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0. Summary. Let {x;,, —c0<j<o} be a strictly stationary sequence of
random variables satisfying some mixing condition with mixing coefficient ¢(n)
or a(n). Let F.(t) be the empirical distribution function of x,---,®, and Y.(, )
=nV¥F,(t, 0)—F(t)). In [1], Billingsley proved the weak convergence theorem on
{Y,} under the condition Zn?¢'/%(n)<co. (cf. Theorem 22.1 in [1]). Recently, in
[6], Sen proved the result under the condition Ingt’?(n)<oco and in [6] Yokoyama
proved it under the condition Snaf(n)<oo(0<p<1/2). In this note, we shall show
that Billingsley’s theorem remains true under a less restrictive condition a(n)=
O(n—2"% (8>0). A theorem corresponding to Theorem 22.2 in [1] is also proved
(Section 4).

1. The main result. Let {x,, —oc0<j< o} be a strictly stationary sequence
of random variables defined on a probability space (2,93, P). Suppose that the
process satisfies one of the following conditions:
for all Be M., with probability one

(1) | P(B|ME:.)—P(B)|=¢(n) | 0 (n—>c0)
(the ¢-mixing condition) and
(2) sup |P(AN B)—P(A)P(B)|=a(n) | 0 (n—)
(the strong mixing (s.m.) condition). Here the supremum is taken over all A € M=,
and Be M., M2 denotes the o-algebra generated by events of the form
{(sy,- -+, sp) € B}

where a<1,<4,<---<%,<b and E is a k-dimensional Borel set. The difference
between the s.m. and ¢-mixing conditions is explained in [4].
Let

1 if u=0

3 =
(3) o) 0 if u<0.
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Suppose that x; has a continuous distribution function F(u). Put a2¥*=F(x;) for
any ¢ and define the empirical distribution function by

(4) Fy(t)=n"* 3 olt—a¥) , 0st<1.

In [1], Billingsley proved that if {x} is a strictly stationary ¢-mixing sequence
of random variables, then the sequence {Y,} of random elements in D[0, 1] defined

by
(5) Yit)y=n'*{F,(t)—t}, 0=t=1
converges weakly to a Gaussian random function under the condition Sn2¢!/2(n)<
(cf. Theorem 22.1 in [1]). In [5], Sen proved the same result under the condition
Ingt’*(n)<co. On the other hand, in [6], Yokoyama showed that the theorem
holds under the condition Jnaf(n) <o (0<B<1/2), which is extensions of Billingsley’s
and Deo’s results. The following theorem is a generalization of the results which
are obtained by Billingsley, Sen, Deo and Yokoyama, respectively.

We use the same notations and definitions in [1I]. Let

(6) . gla)=ct—a¥)—t, 0=t<1l, ¢=0.

Theorem 1. Suppose that {x;} 18 a strictly stationary s.m. sequence of
random variables with mixing coefficient a(n) and suppose x, has a continuous
distribution function F on [0,1]. If a(n)=0(n"%-% for some 6>0, then

2
(7) Y,—»Y
where Y, is defined by (5) and Y is the Gaussian random function specified

by
(8) EY({t)=0

and

EY(s)Y(t)=Eg,(x3)g.(x%)

9 o o0
) + kZ=Jl Eg(x¥)g.(x)+ k)_]__lEy.(xi“)q.(wB") .

These series converge absolutely and P(Ye C)=1. (cf. Theorem 22.1 in [1],
Theorem 8.1 in [5], Theorem in [7].)

2. A lemma. In this section, we assume that {2z} is a strictly stationary
sequence of Bernoullian variables, centered at expectation, satisfying the s.m.
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condition with mixing coefficient a(n). Put Ezi=z. Then Elz,|=2r.
We shall use the following

Lemma (Davydov). Let the process {x,} satisfy the s.m. condition, and let
the random variables & and 75, respectively, be measurable with respect to M:.,
and M2, . ; moreover, assume that E|g|?<co for p>1 and |9|<C a.s. Then
|Eén— E¢En| <6C{E|&l?}/?a(n))~1/7.
(cf. Lemma 2.1 in [3)).
In what follows, by the letter K, we shall denote any positive quantity (not
always the same) which is bounded and does not depend on =.

Lemma. If a(5)=0(j7%?% for some >0, then
(10) ES < K(n'z*/*+1%®*dp log n) ,
where S,=2z;+---+2,.

Proof. We follow the proof of Lemma 2.1 in [5], (cf. [7]). We denote by
3. the summation over all 4, 5, k=0 for which ¢+j+k=n, and let 2%, 2 and

7® be, respectively, the components of X, for which i=(j, k), =(, k) and k=
(¢, 7). Then, we have

(11) ES{24n{3 P+ 1P+ ZOHEZR 264+ 244 312
Since a(j)=0(3"%"9), '

(12) 3 (+1)Hati) <K log n .

Hence, from [12), the assumption P(|z,/>1)=0 and Davydov’s lemma, we have the
following inequalities:
L P EZ202¢2 04 %04 741
éezg){a(i)}sl(8+8){Elzo‘(s+8)/3}d/(8+6)
(13) _S_G{ElzoI}H/(3+3)Z(nl){a(i)}al(8+d)

éKTJ/£8+6) i (7:_{,_1)2{a(i)}8/(8+3)§KTJ/(8+J) log n ;
i=1

2P| E262:Z04 1244 45
< D\ Bzez | B+ 6 S Pl O{Blaoz o oaas
=862 Pla()}/{Elz, P2 a(k)}/{ Bz, >/}
(14) +B X P{a(f)}/ OB |z, |}/ +D
< Ke*8 Y P{a(i)*{a(k)}/8+ Ko+ 3 ®{a( )}/ e+D

é K'n'l"'/s[ .‘él {a(i)}lla]2+ Kz.a/<s+a) ;::1 (J+ 1)’{a(j)}°/“"")
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S K(ntt/3+7%/6+ og n) ;

2N E202:Z04 1214 g4
(15) <6 Ofa(k)}/C+O{F|z,|+0/8)3/5+8)

SKT‘,/(S'H””Z (k+1)2{a(k)}8/(8+6)sKrﬂ/(3+0) log- n.
= 2 =
Thus, (10) follows from [11), (13), and [(15), and the proof is completed.

3. Proof of Theorem 1. Let
2=g,@)—g.@}) (0=s<t=1).
Then, the sequence {z;} satisfies the conditions of and
| Ezt=(t—s)(1—t+8)<t—s . |

Moreover,
Yo(t)—Yale)=n"12 3 2, .
=1
Thus, if ¢(0<e<1) is a fixed number such that
—s—ét——s ’
n
we have

EIY,.(t)—Y,.(s>|*§K{(t—s)m+Ei—”(t—swtsm}

S K{(t—8)%/3n-1-28/86+0)(}__ g)0/(3+2)}
< K{(t—s)**+ e—(1—26/3(8+6))(t__8)1+6/8(8+6)}
S Ky (t—s)1+o/8@+d)

for all n sufficiently large. Hence, the method of the proof of Theorem 22.1 in
can be completely carried over to this case and the proof is obtained.

4. Functions of strong mixing processes. Let {x,} be a strictly stationary
sequence of random variables satisfying the s.m. condition. Let f be a measura-
ble mapping from the space of doubly infinite sequences (---,a_;, ap, @;,--+) of
real numbers into the real line. Define random variables

(16) vu"_——f("'ywn—l’ Xny xn+ly"') 9 n=0, il, i2,---

where x, occupies the 0-th place in the argument of f



BILLINGSLEY’S THEOREMS ON EMPIRICAL PROCESSES 81

Suppose now that
17) 0=7.(0)=1

and let F,(t, o) be the empirical distribution function of 7,(w), - -, 7.(®) and define
Z. by

(18) Z,(t, 0)=nV F, (¢, 0)—F(t))

where F is the distribution function for 7,. Let f. be a measurable mapping
from R?**! into R'. Moreover, let

(19) vkn:fk(xn—k, ey Tyttt wn+k)
for which
0=7im(0)=1.

Finally, we shall suppose that there exist sets H, in [0,1] with the following
properties ;
(i) If te H,, then
Io,:00)=I10,61(7,0)
with probability one, where I:(.) is the indicator of the set E.
(ii) If J,={F():te H,}, then J; is a p,-net in [0, 1],
where p, goes to zero exponentially.
(iii) We have H,C H,,,.

Define g, by (6) as before.

Theorem 2. Suppose that {x,} is a strictly stationary s.m. sequence with
mixing coefficient a(n), that n, has a continuous distribution function F on
[0,1], and that there exist sets H, with the three properties just described. If
a(n)=0(n"%"% for some 6>0, then

_{Z
Z,—Z

where Z 18 the Gaussian random fumnction specified by

EZ#t)=0
and

EZ(8)Z()=Eg.(1)9.(00)+ 5 Eg.00g:n0)+ 2 E.(19.70
The series converge absolutely and P(Ze C)=1. (cf. Theorem 22.2 in [1]).
Proof. As in the proof of Theorem 22.2 in [I], we can show that it suffices
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to consider the case in which 7, is uniformly distributed. So, we assume that 7,
is uniformly distributed. If s and ¢ both lie in H,, then the process

gt(vn)—g:(vn)zgt(nku)—gn(ﬂlm) , n=0, il’ *2,---

is strong mixing with mixing coefficient a‘®(n) where

if n=<2k
a®(n)=
a(n—2k) if n>2k .

Let n be arbitrarily fixed. Since 7, is uniformly distributed and since

and

) éo {a(k)(j)}l/!!é Kk

.i“'o (j+ 1)2{a(k)(j)}8/(8+d)§ Kka log n,
j=

so by the analogous method of the proof of we can prove that

E| 2 (9:n)— .0

< Kk*(n*|t—s|/*+ |t—s|%*+Pn log n)

where K depends on « alone. Therefore

imply

s, te He, %§t—~s (0<e<1)
ks
P(Z,t)—Z(8)|=ZAH =K, T (t—s)1*P

for some >0 where K, dependé only on « and ¢. The rest of the proof is identi-
cal to that of Theorem 22.2 in [1] and so is omitted.
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