,$ $v_{\lambda.r(\lambda)}$ of $l_{\lambda}$ in $C_{\lambda 1},$ $C_{\lambda 2},$ $\cdots$ ,
$C_{\lambda.r(\lambda)}$ , respectively, the remaining $l_{\lambda}-(v_{\lambda,1}\cup v_{\lambda.2}\cup\cdots\cup v_{\lambda.r(\lambda)})$ lying wholly within
$B_{\lambda}^{3}$ except for $v_{\lambda.1}\cup v_{\lambda.2}\cup\cdots\cup v_{\lambda.r(\lambda)}$ . Let $C_{p}..,$ $C_{q.t}$ be 2-cells $ H_{\ell}\cap(B_{1}^{8}\cup B_{2}^{8}\cup\cdots\cup$

$B_{n}^{3})$ ; and $\beta_{i}$ and $\beta^{\prime}$ be disjoint arcs in $H_{\ell}$ satisfying the following conditions;
(1) an arc $\beta_{\ell}$ joins two points $\partial v_{p}\ldots$

(2) an arc $\beta_{\ell}^{\prime}$ joins two points $\partial v_{q.t}$ .
(3) $v_{p}..\cup\beta_{:}$ and $v_{q.\ell}\cup\beta_{i}^{\prime}$ make together a torus link of type $(2, p_{\ell})$ where $p_{\ell}$

is even positive number for $i=1,2,$ $\cdots,$ $m$ .
We may construct a new link $ l=\bigcup_{\lambda=1}^{n}\{l_{\lambda}-(v_{\lambda.1}\cup v_{\lambda.2}\cup\cdots\cup v_{\lambda.r(\lambda)})\}\cup\bigcup_{i=1}^{m}(\beta_{\ell}\cup$

$\beta^{\prime}.)$ and $l$ is said to be a union of $l_{\lambda}$ winded along $v_{p,\iota}$ and $v_{q,t}$ with the winding
number $p_{i}$ . We will consider the following graph $G$ ;

(a) Take a point corresponding to $a$ 3-cell $B_{\lambda}^{3}$ , say $b_{\lambda},$ $\lambda=1,2,$ $\cdots n$ . Let
$\{b_{\lambda}\}$ be the set of vertices of $G$ .

(b) Take a line corresponding to a l-handle $H_{i}$ , say $a_{i},$ $i=1,2,$ $\cdots,$ $m$ , such

Fig. 17.
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that $a_{\ell}$ joins $b_{p(\ell)}$ and $b_{q(\ell)}$ , where $p(i)$ and $q(i)$ are two numbers for $i$ by a
condition $(^{*})$ above. Let $\{a_{:}\}$ be the set of lines of $G$ , see Fig. 17.

A graph $G$ is said to be a corresponding graph of a union of a link $l$ .
Corollary 4. If every link $l_{\lambda}$ has Property $p*$ for $\lambda=1,2,$ $\cdots,$ $n$ , and the

corresponding graph of a union of a link $l_{\lambda}$ is tree, then a union $l$ of $l_{\lambda}$ is
a link with Property $p*$ .

Proof.. By induction on $n$ , the number of the vertices of $G$ . If $n=1$ , this
consequence is obvious. So we assume that $n\geq 2$ . Suppose Corollary 4 is true
for $n\leq k$ . Then we will prove Corollary 4 for $n=k+1$ .

Since the corresponding graph $G$ is tree, there are a 3-cell $B_{\lambda}^{3}$ and a l-handle
$H_{\ell}$ such that $B_{\lambda}^{s}\cap\bigcup_{:=1}^{m}H_{\ell}=B_{\lambda}^{8}\cap H_{i}$ . By renumbering the $B_{\lambda}^{3}’ s$ , the $H_{1}’ s$ and
$C_{\lambda.\mu}’ s$ , we may assume $i=1,$ $\lambda=p=1,$ $s=1,$ $q=2$ and $t=1$ . Let $D^{8}$ be a 3-cell
such that $D^{8}\cap M=D^{3}\cap(B_{\lambda}^{8}\cup H_{i})=B_{\lambda}^{8}\cup H_{\ell}$ . Then $l$ is a product link $[l_{\iota}\cdot(\{v_{1.1}\cup\beta_{1}\}\cup$

$\{v_{2.1}\cup\beta_{1}\})]\cdot\tilde{l}$ , where $\overline{l}$ is a sublink $l\cap(S^{3}-D^{3})$ of $l$ , see Fig. 18. By induction, $i$

is a link with Property $P^{*}$ .

Fig. 18.

$v_{1.1}\cup\beta_{1}$ and $v_{2.1}\cup\beta_{1}^{\prime}$ make together a torus link in $H_{1}$ , hence, by Theorem 3,
this is a link with Property $P^{*}$ . By assumption, a link $l_{1}$ has Property $P^{*}$.
Hence by Theorem 1, a link $l$ has Property $P^{*}$ .
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