FIXED POINTS FOR U+C WHERE U IS LIPSCHITZ AND C IS COMPACT

By

BRUCE CALVERT

(Received December 21, 1974)

The aim of this note is to give an extension of some results of Nashed and Wong [3] and Ishikawa and Fujita [1], by permitting nonlinearity. These authors considered mappings U+C where U was linear and C a compact map. The former let some power U^p be a contraction, while the latter let U^p be a k-set-contraction, k<1. A result in which I-U has been replaced by a Fredholm operator has been given by Mawhin [2].

I am grateful to Professor Nashed, who pointed out to me that we want to let U be nonlinear.

Two simple fixed point theorems are given here, one following [1] and the other [3], together with an application as in [3].

Lemma 1: Let X be a Banach space. Let $A: X \to X$ be Lipschitz. For $f \in X$, let $A_f: X \to X$ be defined by $A_f x = Ax + f$. Suppose there exists a positive integer N and a real number $\alpha < 1$ such that for all f in X, $(A_f)^N$ has Lipschitz norm $\leq \alpha$. Then I - A is bijective, and $(I - A)^{-1}$ has Lipschitz norm $\leq (1 - \alpha)^{-1}(1 + \cdots + ||A||^{N-1})$, where ||A|| is the Lipschitz norm of A.

Proof: Given $f \in X$, to solve (I-A)x=f we want a unique fixed point of A_f . A unique fixed point of $(A_f)^N$ exists by the contraction mapping principle. By uniqueness, this is a fixed point of A_f .

Let x-Ax=f and y-Ay=g. Put $K=(1-\alpha)^{-1}(1+\cdots+||A||^{N-1})$. We want to show $||x-y|| \le K||f-g||$. Define $B: X\to X$ by Bz=A(z+x)+f-x. Then B0=0 and the two equations above may be written 0-B0=0 and (y-x)-B(y-x)=g-f. Now B has Lipschitz norm ||A||, and $(B_h)^N$ has Lipschitz norm $\le \alpha$ for all $h \in X$. That is, we could have assumed A0=0 and f=0. Since $B_{g-f}(0)=g-f$ and B_{g-f} has Lipschitz norm ||A||,

$$\begin{aligned} ||(B_{g-f})^{N}(0)|| &\leq ||0 - B_{g-f}(0)|| + \sum_{i=1}^{N-1} ||(B_{g-f})^{i}(0) - (B_{g-f})^{i+1}(0)|| \\ &\leq ||g - f||(1 + ||A|| + \dots + ||A||^{N-1}). \end{aligned}$$

Because $(B_{g-f})^N$ has Lipschitz constant $\leq \alpha$, for z in X, $||(B_{g-f})^N z|| \leq \alpha ||z|| + ||g-f||(1+\cdots+||A||^{N-1})$.

The right hand side is <||z|| if ||z||>K||g-f||. Hence, the fixed point of $(B_{g-f})^N$ has $\text{norm} \le K||g-f||$. That is, $||y-x|| \le K||g-f||$. q.e.d.

Theorem 1: Let A satisfy the hypotheses of Lemma 1. Let B be a bounded nonempty closed convex subset of X. Let C: $B \rightarrow X$ be compact. That is, C is continuous and takes bounded sets to relatively compact sets. If $(I-A)^{-1}C(B) \subseteq B$ then A+C has a fixed point in B.

Proof: By Lemma 1, $(I-A)^{-1}C$ is continuous. By the Schauder fixed point theorem it has a fixed point.

Corollary 1; Let A and B be as in Theorem 1. Let $C: B \rightarrow X$ be compact. If $Ax+Cy \in B$ for all x in B and y in B then A+C has a fixed point in B.

Proof: For $y \in B$, A_{cy} takes B to B. Hence, $(A_{cy})^N$, and also A_{cy} , have a unique fixed point in B. Thus, $(I-A)^{-1}C(B)\subseteq B$.

Corollary 2: Let A be as in Theorem 1. Let $C: X \to X$ be compact. If $\limsup_{\|x\| \to \infty} ||x||^{-1} ||Cx|| < (1-\alpha)(1+||A||+\cdots+||A||^{N-1})^{-1}$ then R(I-A-C)=X.

Lemma 2: Let Y be a Banach space, and let [a, b] be bounded interval in **R**. Let $F: [a, b] \times [a, b] \times Y \to Y$ be a function such that for $y \in Y$, the function $(t, s) \to F(t, s, y)$ is strongly measurable. Suppose F(t, s, 0) is in $L^2([a, b] \times [a, b]; Y)$.

Let $V: [a, b] \times [a, b] \rightarrow \mathbb{R}$ be measurable and let $\sup_{a \le t \le b} \int_a^t |V(t, s)|^2 ds = M^2 < \infty$. Suppose that for t and s a.e. in [a, b] and x and y in Y,

$$||F(t, s, x) - F(t, s, y)|| \le V(t, s)||x - y||$$
.

Then we may define $A: L^2([a,b]; Y) \rightarrow L^2([a,b)]; Y)$ by

$$Ax(t) = \int_a^t F(t, s, x(s)) ds.$$

Given n elements $g(i)(1 \le i \le n)$ in $L^2([a,b]; Y)$, the map $\prod_{i=1}^n A_{g(i)}$ has Lipschitz norm $M^n((b-a)^n/n!)^{1/2}$. In particular, given $\beta \in (0,1)$, there exists N such that for any N-tuple g(i) $(1 \le i \le N)$, $\prod_{i=1}^n A_{g(i)}$ has Lipschitz norm $\le \beta$.

Proof: Given x in $L^2([a, b]; Y)$, $||F(t, s, x(s))| \le V(t, s) ||x(s)|| + ||F(t, s, 0)||$. Hence, Ax is in $L^2([a, b]; Y)$. The proof about the Lipschitz norm of $\prod_{i=1}^n A_{g(i)}$ is by induction.

Theorem 2: Let A be as in Lemma 2. Suppose $K \in L^2([a,b] \times [a,b]; \mathbb{R})$. Suppose $g: [a,b] \times Y \to Y$ has the property that g(s,u) is strongly measurable in s for u in Y and for s a.e. it is continuous in u. Suppose for s a.e. in [a,b]

and u in Y.

$$||g(s, u)|| \leq \sum g_i(s) ||u||^{1-\beta(i)} + g_0(s)$$

where $g_0 \in L^2([a, b]; \mathbf{R})$ and $g_i \in L^{2/\beta(i)}$, where $0 < \beta(i) < 1$, for $1 \le i \le n$. Define $C: L^2([a, b]; Y) \to L^2([a, b]; Y)$ by

$$Cx(t) = \int_a^b K(s, t)g(s, x(s))ds$$
.

Then I-A-C is surjective.

Proof: C=HG where $Hx(t)=\int_a^b K(s,t)x(s)ds$ and Gx(s)=g(s,x(s)). H is compact, giving C compact. By Lemma 2, A satisfies the conditions of Lemma 1. Since $||Gx||/||x|| \to 0$ as $||x|| \to \infty$,

$$\lim_{\|x\|\to\infty} ||Cx||/||x|| < (1-\alpha)(1+\cdots+||A||^{N-1})^{-1}.$$

The result follows by Corollary 2.

q.e.d.

We recall [4] that if (Y, d) is a bounded metric space, then the measure of noncompactness $\gamma(Y)$ equals inf $\{d>0$: there exists a finite number of sets $S_1\cdots S_n$ such that $Y=\bigcup_{i=1}^n S_i$ and diameter $(S_i)\leq d\}$. If Y_1 and Y_2 are metric spaces and $f\colon Y_1\to Y_2$ is continuous, f is called a k-set-contraction if for every bounded subset S of Y, f(S) is bounded and $\gamma_2 f(S)\leq k\gamma_1(S)$.

Lemma 3: Let $A: X \to X$ be a Lipschitz mapping of a Banach space. Suppose $\alpha < 1$ and N a positive integer, and for all $g(1) \cdots g(N)$ in X, $\prod_{i=1}^{N} A_{g(i)}$ has Lipschitz norm $\leq \alpha$. Let $C: X \to X$ be compact. Then $(A+C)^N$ is an α -set-contraction.

Proof: Let S be bounded. Take R with $(A+C)^i(S) \subseteq B_R(0)$ for $1 \le i \le N$. Given $\varepsilon > 0$, let N_{ε} be a finite ε net for $C(B_R(0))$. We claim that for x in S, and each positive integer $n \le N$, there is an n-tuple $z(i)(1 \le i \le n)$ of elements of N_{ε} such that

$$||(A+C)^nx-\prod A_{z(i)}(x)||<\varepsilon(1+||A||\cdots+||A||^{n-1})$$
.

The proof is by induction. It follows that $(A+C)^N(S)$ is contained in an $\varepsilon(1+\cdots+||A||^{N-1})$ neighborhood of $\bigcup \{\prod_{i=1}^N A_{z(i)}(S) \colon z(i) \ (1\leq i\leq N) \ \text{an N-tuple of elements of N_s}\}$.

Since $\gamma \cup \prod_{i=1}^{N} A_{z(i)}(S) \le \alpha \gamma(S)$, we have $\gamma(A+C)^{N}(S) \le \alpha \gamma(S) + 2\varepsilon(1+\cdots+||A||^{N-1})$. The result follows because $\varepsilon > 0$ was arbitrary. q.e.d. **Theorem 3:** Let B be a closed bounded convex subset of a Banach space X, having nonempty interior. Suppose A: $X \rightarrow X$ is C^1 and satisfies the conditions of Lemma 3. Let $C: X \rightarrow X$ be compact and C^1 . Let the closure of (A+C)B be contained in the interior of B.

Then A+C has a fixed point in B.

Proof: by [4, Corollary 10] we need only show $(A+C)^N$ is a k-set-contraction, k<1, for some N. This holds by Lemma 3. q.e.d.

BIBLIOGRAPHY

- [1] S. Ishikawa and H. Fujita: Some variants of a strict-set-contraction, Yokohama Math. J. 21 (1973), 83-87.
- [2] J. Mawhin: The solvability of some operator equations with a quasibounded nonlinearity in normed spaces, J. Math. Anal. and Appl. 45 (1974), 455-467.
- [3] M. Z. Nashed and J. S. W. Wong: J. Math. and Mech. 18 (1969), 767-777.
- [4] R. D. Nussbaum: Some asymptotic fixed point theorems, Trans. Amer. Math. Soc. 171 (1972), 349-375.

University of Auckland, Auckland, New Zealand