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Abstract: We prove some results on hypocontinuous multiplication in
weakly topologized algebras and give their applications in function spaces.

Let $E$ be a complex (or real) algebra, $E^{\prime}$ be a $total\backslash $ subspace of the algebraic

dual $E^{*}$ of $E$ and $w(E, E^{\prime})$ be the weak topology defined on $E$ by $E^{\prime}$ . An
algebra with a locally convex linear Hausdorff topology, for which multiplication

is separately continuous, will be called a locally convex algebra. Multiplication

in a locally convex algebra is said to be hypocontinuous if given a neighbour-

hood $U$ of $0$ and a bounded subset $B$ there exists a $neighbourhdV$ of $0$ satis-
fying $(VB)\cup(BV)\subset U$. A locally convex algebra is said to have jointly con-
tinuous multiplication (or to be a topological algebra ([9], [101) if given a
neighbourhood $U$ of $0$ there exists a neighbourhood $V$ of $0$ satisfying $V^{t}=VV\subset U$.
A locally multiplicatively-convex (locally m-convex, in short) algebra is a locally

convex algebra with a base of neighbourhoods $U$ of $0$ satisfying $U^{2}\subset U$ ([21, [61).

By a locally convex self-adjoint algebra we mean a loeally convex algebra with

an involution $*$ which satisfies $f(x^{*})=\overline{f(x)}$ for all $x$ in $E$ and for all continuous

nonzero multiplicative linear functionals $f$ on $E(\overline{\alpha}$ denotes the complex conjugate

of $\alpha$). A real locally convex algebra is self-adjoint if we take $x^{*}=x$ for all $x$ .
Following [5], we call a locally convex topological vector space boundedly

generated (in short, BG) if it is the closed linear hull of a bounded subset of

itself. Let $N$ denote the set of natural numbers.
Warner ([10), Theorem 2) has proved that if $E$ be a commutative, semi-simple

Banach algebra over the complex numbers, then $(E, w(E, E^{\prime}))$ is a topological

algebra if and only if $E$ is finite dimensional. It has been proved in ([31,

Theorem (3.2)) that if $E$ is a BG space then $(E, w(E, E^{\prime}))$ has hypoeontinuous

multiplication if and only if it has jointly continuous multiplication. Combining

these two results we have
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Theorem 1. Let $E$ be a commutative, semi-simple, self-adjoint Banach
algebra over the complex numbers. Then $(E, w(E, E^{\prime}))$ has hypocontinuous
multiplication if and only if it is finite dimensional.

In fact, we have more general results.

Theorem 2. Let $E$ be a self-adioint locally convex algebra such that its
strong dual $E_{b}^{\prime}$ is sequentially complete. Let $M(E)$ be the set of continuous
non-zero multiplicative linear functionals on $E$.

If (i) $E$ is a $BG$ space, and
(ii) there exists an infinite subset $\{f_{n}:n\in N\}$ of $M(E)$ and scalars $\alpha_{n}>0$

such that $\{\alpha_{n}f_{n}:n\in N\}$ is a bounded subset of $E_{b}^{\prime}$ ;
then $(E, w(E, E^{\prime}))$ does not have hypocontinuous multiplication.

Proof. Suppose that $(E, w(E, E^{\prime}))$ has hypocontInuous multiplIcation. Be-
cause (i) is satisfied, Theorem (3.2) in [3] gives that $(E, w(E, E^{\prime}))$ has $ioIntly$ con-
tinuous multiplication. Since $E$ is self-adjoint and (ii) is satisfied, the proof of
Theorem 2 in [10] can be modified to give that $E$ is finite dimensional. But $E^{\prime}$

contains an infinite linearly independent set $\{f_{n}:n\in N\}$ . This contradiction com-
pletes the proof.

Example 1. Let $T$ be a completely regular Hausdorff space and $E$ be the
locally m-convex algebra $C(T)$ of real continuous functions on $T$ with pointwise
algebraic operations equipped with the topology of uniform convergence on com-
pact subsets of $T$. Then $M(E)$ can be identified with $\Phi=\{\hat{t}:t\in T\}$ , where $\hat{t}(x)=$

$x(t)$ for all $x$ in $E$ .
Suppose that $T$ is a non-discrete locally compact Hausdorff space which is

such that for every closed non-compact subset $S$ of $T$, there exists a real lower
semicontinuous function on $T$ which is bounded on every compact subset of $T$

but is unbounded on $S$ ([111, Theorem 8). For instance, $T$ can be a non-discrete
locally compact Hausdorff space which is either a $Q$-space or is such that for
every closed non-compact subset $S$ of $T$, there exists a real continuous function
on $T$ that is unbounded on $S$ (so that $E$ is either bornological or barrelled) ([7],
[8]). Examples of such spaces include any infinite compact Hausdorff space and
any non-discrete closed subspace of a finite product of reals. Then by Theorem
8 in [11], $E$ is infrabarrelled and therefore, by ([4], 8.4.13) $E_{b}^{\prime}$ is quasi-complete
and hence sequentially complete. $E^{\prime}$ can be identified with the space $M_{\iota}(T)$ of
real Radon measures with compact support ([41, 4.10.1). Because $T$ is non-dis-
crete, there exists a $t$ in $T$ such that $\{t\}$ is not open. $T$ is locally compact and
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therefore, $t$ has a compact neighbourhood $K$. If $K$ were finite, $\{t\}=K\cap(\cap\{T\backslash \{s\}$ :
$s\in K\backslash \{t\})$ would be open, which is not so. Thus $T$ has an infinite compact set $K$.
kc $M(E)$ is an infinite bounded subset of $E_{b}^{\prime}$ and thus (ii) in Theorem 2 is
satisfied. The set $B=\{x\in E:|x(t)|\leq 1, t\in T\}$ is a bounded subset of $E$ and because
$T$ is locally compact, its closed linear hull coincides with $E$. Hence $E$ is a BG
space and thus (i) is satisfied. An application of the above theorem now gives
that $(C(T), w(C(T), M_{\epsilon}(T)))$ does not have hypocontinuous multiplication.

On the other hand if $T$ be such that every compact set is finite, then by
Theorem 9 in [11], $E$ has the weak topology and therefore, $(C(T), w(C(T), (C(T))^{\prime}))$

is locally m-convex. A discrete space is trivially such a space. We give another
example. Let $T$ be an uncountable set and $t$ a fixed element of $T$ . A subset
$A$ of $T$ is open if either $t\not\in A$ or $t\in A$ and $T\backslash A$ is countable. If $S$ be a non-
compact closed subset of $T$ then $S$ is infinite and we can find a real continuous
function on $T$ that is unbounded on $S$. So $E$ is barrelled ([7], [8]) and by ([4],
8.4.13) $E_{b}^{\prime}$ is quasi-complete and therefore, sequentially complete. The set $B=$

$\{x\in E:|x(t)|\leq 1, t\in T\}$ is bounded and its linear hull is dense in $E$ and $E$ is thus
a BG space. An application of the above theorem then gives that for no infinite
subset $\{t_{n};n\in N\}$ of $T$ and scalars $\alpha_{n}>0$ the set $\{a.t.:neN\}$ is a bounded subset
of $E_{b}^{\prime}$ .

Example 2. This example shows that condition (ii) in the above theorem is
not necessary for the conclusion to be true. Let $E$ be the algebra $L^{\omega}$ of (equiv-

alence classes of) complex or real functions $x$ on the interval $[0,1]$ such that $x^{p}$

is Lebesgue integrable for each natural number $p$ with the topology given by

norms $\{|| ||_{p}:p\in N\}$ defined by $||x||_{p}=(\int_{0}^{1}|x|^{p})^{1/p}$ Then $E$ is a metrizable loeal-

ly convex algebra which has jointly continuous multiplication and has no abso-
lutely convex closed neighbourhood $U\neq E$ of $0$ for which $U^{2}\subset U[1]$ . Because
the polar of an $f$ in $M(E)$ must be such a $neighbourhd$ of $0$ we have that
$M(E)$ is empty. So (ii) is not satisfied. Since $E$ is bornological, by ([4], 8.4.13)
$E_{b}^{\prime}$ is complete.

Let $L^{\infty}$ be the subspace of essentially bounded functions and for $x\in L^{\infty}$ let
$||x||_{\infty}$ denote the essential upper bound of $|x|$ . Then $B=\{x\in L^{\infty}:||x||_{\infty}\leq 1\}$ is a
bounded subset of $E$ and its linear hull $L^{\infty}$ is dense in $E$. So $E$ is a BG space.

We claim that $(E, w(E, E^{\prime}))$ does not have hypocontinuous multiplication.
Suppose it does. Then by Corollary (8.3) in [3], it is locally m-convex. If $f$ be
defined by $f(x)=\int_{0}^{1}x$ for $x$ in $E$ then $f\in E^{\prime}$ . So by ([10], Theorem 1), the kernel

$K(f)$ of $f$ contains a closed ideal $L$ of finite codimension in $E$. Let $x\in L$ .
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Then $x^{*}\in E$, where $x^{*}(t)=\overline{x(t)}$ for $t\in[0,1]$ . So $xx^{*}\in L\subset K(f)$ . Therefore, $0=$

$f(xx^{*})=\int_{0}^{1}|x|^{2}$ , which implies that $x=0$ . Hence $L=\{0\}$ , but $E$ is infinite dimen-

sional and $L$ has finite codimension in $E$ . Hence our claim is valid.

Example 3. Condition (ii) cannot, however, be left out altogether as can be
seen from the second part of Example 1. We give another example to show
the same. Let $E$ be the algebra of all complex or real polynomials in one in-
determinant without the constant term. $E$ has a ba8e $\{e_{n}:n\in N\}$ with multiplica-
tion table $e_{n}e_{u\iota}=e_{n+m}[9]$ . Let $A$ be a countable bounded subset of reals and let
$a$ be any number bigger than or equal to 1 such that $|\lambda|\leq\alpha$ for all $\lambda eA$ . For
$\lambda\in A$ let $f_{\lambda}$ be the linear functional on $E$ given by $f_{\lambda}(e_{n})=\lambda^{n}$ for all $n\in N$. Also
for each neN let $g_{n}$ be the linear functional on $E$ given by $g_{n}(e_{n})=1$ if $n=m$

and $0$ otherwise. Let $E^{\prime}$ be the linear hull of $\{f_{\lambda};\lambda\in A\}\cup\{g_{n}:n\in N\}$ . Let $E$

have the topology $w(E, E^{\prime})$ . By Proposition 3 in [9] $E$ is a metrizable locally

m-convex algebra and therefore, has hypocontinuous multiplication. Also $M(E)=$

$\{f_{\lambda}:0\neq\lambda\in A\}$ and $E$ is semi-simple if and only if $A$ is infinite. For $x=\sum_{j=1}a_{j}e_{j}\in E$,

let $x^{*}=\sum_{j=1}^{n}\overline{\alpha}_{j}e_{j}$ . Because each $\lambda\in A$ is real, $f_{\lambda}(x^{*})=\overline{f_{\lambda}(x)}$ and therefore, $E$ is self-
adjoint. $E$ is bornological and so by ([41, 8.4.13) $E_{b}^{\prime}$ is complete. The set $B=$

$\{x=\sum_{j=1}^{\cdot}\alpha_{j}e_{j}\in E:\sum_{j=1}^{n}|a_{j}|\alpha^{j}\leq 1\}$ is bounded in $E$ and its linear hull is $E$ . So $E$ is a
BG space. From Theorem 2 we conclude that there exists no infinite subset
$\{\lambda_{n}:n\in N\}$ of $A$ and scalars $a_{n}>0$ such that $\{\alpha_{n}f_{\lambda_{\hslash}}:n\in N\}$ is a bounded subset
of $E_{b}^{\prime}$ .

Example 4. Let $E$ be the algebra $\varphi$ of complex or real sequences with only
a finite number of non-zero elements and $E^{\prime}$ be the space $\omega$ of all complex or
real sequence8 ([31, Example (3.7)). Then $M(E)=\{e^{(n)}: n\in N\}$ where $e_{m}^{(n)}=1$ if
$n=m$ and $0$ otherwise. For $x\in E$ let $x^{*}\in E$ be given by $x_{n}^{*}=\overline{x}_{*}$ for all $n\in N$.
Then $E=(E, w(E, E^{\prime}))$ is a self-adjoint locally convex algebra and has hypocon-
tinuous multiplication. Its strong dual $E_{b}^{\prime}$ is the space $\omega$ with the topology of
pointwise convergence which is a complete metrizable space. Also $\{e^{(n)}: n\in N\}$

is an infinite subset of $M(E)$ that is bounded in $E_{b}^{\prime}$ . But $E$ is not a BG space.
Hence $E$ satisfies all conditions except (i) in the theorem and the conclusion of
the theorem is not valid. This show8 that (i) is not insignificant.

All bounded subsets of $E$ are finite dimensional and therefore, all self-adjoint
BG subalgebras of $E$ are finite dimensional. This motivates our next result.

Theorem 3. Let $E,$ $E_{b}^{\prime}$ and $M(E)$ be as in Theorem 2.
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If (i) $E$ is semi-simple,
(ii) for any sequence $\{f_{n}:n\in N\}$ of distinct elements of $M(E)$ there exists

a subsequence $\{g_{n}:n\in N\}$ and positive numbers $a_{n}>0$ such that $\{a.g.:n\in N\}$ is
a bounded subset of $E_{b}^{\prime}$ , and

(iii) $(E, w(E, E^{\prime}))$ has hypocontinuous multiplication;

then all self-adjoint $BG$ subalgebras of $E$ are finite dimensional.

Proof. Let $F$ be a self-adjoint BG subalgebra of $E$ . Let $F^{0}$ be the polar

of $F$ in $E^{\prime}$ and let $F^{\prime}$ be the quotient $E^{\prime}/F^{0}$ of $E^{\prime}$ by $F^{0}$ . For $feE^{\prime}$ , let $\overline{f}$ be
the corresponding element of $E^{\prime}/F^{0}$ . We can idenitify $\overline{f}$ with the restriction of
$f$ to $F$. Then by Proposition 8.1.2 [4] $w(F, F^{\prime})$ is the restriction of $w(E, E^{\prime})$ to
$F$ and thus $(F, w(F, F^{\prime}))$ has hypocontinuous multiplication. By Corollary (8.3)

in [3] it is a locally m-convex algebra. Suppose $F$ is infinite dimensional. Since
$E$ is semi-simple, $\{0\}=\cap\{\overline{f}^{-1}\{0\}:\overline{f}\in M(E)/F^{0}\}$ . So $M(E)/F^{0}$ is infinite. Let
$\{\overline{f_{n}}:n\in N\}$ be an infinite subset of $M(E)/F^{0}$ . For each $neN$, choose $f_{n}\in M(E)$

such that $\overline{f}_{n}$ corresponds to $f_{n}$ . Then $\{f_{n}:neN\}$ is a sequence of distinct ele-

ments in $M(E)$ and by (ii) we have a subsequence $\{g_{n}:n\in N\}$ and scalars $a_{n}>0$

such that $\{a_{n}g_{n}:neN\}$ is a bounded subset of $E_{b}^{\prime}$ . Then $\{\sum_{k=1}^{n}2^{-k}a_{k}g_{k}\}_{neN}$ is a

Cauchy sequence in $E_{b}^{\prime}$ and because $E_{b}^{\prime}$ is sequentially complete, $g=\sum_{k=1}^{\infty}2^{-k}\alpha_{k}g_{k}$

exists as an element of $E_{b}^{\prime}$ . Then $\overline{g}\in F^{\prime}$ . Since $(F, w(F, F^{\prime}))$ is locally m-convex,

by Theorem 1 [91, we have a closed ideal $L$ of finite codimension in $F$ contained

in the kernel $K(\overline{g})$ of $\overline{g}$ . As argued in the proof of Theorem 2 in [101 we obtain

that the dual $(F/L)^{\prime}$ of $F/L$ is infinite dimensional. But $F/L$ is finite dimen-

sional and so is $(F/L)^{\prime}$ . This contradiction shows that $F$ itself must be finite

dimensional.
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