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In this paper, we give a new approach to the definition of a generalised
operational function different from that given in [1]. This approach is quite
similar to the aPproach that has been employed in Theorem of [2]. We then show
that the space of generalised operational functions constructed in this way, is
homeomorphic to the space of generalised operational functions constructed in [1]

and to the space of operator distributions of J. Wloka [7].

We first recall a few definitions that are necessary in the sequel.

Definition 1 [1]. An operational function is a function $f$, which assigns an
operator $f(\theta)$ to each non-negative real number $\theta$ .

Definition 2 [1]. An operational function $f$ is said to be a parametric opera-
tional function if each value $f(\theta)$ is itself an operator of a special kind namely a
function of the real variable, say $t$ .

Definition 3 [1]. An operatIonal function $f$ is called continuous in $ 0\leqq\theta<\infty$ ,
if it can be represented in $[0, \infty$ ) as a ratio $f_{1}(\theta)/a^{\uparrow}$ , of a parametric operational
function $f_{1}(\theta)=\{f_{1}(\theta, t)\}$ and an operator $\alpha$ equal to a continuous function $\{a(t)\}$ ,
$ 0\leqq t<\infty$ , where $a(t)$ is not identically equal to zero, such that the function
$f_{1}(\theta, t)$ is continuous in the domain $D(0\leqq t<\infty, 0\leqq\theta<\infty)$ .

Definition 4 [1]. Two continuous operational functions $f$ and $g$ are said to
be related–in symbols $f\sim g$–where $f(\theta)=\{f_{1}(\theta, t)\}/\{a(t)\}$ and $g(\theta)=\{g_{1}(\theta, t)\}/\{b(t)\}^{t\uparrow}$

if and only if $f(\theta, t)*b(t)=g(\theta, t)*d(t)$ .
This relation $\sim$ can be checked to be an equivalence relation which divides

the class of all continuous operational functions into mutually disjoint classes.
Hereafterwards, a continuous operational function means an equivalence class

of elements of the form $f(\theta, t)/a$ representing the function.

Deflnition 5 [1]. A sequence $f_{n}$ of continuous operational functions is said
to converge to continuous operational function $f$ in symbol $f.\rightarrow f$, if there exist
a sequence of parametric operational functions $f_{n}(\theta, t)$ , a parametric operational

$\uparrow$

$/stands$ for convolution quotient.
tt For the sake of tyPographical conveniences we omit the braces hereafterwards.
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function $f(\theta, t)$ and continuous function $a(t)$ such that $f_{n}(\theta)=f_{n}(\theta, t)/a(t);f(\theta)=$

$f(\theta, t)/a(t)$ and $f_{n}(\theta, t)$ converges almost uniformly to $f(\theta, t)$ ; i.e. conveges uniformly

over every bounded rectangle in the domain $D$ .

Deflnition 6 [1]. A continuous operational function $f$ has the continuous
function $g$ as a derivative if $(\tau_{h}f-f)/h$ tends to $g$ as $h\rightarrow 0$ where $\tau_{h}f(\theta)=f(\theta+h)$ .

It is easy to see that there exists continuous operational functions which are
not differentiable. To meet this situation, we build a new class of entities called
generalised operational functions, which contains the original class of continuous
operational functions as a subclass.

Definition 7 [1]. A continuous operational function $p$ is called a polynomial

operational function of degree less than $k$ , where $p(\theta)=p(\theta, t)/a(t)$ , if $p(\theta, t)=$

$\sum_{f=0}^{k-1}a_{j}(t)\theta^{j}$ where the coefficients $a_{j}(t)$ are continuous functions of the variable $t$ ,

is a polynomial of degree less than $k$ .
Consider all ordered pairs $(f, k)$ where $f$ is a continuous operational function

and $k$ a non-negative integer. We introduce the notation $\int_{k}f(\theta)d\theta$ for the k-th

repeated integral of $f(\theta)$ defined as $\int_{k}f(\theta)d\theta=\int_{0}^{\theta}k$

tlmes
$\int_{0}^{\theta}f(\theta)d\theta$ .

Deflnition 8. $(f, k)\sim(g, l)$ if and only if $\int_{\ell}f(\theta)d\theta-\int_{k}g(\theta)d\theta$ is a polynomial

operational function of degree less than or equal to $k+l$ .
This relation $\sim$ can be easily proved to be an equivalence relation. This

equivalence relation divides the class of all ordered pairs $(f, k)$ into mutually

disjoint classes.

Definition 9. A generalised operational function is an equivalence class of

ordered pairs $(f, k)$ .
For sake of convenienoe we denote a generalised operational function by $(f, k)$

itself.

Remark 1. Every continuous operational function $f$ can be viewed as a
generalised operational function $(f, 0)$ .

Definition 10. $(f, k)+(g, k)=(f+g, k),$ $(f, k)+(g, m)=(\int_{n}f+\int_{k}g,$ $k+m)$ ,

$a(f,k)=(\alpha f, k)$ where $\alpha$ is an operator of Mikusinski. $(f, k)\cdot(g, m)=(f*g, k+m)$

where $(f*g)(\theta)=f(\theta, t)*g(\theta, t)/(a(t)*b(t))$ .
Deflnition 11. By the translation $\tau_{h}(f, k)$ of a generalised operational function

$(f, k)$ , we mean the generalised operational function $(\tau_{h}f, k)$ where $\tau_{h}f(\theta)=f(\theta+h)$ .
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Deflnition 12. A sequence $(f_{n}, k_{n})$ of generalised operational functions converges
to a generalised operational function $(f, k)$ and we write $(f_{n}, k_{n})\rightarrow(f, k)$ , if and
only if $(f_{n}, k_{n})\sim(F_{n}, m),$ $(f, k)\sim(F, m)$ and $F_{n}$ converges to $F$ (in the sense of
Definition 5.)

(1) This convergences in the class of all generalised operational functions
is Hausdorff. In other words, if $(f_{n}, k_{n})\rightarrow(f, k)$ and $(f_{n}, k_{n})\rightarrow(g, m)$ , then $(f, k)\sim$

$(g, m)$ . For, given $(f_{n}, k_{n})\sim(F_{n}, r),$ $(f, k)\sim(F, r)$ and $F_{n}\rightarrow F$; also, $(f_{n}, k_{n})\sim$

$(G_{n}, s),$ $(g, m)\sim(G, s)$ and $G_{n}\rightarrow G$ . Therefore, $(F_{n}, r)\sim(G_{n}, s)$ I.e. $\int_{\iota}F_{n}-\int_{r}G_{n}$ is a
polynomial operational function of degree less than or equal to $s+r$ . Since a
sequence of polynomials $\sum_{j=0}^{k-1}a_{nj}(t)\theta^{j}$ of degree less than a positive integer $k$ , conver-
ges almost uniformly to a Polynomial $\sum_{j=0}^{k-1}a_{j}(t)\theta^{j}$ of degree less than $k$ if and only
if the sequence $\{a_{nj}(t)\}$ of continuous functions, converges almost uniformly to the
continuous function $a_{j}(t)$ , it follows that $\int_{\epsilon}F-I_{r}^{G}$ is a polynomial operatIonal

function of degree less than or equal to $s+r$ . So we have $(F, r)\sim(G, s)$ and thus
$(f_{1}k)\sim(g, m)$ .

(2) Also, this notion of convergenoe is compatible with the other basic
operations available in the class of generalised operational functions. In other
words, if $(f_{n}, k_{n})\rightarrow(f, k),$ $(g_{n}, m_{n})\rightarrow(g, m)$ then

(i) $(f_{n}, k_{n})\pm(g_{n}, m_{n})\rightarrow(f, k)\pm(g, m)$

(ii) $\alpha_{n}(f_{n}, k_{n})\rightarrow\alpha(f, k)$ where the sequence $(\alpha_{n})$ of operators of Mikusinkski
converges to $\alpha$ in the operational sense [4].

$(iII)$ $(f_{n}, k_{n})\cdot(g_{n}, m_{n})\rightarrow(f, k)\cdot(g, m)$ .
(3) A sequence of continuous operational functions which is convergent in

the sense of Definition 5, also converges in the generalised sense [Definition 12].

Theorem 1. If $(f, k)$ is generalised operational function, then

$(f, k)=(f, k+1)=Lt\frac{\tau_{h}(f,k)-(f,k)}{h}h\rightarrow 0$

exists.

Proof.

$h\rightarrow 0h\rightarrow 0Lt\frac{\tau_{h}(f,k)-(f,k)}{h}=Lt\frac{(\tau_{h}F,k+1)-(F,k+1)}{h}$

where

$F=\int f=Lt(\frac{\tau_{h}F-F}{h},$ $k+1)$
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and this limit exists and is equal to $(f, k+1)$ .
We immediately have the following properties:
(i) $((f, k)+(g, m))^{\prime}=(f, k)^{\prime}+(g, m)^{\prime}$

(ii) $a(f, k)^{\prime}=(\alpha f, k)^{\prime}$ where $\alpha$ is an operator.
(iii) $((f, k)\cdot(g, m))^{\prime}=((f\cdot g)^{\prime}, k+m)=(f\cdot g, k+m+1)$

Remark 2. If a continuous operational function has a continuous m-th de-
rivative, then it coincides with its m-th derivative in the generalised sense.

Definition 13 [2]. A $CD$ space $X$ is a topologioal translation vector space in
which every element has a derivative and whenever a sequence converges, its
derived sequence also converges.

Theorem 2. Let $C$ be the space of all continuous operational functions.
There exists an unique (upto isomorphism) space $\overline{C}$ which is a $CD$ space such
that there exists $a$ 1-1 continuous linear differential mapping $t_{1}$ of $C$ onto a
dense subspace $C_{1}$ of $\overline{C}$ and further that if $\Sigma$ is any other $CD$ space with a
dense subspace $\Sigma_{1}$ onto which $C$ can be mapped in $a$ 1-1 continuous linear

differential way by a map $t_{2}$ , then there exists $a$ 1-1 continuous linear diffe-
rential map $t_{3}$ of $\overline{C}$ onto $\Sigma$ such that $t_{3}\cdot t_{1}=t_{2}$ .

The proof follows immediately for we may note that the scheme we have
worked out in such an elaborate detail can be side-tackled by appeal to the
process of embedding a primitive space into a $CD$ space as in [2].

Theorem 3. The class of generalised operational functions defined in [1]

is linearly homeomorphic to the class of generalised operational functions
defined here.

Proof. Let $f$ be a generalised operational function which is an equivalent

class of fundamental sequences of continuous operational functions. $(i. e)f=[f_{n}]$

where $(f_{n})$ is a fundamental sequence of continuous operational functions. Hence,

there exists a non-negative integer $k$ , and a sequence $(F_{n})$ and $F$ of continuous
operational functions such that, $f_{n}=F_{n}^{(k)}$ and $F_{n}\rightarrow F$ (in the sense of Definition 5).

Correspond to $f$, the generalised operational function $(F, k)$ . To this $F$, there
exists a sequence of polynomial operational functions $p_{n}$ such that $p_{n}\rightarrow F$. Cor-
respond to $(F, k)$ , the generalised operational function defined by the fundamental
sequence $P_{n}$ where $P_{n}=p_{n}^{(k)}$ . It is easy to verify that the fundamental sequence
$P_{n}$ is equivalent to the fundamental sequence $f_{n}$ . This correspondence is 1-1 and
onto. Also it is linear and continuous.
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J. Wloka [7] has defined operator distributions starting from the class of
continuous functions of two variables in the positive plane. J. Mikusinski raised
the question whether the class of operator distributions defined by J. Wloka is
the same as the one developed here. Here we answer this question in the affirma-
tive, by proving

Theorem 4. The space of generalised operational functions is linearly
homeomorphic to the space of operator distributions of Wloka.

Proof. Since an operator distribution is an equivalent class of elements of
form $f(\theta, t)/a(t)$ where $f(\theta, t)$ is the k-th distributional derivative in the Schwartz
sense [6] of a continuous function $F(\theta, t)$ in $0\leq\theta<\infty,$ $ 0\leq t<\infty$ and $a(t)$ is a con-
tinuous function in $ 0\leq t<\infty$ , the proof follows immediately from the theorem [3]
that there exists a 1-1 bicontinuous linear differential map from the space of $\Sigma$ of
Mikusinski-Sikorski distributions [5] onto the space $D^{\prime}$ of Schwartz distributions.
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