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The paper announces many future publications in those important and actually

developed topics.
After my Visiting Professorship in a research fellowship of Delft Technologi-

cal University, Holland, I gave about 20 lectures in 14 towns of England (3),

Unitod States (14), Germany (2) and Greece (1) indicating the following stages of
development of Mathematical Sciences:
1. Primitive one with statistical data–the earliest level of various computational

processes of a pure mechanical nature.
2. Partition problems with the gravitation to finite mathematics.
3. My Generalized Models created in 1954 year–the best tool in finite mathematics

-containing wholly all other ones, e.g. “ Forcing” with international prizes.
These stages supply a device in the historical achievements of our predecessor

with mottos of my publications. . .
” Es ist etwas in Menschen, das sich keiner Gewalt beugt und f\"urchtet und

durch keine Gewalt \"uberw\"altigt werden kann. Es bleibt unbesch\"adigt und frei,

wie auch die Sachen gehen, und spricht der Gewalt Hohn; und ist doch zugleich

mild und rtit zum Guten und Frieden.”
And according to my published papers, $[21]-[39]$ , and lectures–showing the

modelling of the reality–my generalized models provide a clear unity of Mathe-
matics with classical and non-classical calculi. Thus, e.g. omitting my invariance
relation of cited papers we shall obtain generalized models of intuitionistic calculi
-a conclusion of maximal properties of presented constructions.

My generalized models for non-classical calculii) was also announced in 1954
year but my very bad conditions in Israel unabled me to publish this paper many
years ago; so it is indicated that e.g. ” Forcing” of cited bibliography (it is a
kind of regarded generalized models) was created many years after my results and
it is an additional remark in the discussion of a crisis of mathematical sciences in

1) with values in algebras.
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USA, . . ., see Notices of American Mathematical Society.
The paper has a closed character. Therefore it will be seen that it only suf-

fices the intuitionistic calculus to construct all classical prime filters or ideals, it
will be given a short discussion of the main constructive property of intuitionistic
theories including Kolmogoroff and Lukasiewicz’s absorption relations and so it
will be shown an origin of constructive theorie8.

The important reduction to the suitable set of all models of a given power is
also given.

The lecture indicates a classification of different predicate calculi; for instance,
it is seen that $F^{\prime}+F^{\prime\prime}$ holds in all generalized models $Q$ of 2 elements and it does
not hold in $Q$ with 3 elements.

The exposition provides practical O-l-verification of all formulas of regarded
predicate calculi with the decidability of intuitionistic propositional calculi and
classes of predicate calculi (e.g. $\sum\prod$–formulas in realization); the important reduc-
tion of arbitrary formulas to a constructive proof of a formula of propositional
calculus is also presented, i.e. the analogy of Godel-Herbrand’s reduction to pro-
positional calculus but in intuitionistic one.

An important result are asymptoticly finite generalized models for a new predi-
cate calculus containing wholly the classical ProposItional one but unclosed under
substitutions. The very great importance of generalized models suggests an intro-
duction of generalized quantifiers with famous problems of mathematical sciences:
Great Fermat problem. Goldbach problem with Vinogradov’s solutions, Waring’s
problem, Gauss and Hilbert’s results with Erd\"os solutions and many others. . ..

Of course, according to the above the paper cannot be finished and many
future ways are also seen, e.g. in the theory of natural numbers, my generalized
algorithms, . . . The paper is closed by remarks about future directions; other
results in context.

Closing the short introduction we complete the bibliography with names of
last investigations: Aczel, Beth, Bourbaki, Cohen, Dantzing, Destouches,
Dijkman, Fefarman, Freudental, Fitting, Goodstein, Mc-Kinsey, $Kr\dot{j}pke$ ,
Kuroda, Porte, Rosenbloom, Ryll-Nardzewski, Scott, Skolem, Schr\"oter, Spector,
Vorobew, . . ..

We present Generalized Models for intuitionistic predicate calculus according
to my resulte of 1954 year and first of all we indicate the following denotations;

1. Logical $8igns$ : ’ (negation), +(alternative), (conjuction), $\supset$ (implication),
$\prod$ (general quantifier), $\sum$ (existential quantifier).
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2. Variables: $(1^{o})$ individual: $x_{1},$ $x_{2},$ $\cdots$ (simply: $x$);

(2) apparent: $a_{1},$ $a_{2},$ $\cdots$ (simply: $a$);

(8) relation signs of m-arguments: $f_{1}^{m},$ $f_{2}^{m},$ $\cdots,$
$f_{q}^{m}$ with $m=1,2,$ $\cdots,$ $t;x_{0}$ is a

constant.i)

3. $w(E)$–the number of different individual variables occurring in the expression

$E$ plus 1;

4. $p(E)$–the number of different apparent variables occurring in the expression

$E$ ;

5. $\{i_{m}\}-different$ indices $i_{1},$
$\cdots,$

$i_{m}$ ; $\{i_{w(p)}\}$–all indices of free variables in $E$ and

$0;$ $\{F_{q}^{t}\}$–the sequence of form: $F_{1}^{1},$
$\cdots,$

$F_{q}^{1},$ $\cdots,$
$F_{1}^{t},$

$\cdots,$
$F_{q}^{t}$ ;

6. $i(E)=\max\{i_{w(p)}\};n(E)=\max\{w(E)+p(E), i(E)\}$ ; (The reader should write a

smaller number $n(E).)$

7. $E(u/z)$–substitution of $u$ for $z$ in $E$ with known restrictions;

8. $h\in E-h$ belongs to signs of the expres8ion $E$ ;

9. $M,$ $M_{1},$ $\cdots$ –models;

10. $Q-a$ non-empty set of models with domains $ D^{1}\subset D^{2}\subset\cdots$ –called: Generalized

model; $Q(k)-Q$ is a generalized model whose elements are of power $<k+1$ . We

do not assume that $k$ is finite; however in D. 4. the reader should generally

suppose: $k$ is finite for the functional $W$ ;

11. General and existential metaquantifiers: $(K),$ $(\exists K),$ $(\{K_{f}\}),$ $(\exists\{K_{r}\})$ ;

12. Dots separate stronger than other signs.

A model is a pair $<B,$ $\{F_{j}^{\ell}\}>$ , where $B$ is a non-empty domain and $\{F_{j}^{i}\}$ is an
arbitrary doubly finite sequence of relations such that $F_{j}^{m}$ is a m-ary relation on
$B-a$ set of ordinary numbers, $i=1,$ $\cdots,$ $q$ and $j=1,$ $\cdots,$

$t$ .
$M/s_{0},$ $\cdots,$ $s_{k}/-simply$ : $M/\{s_{k}\}$–is a truncated model of the power $k+1$ with

respect to $\{s_{k}\}$ , i.e. there exist models $<B,$ $\{F_{j}^{\ell}\}>$ and $<B_{k},$ $\{\phi_{j}^{i}\}>$ such that $B_{k}$ is

of the power $k+1$ and:
$\phi_{j}^{m}(r_{1}, \cdots, r_{m})$ iff. $F_{f}^{m}(s_{r_{1}}, \cdots, s_{rm}),$ $1\leq m\leq t,$ $1\leq j\leq q$ .

Note that $M/\{\epsilon_{k}\}=<B_{k},$ $\{\phi_{f}^{i}\}>$ is a submodel of $M$ in the sen8e of $homomorphi_{8}m$

and therefore instead of “ truncations” we can speak about homomorphisms.

Of course, [11],:

L. 1’. $M/\{s_{k}\}/\{t_{q}\}=M/\{s_{q}\}$

Regarding descriptions of models only for atoms we obtain analogical notions

for sets of atomic formulas and the reader can easy formulate L. 1’. for families
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Hence it is obviously;
L. 2. If $T_{1}$ is a description of $M_{1}$ and $T_{2}$ is a description of $M_{2}$ , then:

$T_{1}/\{j_{m}\}=T_{2}/\{j_{m}\}$ iff. $M_{1}/\{j_{m}\}=M_{2}/\{j_{m}\}$

The inclusion $M_{1}\geq M_{2}$ means: if $R(s_{1}, \cdots, s_{m})$ in $M_{2}$ , then $R(s_{1}, \cdots, s_{m})$ in $M_{1}$ ,
where $M_{1},$ $M_{2}$ belong to some $Q$ and $R$ is an arbitrary relation of both models;
so the inclusion $(M_{1}\geq M_{2})/\{i_{\ell}\}$ means: $M_{1}/\{i_{\ell}\}\geq M_{2}/\{i_{\ell}\}$ .

From L. 1’. follows immediately:

L. 1. If $M_{1}\geq M_{2}$ , then: $M_{1}/\{s_{k}\}\geq M_{2}/\{s_{k}\}$ .
Introducing my intuitionistic evaluation functional, $[21]-[39]$ , we suppose the

following abbreviation:

$V\{k, Q, M, \{i_{\ell}\}, E\}=0$ iff. $\sim V\{k, Q, M, \{i_{\ell}\}, E\}=1$

For an arbitrary generalized model $Q(k)$ , for an arbitrary $M=<B_{k}$ , $\{F_{q}^{t}\}>\in Q$ ,
for every formula $E$ and each non-empty $\{i_{\ell}\}\supset\{i_{w(B)}\},$ $l+p(E)\leq k$ (this condition
may be here omitted but it is used in the next evaluation functional $W$ and it is
written for the historical homogenity of my lectures), we introduce the following
inductive definition of the evaluation functional $V$ :
(1d) $V\{k, Q, M, \{i_{\ell}\}, f_{j}^{m}(x_{r_{1}}, \cdots, x_{r_{m}})\}=1.$ iff $F_{f}^{m}(r_{1\prime}\cdots, r_{m})$ ,
(2d) $V\{k, Q, M, \{i_{\ell}\}, F^{\prime}\}=1$ iff. $(M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\rightarrow V\{k, Q, M_{1}, \{i_{\ell}\}, F\}=0\}$ ,
(3d) $V\{k, Q, M, \{i_{\ell}\}, F\supset G\}=1$ iff. $(M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\rightarrow$

$\rightarrow(V\{k, Q, M_{1}, \{i_{\ell}\}, F\}=0\vee V\{k, Q, M_{1}, \{i_{\ell}\}, G\}=1)\}$ ,
(4d) $V\{k, Q, M, \{i_{\ell}\}, FG\}=1$ iff. $V\{k, Q, M, \{i_{\ell}\}, F\}=1\wedge V\{k, Q, M, \{i_{\ell}\}, G\}=1$ ,
(5d) $V\{k, Q, M, \{i_{\ell}\}, F+G\}=1$ iff. $V\{k, Q, M, \{i_{\ell}\}, F\}=1\vee V\{k, Q, M, \{i_{\ell}\}, G\}=1$ ,
(6d) $V\{k, Q, M, \{i_{\ell}\}, \prod aF\}=1$ iff. $(M_{1})(i)\{(M_{1}\geq M)/\{i_{\ell}\}\wedge$

$\wedge(i\in\{i_{\ell}\})\rightarrow V\{k, Q, M_{1}, \{i_{\ell}\}, i, F(x_{\ell}la)\}=1\}$ ,
(7d) $V\{k, Q, M, \{i_{\ell}\}, F(x_{\ell}la)\}=1$ iff. $(\exists i)\{(i\in\{i_{\ell}\})\wedge V\{k, Q, M, \{i_{\ell}\}, F(x_{\ell}la)\}=1\}$ .

D. 1. $E\in P(k, Q, \{i_{\ell}\})$ iff. $(M)\{(M\in Q)\rightarrow V\{k, Q, M, \{i_{\ell}\}, E\}=1\}$ .
D. 2. $E\in P(k, Q)$ iff. $(\{i_{\ell}\}(\{(w(E)\leq l\leq k-p(E))\rightarrow(E\in P(k, Q, \{i_{\ell}\}))\}$ .
D. 3. $E\in P(k)$ iff. $(Q)\{Q(k)\rightarrow(E\in P(k, Q))\}$ .
D. 4. $ E\in$ P.iff. $(\exists k)\{(k\geq n(E))\wedge(E\in P(k))\}$ .

$\ovalbox{\tt\small REJECT} 1)$In(1d)variables are interpreted by their indices;as an exercise the reader may
write the last definitions interpreting variables by means of arbitrary elements of $B_{k}$

and not by their indice8.
The condition $l+p(E)\leq k$ may be here omitted but it is used in the next evaluation

functional $W$ and it is written for the historical homogenity of my lectures in Generalized
Models; $\aleph_{0}+p(E)=\aleph_{0}$ .
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Let us explain:
$V\{k, Q, M, \{i_{i}\}, E\}=1$ is read: the model $M$ evaluates $E$ with respect to $Q$ .
If $Q$ is one elementing, then $(ld)-(7d)$ give the classical evaluation functional

in the domain of ordinary numbers $\in\{i_{\ell}\}$ .
If we choose such maximal $M\in Q$ that if $(M_{1}\geq M)/\{i_{\ell}\}$ , then $(M_{1}=M)/\{i_{\ell}\}$ then

$(ld)-(7d)$ also give the classical evaluation functional in the domain of ordinary

numbers $\in\{i_{\ell}\}$ .
We may restrict ourselves to $\{i_{\ell}\}=\{l\}$ and to reformulate $(ld)-(7d)$ without the

sequence $\{i_{i}\}$ ; then $Q(k)$ is replaced by $Q(l)$ with $V\{Q, M, E\}$ . But my papers also
replace $i\in\{i_{t}\}$ in (6d) by $i\leq k$ ; then the reader may introduce my invariance rala-

tion and obtain adequate characterizations of the intuitionistic predicate calculi.

But the paper does not deal with invariance relations though suitable in-
variance of formulas means their decidability and certain ones are given in my

cited papers; so we deal here with extensions of models, see Los’ papers.

D. 2. is the intuitionistic truth definition in a generalized model $Q(k)$ .
D. 3. is the intuitionistic truth definition for all generalized models $Q(k)$ with

$k-constant$ .
We shall prove that $P$ is the class of all intuitionistic theorems of the first

order predicate calculus.
D. 5. $M_{1}\in M[k]$ iff. $(\exists\{s_{k}\})\{M_{1}=M/\{s_{k}\}\}$ .
$M[k]$ is the set of all submodels of $M$ of the power $k$ and therefore:
If $M[k]=Q$ , then the number $i$ in (6d) is the name of an arbitrary element

of the domain of $M$ and so was explained the introduction of my generalized

models. The reader should differ ones from other generalized models, where we
only have a change in the algebra of values and not in the real notion of a model
–we do not discuss derivative (i.e. artificial) replacements.

We shall write $V\{M, \{j_{\tau}\}, E\}$ or $V\{Q, M, \{j_{\tau}\}, E\}$ instead of $V\{k, Q, M, \{j_{r}\}, E\}$ .
Of course:

$(2d0)$ $V\{M, \{i_{i}\}, F^{\prime}\}=0$ iff. $(\exists M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\wedge V\{M_{1}, \{i_{\ell}\}, F\}=1\}$ ,
$(3d0)$ $V\{M, \{i_{i}\}, F\supset G\}=0$ iff. $(\exists M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\wedge$

$\wedge V\{M_{1}, \{i_{\ell}\}, F\}=1\wedge V\{M_{1}, \{i_{\ell}\}, G\}=0\}$ ,
$(4d0)$ $V\{M, \{i_{i}\}, FG\}=0$ Iff. $V\{M, \{i_{i}\}, F\}=0\vee V\{M, \{i_{\ell}\}, G\}=0$ ,
$(5d0)$ $V\{M, \{i_{\ell}\}, F+G\}=0$ iff. $V\{M, \{i_{\ell}\}, F\}=0\wedge V\{M, \{i_{\ell}\}, G\}=0$ ,
$(6d0)$ $V\{M, \{i_{\ell}\}, \prod aF\}=0$ iff. $(\exists M_{1})(\exists i)\{(M_{1}\geq M)/\{i_{\ell}\}\wedge(i\in\{i_{i}\})\wedge$

$\wedge V\{M_{1}, \{i_{\ell}\}, i, F(x_{\ell}la)\}=0\}$ ,
$(7d0)$ $V\{M, \{i_{\ell}\}, \Sigma aF\}=0$ .iff. $(i)\{(i\in\{i_{\ell}\})\rightarrow V\{M, \{i_{\ell}\}, F(x_{l}/a)\}=0\}$ ;



10 JULIUSZ REICHBACH

(D40) $Ee$ P.iff. $(k)((k\geq n(E))\rightarrow(\exists Q)(\exists M)\{Q(k)\wedge(M\in Q)\wedge$

A $(\exists\{i_{\ell}\})\{(w(E)\leq l\leq k-p(E))\wedge V\{k, Q, M, \{i_{\ell}\}, E\}=0\}\})$

The reader should prove by induction with respect to the length of a formula
the following basic lemma:

L. 3. If $M^{o},$ $M\in Q,$ $l+p(E)\leq k$ and1) $(M\geq M^{o})l\{i_{\ell}\}$ , then:
If $V\{M^{o}, \{i_{\ell}\}, E\}=1$ , then $V\{M, \{i_{\ell}\}, E\}=1$ .
If additionally $(M=M^{o})/\{i_{i}\}$ , then:

$V\{M, \{i_{i}\}, E\}=1$ iff. $V\{M^{o}, \{i_{t}\}, E\}=1$ .
Hence, if $E$ has no free variables and all mode18 belonging to $Q$ are identical

on O–the value of $x_{0}-then$ :
Either $(M)\{V\{M, \{0\}, E\}=1\}$ or $(M)\{V\{M, \{0\}, E\}=0\}$ .
The whole proof is similar to L. 3. of my publications.
Emhasize the smallest indice in L. 3. is $l=w(E)$ ; this basic lemma indicates

other constructive evaluations of formulas, e.g. by suitable quantification in (1d)

$-(7d)$ with respect to L. 3. and my cited papers give several other intuitionistic
functionals (e.g. A. Robinson’8 potential truth follows from [221, p. 211, footnote
1, and it can be analogously done for intuitionistic predicate calculi).

And in my lecture at Bonn Mathematics I regarded a special case, see p. 32,

of the following evaluation functional $W$ :
For brevity put $\{i_{i}\}=\{l\}$ and let:

(Od) $W=V$, for conjuction, alternative and existential quantifier,
(Od2) $W\{k, Q, M, \{l\}, F^{\prime}\}=1$ ff. $(t)(M_{1})\{(l\leq t\leq k-p(F))\wedge$

$\wedge(M_{1}\geq M)/\{l\}\rightarrow W\{k, Q, M_{1}, \{t\}, F\}=0\}$ ,
(Od3) $W\{k, Q, M, \{l\}, F\supset G\}=1$ iff. $(t)(M_{1})\{(l\leq t\leq k-p(F\supset G))\wedge(M_{1}\geq M)/\{l\}\rightarrow$

$\rightarrow(W\{k, Q, M_{1}, \{t\}, F\}=0\vee W\{k, Q, M_{1}, \{t\}, G\}=1)\}$ ,
(Od6) $W\{k, Q, M, \{l\}, \prod aF\}=1$ iff. $(M_{1})(i)\{(i\leq k)\wedge$

$\wedge(t=\max(i, l)\wedge(M_{1}\geq M)/\{l\}\rightarrow W\{k, Q, M_{1}, \{t\}, F(x_{\ell}/a)\}=1\}$ .
And analogously it holds a stronger basic lemma:
L. 30. If $t+p(E)\leq k,$ $l\leq t,$ $(M\geq M^{o})/\{l\}$ , then

If $W\{M^{o}, \{l\}, E\}=1$ , then $W\{M, \{t\}, E\}=1$ .
If additionally $(M=M^{o})/\{l\}$ , then:

$W\{M^{o}, \{l\}, E\}=1$ iff. $W\{M, \{l\}, E\}=1$ .
The last conclusion of L. 3. also holds for the functional $W$.
1) L. 3. also holds, if $i\in\{i_{t}\}$ is replaced by $i\leq k$ in (6d).
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D. 1.–D. 4. are changed in the 8econd definition for the functional $W$ and

namely:
D. 20. $E\in P(k, Q)$ iff. $E\in P(k, Q, \{i_{w(B)}\})$ .
Having replaced the inequality by the equality in $(Od)-(Od6)$ we obtain gener-

alized models for the new predicate calculus containing the clas8ica1 propositional

one but unclosed under substitutions. So we continue the lecture for both func-

tions $V$ and $W$ ; small editorial remarks with complemention8 remain for readers.

First of all note that my two evaluation functionals of Delft Technological

University, 1970/1, omit the quantifier $(t)$ in (Od2) and (Od3) introducing new
characteristic numbers likely to $i(E)$ or $n(E)$ ; but the paper creates a complemen-

tion of my first publications and therefore Delft constructive functionals will be

published later.
Let now $k=2$ , i.e. we regard $B_{2}$ . Let $M=<B_{2},$ $>$ and $M_{1}=<B_{2},$ $F_{1}^{1}(1),>$ ;

thus $F_{1}^{1}(1)\in M$ and $F_{1}^{1}(1)\in M_{1}$ . Let $Q$ have only 2 elements $M$ and $M_{1}$ ; then $V\{M$,

$\{0,1\},$ $f_{1}^{1}(x_{1})$ } $=0$ and $V\{M_{1}, \{0,1\}, f_{1}^{1}(x_{1})\}=1$ . But $(M_{1}\geq M)/\{0,1\}$ ; hence by $(2d0)$ :
$V\{M, \{0,1\}, (f_{1}^{1}(x_{1}))^{\prime}\}=0$ .

And in view of $(5d0)$ :
$V\{2, Q, M, \{0,1\}, (f_{1}^{1}(x_{1}))^{\prime}+f_{1}^{1}(x_{1})\}=0$

The above proves:
L. 4. $F^{\prime}+FeP$ and maybe:

$V\{k, Q, M, \{i_{\ell}\}, F^{\prime}\}=0$ and $V\{k, Q, M, \{i_{\ell}\}, F\}=0$ .
From L. 4. follows immediately:

L. 5. The following Heyting’s formulas do not belong to $P$ ;

$F^{\prime\prime}\supset FeP$ , $t\prod a(F+F^{\prime})\}^{\prime\prime}eP$

And L. 3. easy implies:

L. 6. If $E^{\prime\prime}\in P$, then $EeP$ .
L. 7. Kleene-Nelson’8 $formulas^{2)}$ :

{$\prod a(F+G)\supset(F+\prod aG)^{\prime\prime}\in P$ , a $eF$ ,
$\{\prod a\prod b(F+G)\supset(\prod aF+\prod bG)\}^{\prime\prime}eP$ , a $eG,$ $beF$

Note that L. 5.–L. 7. are simple exercises for readers; other ones with cited

names are given on last pages of the paper.
We shall deal with constructive properties of the intuitionistic predicate calcu-

1) $B_{2}=\{0,1\}$ Is adomain of 2ordinary numbers $0,1$ .
2) L. 7. is not used in the paper and so the reader can prove it in the second reading.
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lus also asserted in L. 8. and therefore though we do not use the following remark
let us indicate without proof Kreisel-Putnam lemma:

$\{E\supset(F+G)\}\supset\{(E\supset F)\vee(E\supset G)\}eP$

But some special cases of the last formula belong to $P$ and one8 can be found
in Kreise1’8 publications or follow from the continuation.

Let us emphasize the first constructive property in the following description:
Many proofs of allmost all cited scientists has an analogon to the following

(see pages 24, 25):

L. 8. Let $Q$ have the following property:
There exists $M_{0}\in Q$ such that for every $M\in Q:(M\geq M_{0})/\{i_{\ell}\}$ ; then:
If $F+G\in P(k, Q, \{i_{\ell}\})$ , then $F\in P(k, Q, \{i_{\ell}\})$ or $G\in P(k, Q, \{i_{i}\})$ .
L. 8. is an immediate conclusion of L. 3.
Note that the set of all models of a given power has the property asserted

in the last lemma.
Emphasize here my first embedding property of the generalized model written

in 1954 year, [22]:

$(\{t\})(M_{1})(M_{2})\{(M_{1}, M_{2}\in Q)\wedge(M_{1}=M_{2})/\{t\}\rightarrow$

$\rightarrow(\exists M_{8})((M_{8}\in Q)\wedge(M_{8}=M_{1})/\{t+1\}\wedge(M_{8}=M_{2})/\{t\}, t+2)\}$ ;

then the number $t$ in (Od2), (Od3) and (Od6) is put $t=L$ and L. 30. holds for the
last evaluation functional; so we obtain another adequate asymptoticly finite
characterization of intuitionistic predicate calculi with a stronger constructive
property than L. 8. and it remains for readers.

Of course, the last embedding is done in $Q$ but it also was done outside $Q$ ;
then the asymptoticly finite characterizations are weaker, [22], [23].

Though we shall not use the following lemma, let the reader prove an analogon
of Harrop-Kleene-Kreisel theorems, see page 14, :

L. 9. If $a\in E$, then $\sum a(F\supset G)\supset(F\supset\sum aG)\in P$ and not inverse,
Each intuitionistic evaluation determines classical ones according to Godel-

Kolmogeroff-LukasIewIcz-Stupecki-Sobocinski’s absorption relations; we shall pre-
sent two ones and others in [41] and my future papers.

Using Lukasiewicz’s brackets free denotation the first absorption relation can be
written: $C_{pq}=NK_{p}N_{q}$ and $A_{pq}=CN_{pq}=NKN_{p}N_{q}$ ; then $AN_{pp}=CNN_{pp}=NKNN_{p}N_{p}$

and we prove that the last formula belongs to $P$, i.e.
L. 10. $(F^{\prime\prime}F^{\prime})^{\prime}\in P$.
Indeed, if $V\{M, \{i_{\ell}\}, (F^{\prime\prime}F^{\prime})^{\prime}\}=0$ , then by $(2d0)$ there exists $M_{1}\in Q,$ $(M_{1}\geq M)/$
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$\{i_{\ell}\}$ such that $V\{M_{1}, \{i_{\ell}\}, F^{\prime\prime}F^{\prime}\}=1$ ; and in view of $(2d0)$ and $(4d):V\{M_{1}, \{i_{\ell}\}, F^{\prime\prime}\}$

$=1$ and $V\{M_{1}, \{i_{\ell}\}, F^{\prime\prime}\}=0$ , i.e. a contradiction.
Thus the first absorption relation gives the following classical evaluation func-

tional1) $W^{o}$ :
Let us omit (7d), i.e. we replace here: $\sum aF=(\prod aF^{\prime})^{\prime}$ , and instead of (3d)

and (5d) let us assume respectively:

(3D) $W^{o}\{M, \{i_{\ell}\}, F\supset G\}=1$ iff. $(M_{1})\{(M_{1}\geq M)/\{i_{i}\}\rightarrow(W^{o}\{M_{1}, \{i_{\ell}\}, F\}=0\vee$

V $W^{o}\{M_{1}, \{i_{i}\}, G^{\prime}\}=0$)}

(5D) $W^{o}\{M, \{i_{i}\}, F+G\}=1$ iff. $(M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\rightarrow(W^{o}\{M_{1}, \{i_{\ell}\}, F^{\prime}\}=0\vee$

V $W^{o}\{M_{1}, \{i_{\ell}\}, G^{\prime}\}=0$)}.

Then $(1D)-(6D)$ with D. 1.–D. 4. for the functional $W^{o}$ give all classical valid
formulas, $\ddagger.e$ . if we write in D. 4. instead of $P$ the classical denotation $PW^{o}$ of
the class of all true formulas, then we shall prove:

$E$ is a classical thesis if and only if $E\in PW^{o}$ .
Kolmogoroff and others, [41], gave many right absorption relations for the

intuitionistic arithmetic and it will be a topic of my future papers.
A second symmetric absorption relation is given by the classical theses

(Lukasiewicz’s denotation) $EC_{pq}AC_{p}{}_{q}CN_{q}N_{p},$ $EA_{pq}ACN_{pq}CN_{qp}$ ; then instead of (8D)

and (5D) we obtain respectively:

$(3D1)$ $W_{1}\{M, \{i_{\ell}\}, F\supset G\}=1$ iff. $(M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\rightarrow(W_{1}\{M_{1}, \{i_{\ell}\}, F\}=0\vee$

V $W_{1}\{M, \{i_{\ell}\}, G\}=1$)} $(M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\rightarrow(W_{1}\{M_{1}, \{i_{\ell}\}, G^{\prime}\}=0\vee$

V $W_{1}\{M_{1}, \{i_{\ell}\}, F^{\prime})=1)\}$ ,
$(5d1)$ $W_{1}\{M, \{i_{i}\}, F+G\}=1$ iff. $(M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\rightarrow(W_{1}\{M_{1}, \{i_{\ell}\}, F^{\prime}\}=0\vee$

$\vee W_{1}\{M_{1}, \{i_{\ell}\}, G\}=1)\}\vee(M_{1})\{(M_{1}\geq M)\rightarrow(W_{1}\{M_{1}, \{i_{\ell}\}, G^{\prime}\}=0\vee$

V $W_{1}\{M_{1}, \{i_{\ell}\}, F\}=1$)}.

And $(1D1)-(6D1)$ with D. 1.–D. 4. for the functional $W_{1}$ give analogously all
classically volid formulas.

Kolmogoroff also replaces $\prod$ by $\Sigma$ and the reader 8hould try to write suitable
classical evaluation functionals defining $\prod$ , but according to known absorption

relations.
Simplifications of the last definitions also remains for readers. And a very

important absorption relation is given in T. 3.
The reader should prove by induction respectively to the length of a formula

(using L. 3.):

1) L. 3. holds for all evaluation functions.



14 JULIUSZ REICHBACH

L. 11. Let $E^{o}$ result from $E$ by the replacement of implication, alternative
and existential quantifier according to the first absorption relation; then:

$V\{M, \{i_{\ell}\}, E^{o}\}=1$ iff. $W^{o}\{M, \{i_{\ell}\}, E\}=1$ .
(Hence we obtain a simple conclusion in Kreisel’s inverse theorem, see page 11.)

An analogical theorem holds for the second absorption relation (and others).

We shall prove the completeness of regarded predicate calculi and therefore
let us introduce the notion of formal theorem or briefly: thesis:

Axioms of the intuitionistic calculus are:
$E_{1})$ $F\supset(G\supset F)$

$E_{2})$ $(F\supset G)\supset(\{F\supset(G\supset H)\}\supset(F\supset H))$

$E_{\epsilon})$ $F\supset(G\supset FG)$

$E)$ $FG\supset F$ $E_{f}$) $FG\supset G$

$E_{0})$ $F\supset(F+G)$ $E_{\tau}$) $G\supset(F+G)$

$E_{\epsilon})$ $(F\supset G)\supset\{(H\supset G)\supset(\{F+H\}\supset G)\}$

$E_{\theta})$ $(F\supset G)\supset\{(F\supset G^{\prime})\supset F^{\prime}\}$

$E_{10})$ $F\supset(F^{\prime}\supset G)$

$E_{11})$ $\prod aF\supset F(x_{\ell}la)$ $E_{12}$) $F\supset\sum aF(a/x_{\ell})$

And proof rules are the following:

$R_{1})$ If $F$ and $F\supset G$ are theses, then $G$ is a thesis.
$R_{2})$ If $F\supset G$ is a thesis and $xeF$, then $F\supset\prod aG(a/x)$ is a thesis.
$R_{6})$ If $F\supset G$ is a thesis and $x\in G$ , then $\sum aF(a/x_{\ell})\supset G$ is a thesis.

Obviously $E_{1}-E_{10}$ are axioms of the intuitionistic propositional calculus and
adding the classical axiom
$E_{18})$ $F^{\prime\prime}\supset F$

we obtain the classical predicate calculus; then $R_{8}$) is a derivative rule.
We assume the usual definitions of a formal proof of a formula and the length

of a formal proof. A thesis is the last element of a formal proof.
It is easy to show with respect to the length of a formal proof:
L. 12. If the length of a formal proof of $E$ is $m$ , then the length of some

formal proof of $E(ylx)$ also is $m^{1)}$

T. 1. If $F_{1},$
$\cdots,$

$F_{n}$ is a formal proof of the formula $F$ and $k\geq n(F_{\ell}),$ $i=1$ ,
$m$ , then:

(I) $F\in P(k)$ ,

$\ovalbox{\tt\small REJECT} 1)$According to L. 12. in the Propositional proof ofEaPpear oty $\{i_{1Y(B)}\}$ .
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(II) If the formal proof is a classical one, then:
(1) $FePW(k)$ , where $PW(k)$ corresponds to D. 3. of the classical evaluation,

(2) and if the classical proof is without $R_{2}$ , then:
$F^{\prime\prime}\in P(k)$ , and if $F=F_{1}^{\prime}$ , for some $F_{1}$ , then $F\in P(k)$ .
(Equalize with L. 5.!).

Proof:–The theorem is proved by induction with respect to the length $m$ of

the formal $prf$ .
First of all we verify that formula $E_{18}^{\prime\prime}\in P(k)$ . Indeed supposing a contrary

$V\{M, \{i_{\ell}\}, E_{18}^{\prime\prime}\}=0$ we have alternatively:

$(\exists M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\wedge V\{M_{1}, \{i_{\ell}\}, E_{13}^{\prime}\}=1\}$ ,
$(M_{2})\{(M_{2}\geq M_{1})/\{i_{\ell}\}\rightarrow V\{M_{2}, \{i_{\ell}\}, E_{18}\}=0\}$ , i.e.

(0) $(M_{2})\{(M_{2}\geq M)/\{i_{i}\}\rightarrow V\{M_{2}, \{i_{\ell}\}, F^{\prime\prime}\supset F\}=0\}$ .
According to (0): $V\{M_{1}, \{i_{i}\}, F^{\prime\prime}\supset F\}=0$ ; hence

$(\exists M_{8})\{(M_{8}\geq M_{\iota})/\{i_{\ell}\}\wedge V\{M_{l}, \{i_{\ell}\}, F^{\prime\prime}\}=1\wedge V\{M,, \{i_{i}\}, F\}=0\}$

$(\exists M_{4})\{(M_{4}\geq M_{\epsilon})/\{i_{i}\}\wedge V\{M_{4}, \{i_{\ell}\}, F\}=1\}$ . But according to (0):

$V\{M, \{i_{\ell}\}, F^{\prime\prime}\supset F\}=0$ ; hence $(\exists M_{f})\{(M_{f}\geq M_{4})/\{i_{t}\}\wedge V\{M_{f}, \{i_{i}\}, F^{\prime\prime}\}=1\wedge$

$\wedge V\{M_{6}, \{i_{\ell}\}, F\}=0\}$ . By virtue1) of L. 3. : $V\{M_{f}, \{i_{\ell}\}, F\}=1$ and we obtained a
contradiction.

Verifying formulas of the intuitionistic calculus the reader should introduce
his abbreviations; then it is easy to verify that axioms $E_{1}-E_{12}\in P(k)$ and we
shall give the hardest cases in a-contrary proofs:

$E_{2})$ $V\{M, \{i_{i}\}, E_{2}\}=0,$ $(\exists M_{1})\{(M_{1}\geq M)/\{i_{i}\}\wedge V\{M_{1}, \{i_{\ell}\}, F\supset G\}=1\wedge$

$\wedge V\{M_{1}, \{i_{\ell}\}, \{F\supset(G\supset H)\}\supset(F\supset H)\}=0\}$ ,
$(\exists M_{2})\{(M_{2}\geq M_{1})/\{i_{\ell}\}\wedge V\{M_{2}, \{i_{\ell}\}, F\supset(G\supset H)\}=1\wedge V\{M_{2}, \{i_{\ell}\}, F\supset H\}=0\}$ ,
$(\exists M_{8})\{(M_{8}\geq M_{2})/\{i_{\ell}\}\wedge V\{M_{8}, \{i_{i}\}, F\}=1\wedge V\{M_{8}, \{i_{\ell}\}, H\}=0\}$ and by L. 3.:
$(V\{M_{t}, \{i_{\ell}\}, F\supset G\}=1\wedge V\{M_{8}, \{i_{i}\}, F\supset(G\supset H)\}=1)$ . Thus
$(M_{4})\{(M\geq M_{8})\rightarrow(V\{M\{i_{\ell}\}, F\}=0\vee V\{M_{4}, \{i_{\ell}\}, G\supset H\}=1)\}$ . However:
$V\{M_{8}, \{i_{\ell}\}, F\}=1$ ; so the case $V\{M_{8}, \{i_{\ell}\}, F\}=0$ is impossible and it remains
$V\{M_{8}, \{i_{i}\}, G\supset H\}=1$ . Therefore $(M)\{(M_{4}\geq M_{l})\rightarrow(V\{M_{4}, \{i_{\ell}\}, G\}=0\vee$

V $V\{M_{4}, \{i_{\ell}\}, H\}=1$)}; but $(M_{4})\{(M_{4}\geq M_{\epsilon})/\{i_{\ell}\}\rightarrow(V\{M_{4}, \{i_{\ell}\}, F\}=0\wedge$

$V\{M_{4}, \{i_{\ell}\}, G\}=1)\}$ . And substituting $M=M_{8}$ we obtain: $(V\{M_{8}, \{i_{l}\}, G\}=0\vee$

V $V\{M_{8}, \{i_{\ell}\}, H\}=1$ ) and $tV\{M_{8}, \{i_{\ell}\}, F\}=0\vee V\{M_{3}, \{i_{\ell}\}, G\}=1$).

1) Point out, we do not cite the use of $(2d)-(7d)$ and $(2d0)-(7d0)$ ; we do not cite
the use of the inductive assumption and writing $(\exists M^{o})$ the model $M^{o}$ is used as a con-
stant in the continuation.
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All cases give easy a contradiction with the above.

$E_{8})$ $V\{M, \{i_{\ell}\}, E_{8}\}=0,$ $(\exists M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\wedge V\{M_{1}, \{i_{\ell}\}, F\supset G\}=1\wedge$

$\wedge V\{M_{1}, \{i_{\ell}\}, (H\supset G)\supset(\{F+H\}\supset G)\}=0\}$ ,
$(\exists M_{2})\{(M_{2}\geq M_{1})/\{i_{\ell}\}\wedge V\{M_{2}, \{i_{\ell}\}, H\supset G\}=1\wedge V\{M, \{i_{\ell}\}, (F+H)\supset G\}=0\}$ ,
$(\exists M_{8})\{(M_{8}\geq M_{2})/\{i_{i}\}\wedge V\{M_{8}, \{i_{\ell}\}, F+H\}=1\wedge V\{M,, \{i_{i}\}, G\}=0\}$ and by L. 3. also
$V\{M_{8}, \{i_{\ell}\}, F\supset G\}=1\wedge V\{M_{8}, \{i_{i}\}, H\supset G\}=1$ . Hence:
$(M)\{(M_{4}\geq M_{8})/\{i_{\ell}\}\rightarrow(V\{M_{4}, \{i_{\ell}\}, F\}=0\vee V\{M_{4}, \{i_{i}\}, G\}=1)\}$ and
$(M_{4})\{(M_{4}\geq M_{8})/\{i_{\ell}\}\rightarrow(V\{M_{4}, \{i_{\ell}\}, H\}=0\vee V\{M_{4}, \{i_{\ell}\}, G\}=1)\}$ .
Putting $M_{4}=M_{8}$ the case $V\{M_{8}, \{i_{\ell}\}, G\}=1$ gives a contradiction with the
above. The last cases $V\{M_{8}, \{i_{\ell}\}, F\}=0$ and $V\{M_{3}, \{i_{\ell}\}, H\}=0$ also give a con-
tradiction with the above: $V\{M_{8}, \{i_{t}\}, F+H\}=1$ .

$E_{9})$ $V\{M, \{i_{\ell}\}, E_{9}\}=0,$ $(\exists M_{1})\{(M_{4}\geq M)/\{i_{\ell}\}\wedge V\{M_{1}, \{i_{\ell}\}, F\supset G\}=1$

$\wedge V\{M_{1}, \{i_{\ell}\}, (F\supset G^{\prime})\supset F^{\prime}\}=0\}$ ,
$(\exists M_{2})\{(M_{2}\geq M_{1})/\{i_{i}\}\wedge V\{M_{2}, \{i_{\ell}\}, F\supset G^{\prime}\}=1\wedge V\{M_{2}, \{i_{i}\}, F^{\prime}\}=0\}$ ,
$(\exists M_{8})\{(M_{8}\geq M_{2})/\{i_{i}\}\wedge V\{M_{8}, \{i_{\ell}\}, F\}=1\}$ and by L. 3. $V\{M_{\epsilon}, \{i_{i}\}, F\supset G\}=1$ and
$V\{M_{8}, \{i_{i}\}, F\supset G^{\prime}\}=1$ . Hence;
$(M_{4})\{(M_{4}\geq M_{8})/\{i_{\ell}\}\rightarrow(V\{M_{4}, \{i_{\ell}\}, F\}=0\vee V\{M_{4}, \{i_{l}\}, G\}=1)\}$ and
$(M_{4})\{(M_{4}\geq M_{8})/\{i_{\ell}\}\rightarrow(V\{M_{4}, \{i_{\iota}\}, F\}=0\vee V\{M_{4}, \{i_{\iota}\}, G^{\prime}\}=1)\}$ .
The possible case in last two lines is only $V\{M, \{i_{i}\}, F\}=0$ .
But putting $M_{4}=M_{8}$ we obtain a contradiction with the above:
$V\{M_{3}, \{i_{\ell}\}, F\}=1$ .

The verification of other axioms is immediately.
We verify proof rules:

$R_{1})$ Let $F\in P(k)$ and $F\supset G\in P(k)$ ; then by L. 12. we can assume
$\{i_{\iota}\}\supset\{i_{w(F\supset G)}\}=i_{w(G)}\}$ and $\{i_{\ell}\}\supset\{i_{w(F)}\}$ . Let $V\{M, \{i_{\ell}\}, G\}=0$ but in view of the
assumptions $V\{M, \{i_{\ell}\}, F\}=1$ and $V\{M, \{i_{\ell}\}, F\supset G\}=1$ ; hence $V\{M, \{i_{\ell}\}, G\}=1$ ,
i.e. a contradiction.2)

$R_{2})$ Let a contrary $V\{M, \{i_{i}\}, F\supset\prod aG(a/x)\}=0$ ; therefore
$(\exists M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\wedge V\{M_{1}, \{i_{\ell}\}, F\}=1\wedge V\{M_{1}, \{i_{\ell}\}, \prod aG(alx)=0\}$ ,
$(\exists i)(\exists M_{2})\{(M_{2}\geq M_{1})/\{i_{\ell}\}\wedge V\{M_{2}, \{i_{\ell}\}, i, G(x_{\ell}lx)\}=0\}$ and by L. 3. also
$V\{M_{2}, \{i_{\ell}\}, i, F\}=1$ ; hence $V\{M_{2}, \{i_{\ell}\}, i, F\supset G(x_{\ell}lx)\}=0$ . And by virtue of
L. 12. we have a contradiction, for $xeF$.

$R_{8})$ Let a contrary $V\{M, \{i_{\ell}\}, \sum aF(a/x)\supset G\}=0$ ; therefore
1) See footnote 1, page 15.
2) In the case of (8D) we iterate the process.



GENERALIZED MODELS 17

$(\exists M_{1})\{(M_{1}\geq M)/\{i_{i}\}\wedge V\{M_{1}, \{i_{\ell}\}, \Sigma aF(a/x)\}=1\wedge V\{M_{1}, \{i_{i}\}, G\}=0\}$ .
First recall $\{i_{\ell}\}$ is non-empty; then alternatively:
$(\exists i)\{(i\in\{i_{\iota}\})\wedge V\{M_{1}, \{i_{\ell}\}, F(x_{\ell}/x)\}=1$ and so $V\{M, \{i_{\ell}\}, F(x_{\ell}lx)\supset G\}=0$ and by
virtue of L. 12. it contradicts with the inductive assumption, for $x\in G$ .

So the proof of (I) is closed.
The proof of (II) (1) is partly included in the above and it i8 analogical. The

reader should write it and let him point out that $F_{1}^{\prime\prime\prime}\supset F_{1}^{\prime}eP(k)$ . Hence the
second part of (II) (2) follows from the first one; and it remains the following
complemention:

The first part of (II) (2) for axioms follows from L. 6. and E\’i3 $\in P(k)^{1)}$

Hence, let $F\in PW(k)$ and $F\supset G\in PW(k)$ ; hence by the inductive assumption
$F^{\prime\prime}\in P(k)$ and $(F\supset G)^{\prime\prime}\in P(k)$ . So it suffices to prove $F^{\prime\prime}\supset G^{\prime\prime}\in P(k)$ .

Let a contrary: $V\{M, \{i_{\ell}\}, F^{\prime\prime}\supset G^{\prime\prime}\}=0$ ; then alternatively:

$(\exists M_{1})\{(M_{1}\geq M)/\{i_{\ell}\}\wedge V\{M_{1}, \{i_{\iota}\}, F^{\prime\prime}\}=1\wedge V\{M_{1}, \{i_{\iota}\}, G^{\prime\prime}\}=0\}$ ,
$(\exists M_{2})\{(M_{2}\geq M_{1})/\{i_{\ell}\}\wedge V\{M_{2}, \{i_{i}\}, G^{\prime}\}=1\},$ $(M_{8})\{(M_{3}\geq M_{2})/\{i_{\ell}\}\rightarrow V\{M_{8}, \{i_{\ell}\}, G\}=0\}$ .
Hence by L. 8. $V\{M_{2}, \{i_{\ell}\}, F^{\prime\prime}\}=1,$ $V\{M_{2}, \{i_{i}\}, G\}=0$ ; and
$(M_{4})\{(M_{4}\geq M_{2})/\{i_{i}\}\rightarrow V\{M_{4}, \{i_{\iota}\}, F^{\prime}\}=0\},$ $(\exists M_{b})\{(M_{b}\geq M_{4})/\{i_{l}\}\wedge V\{M_{b}, \{i_{i}\}, F\}=1$ ;
the last conclusions also follow from $F^{\prime\prime}\in P(k)$ .
But $V\{M_{b}, \{i_{\iota}\}, (F\supset G)^{\prime\prime}\}=1$ ; hence $(M_{6})\{(M_{6}\geq M_{f})/\{i_{i}\}\rightarrow V\{M_{6}, \{i_{\ell}\}, (F\supset G)^{\prime}\}=0\}$ ,
$(\exists M_{7})\{(M_{7}\geq M_{6})/\{i_{\ell}\}\wedge V\{M_{r}, \{i_{\ell}\}, F\supset G\}=1\}$ ,
$(M_{8})\{(M_{8}\geq M_{7})/\{i_{\ell}\}\rightarrow(V\{M_{8}, \{i_{\ell}\}, F\}=0\vee V\{M_{8}, \{i_{\ell}\}, G\}=1)\}$ .
From the above by L. 3. also $V\{M_{8}, \{i_{i}\}, F\}=1$ ; therefore the case
$V\{M_{8}, \{i_{\ell}\}, F\}=0$ is impossible and it remains: $V\{M_{8}, \{i_{\ell}\}, G\}=1$ .
Putting $M_{3}=M_{8}$ in $(M_{8})\{(M_{3}\geq M_{2})/\{i_{\ell}\}\rightarrow V\{M_{8}, \{i_{\ell}\}, G\}=0\}$ we obtain also
$V\{M_{8}, \{i_{\iota}\}, G\}=0$ , i.e. a contradiction.

And it proves T. 1.
Starting to the inverse implication of T. 1. (I) we recall:
A set $U$ of formulas is $H_{0}$-consistent iff the formula $H_{0}$ is not a thesis of the

calculus with added axioms belonging to $U$. And for brevity we shall restrict
ourselves only to the rule $R_{1}$ . (In the general case we regard free variables of
$U$ as constants.) $H_{0}$ is constant and: $H_{0}=F^{\prime}$ , for some $F$.

The construction of a maximal consistent family of formulas is analogical to
Thiele [49]; my method of the construction of a maximal filter in the intuitionistic
predicate calculus is published in another paper, see [21].

1) The veryfication of $R_{8}$ is almost identical with the above. ie $\{i_{\ell}\}$ in (6d) and so
we do not use here L. 3. ; but the proof for the evaluation functional $W$ uses L. 30.
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Thus let
$(U)$ $H_{1},$

$\cdots,$
$H_{m},$ $\cdots$

be all formulas of the predicate calculus and let us define:

$U_{0}=the$ set of all theses of the calculus with closed axioms $U^{0}$ ,

$U_{m+1}=$ $\left\{\begin{array}{ll}U_{m}, if U_{m}+\{H_{m+1}\} is & inconsistent;\\U_{m}+\{H_{m+1}\}, if the l & st set is consistent and H_{m+1}\neq\prod aH^{\prime}\supset H_{0} or H_{m+1}\neq\\\neq\sum aH, for some H & and H_{0} is given above;\\U.+\{H_{m+1}, H^{\prime}(x/a)\supset & H_{0}\}, if U+\{H_{m+1}\} is consistent and H_{m+1}=\prod aH^{\prime}\supset H_{0},\\H_{0} is the formula gi & en above and xeU_{m}+H_{m+1}-U_{0} with the smallest\\index; & \\U_{m}+\{H_{m+1}, H(xla)\}, & if U_{m}+\{H_{m+1}\} is consistent and H_{m+1}=\sum aH and\\xe U.+H_{m+1}-U_{0} wi & h the smallest index;\end{array}\right.$

$U=\sum_{m=0}^{\infty}U_{m}^{1)}$

The set $U$ is $H_{0}$-maximal filter2) with properties asserted in the following

6 lemmas of classical and intuitionistic calculi:

LU1. $ E^{\prime}\in$ U.iff. $EeU$ .
LU2. $ E\supset F\in$ U.iff. $Ee$ $UVF\in U$ .
LU3. $ E+F\in$ U.iff. $E\in U\vee F\in U$ .
LU4. $ EF\in$ U.iff. $E\in U\wedge F\in U$ .
LU5. $\Sigma aH\in$ U.iff. $(\exists i)\{H(x_{i}/a)\in U\}$ .
LU6. $\Pi aH^{\prime}\in$ U.iff. $(i)\{H^{\prime}(x_{i}/a)\in U\}$ .

If $\prod aH\in U$, then $(i)\{H(x_{\ell}la)\in U\}$ .
If $(i)\{H(x_{i}/a)\in U\}$ , then $\prod aH^{\prime\prime}\in U$ .

Proving alternatively the last lemmas we additionaly use (in LU1. and LU2.)

the intuitionistic theses $(E\supset H_{0})\supset\{(E^{\prime}\supset H_{0})\supset H_{0}\}$ and $(E\supset H_{0})\supset(\{(E\supset F)\supset H_{0}\}\supset H_{0})$

for $H_{0}=F^{\prime}$ , for some $F^{8)}$

LU1.–LU6. give the reason of the appearance of the intuitionistic predicate

calculus asserted in the following two theorems:
1) The proof of consistency of $U$ remains for readers; we use here the formal

theorems of the intuitionistic propositional calculus:
$\{(H^{\prime}\supset H_{0})\supset H_{0}\}\supset\{(H_{0}\supset H_{0})\supset H^{\prime}\},$ $\{(H_{0}\supset H_{0})\supset H\}\supset\{\{H\supset H_{0})\supset H_{0}\}$ ; but
{ $(H\supset H_{0})\supset H_{0}I\supset\{(H_{0}\supset H_{0})\supset H\}$ is not a thosis of one. We also used the set denotations of

sum, difference and infinite sum alternatively: $+$ , -, $\sum_{m=0}^{\infty}$.
We use the deduction theorem without citing it.
2) So $U$ creates a saturated theory.
3) If the conditions do not hold, then both formulas are not theses of the calculus.
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Let $W_{0}$ be the classical evaluation functional in a usual model; then obviously:
T. 2. Let $U$ be $H_{0}$-maximal filter and let us regard only such for formulas

which have $\geq 1$ negation after each general quantifier; let $F_{J^{m}}\in M$ and let; $F_{J^{m}}(r_{1}$ ,
, $r_{m}$) iff. $f_{j}^{m}(x_{r_{1}},\cdots, x_{rm})\in U$ ; then:

$ E\in$ U.iff. $W_{0}\{M, E\}=1$ .
The easy inductive $prf$ of T. 2. is published, for instance, in [211; it also

contains $Skolem- L\ddot{o}venheim’ s$ theorem.
T. 1. and T. 2. give a strong absorption relation a\S \S erted in the following

completeness theorem:
T. 3. $H_{0}$ is classically valid iff $H_{0}$ is a thesis of the classical predicate calculus.

Let now $H_{0}=F^{\prime}$ , for some $F$ ; then:
If $H_{0}$ has at least 1 negation after each general quantifier, then:
$H_{0}$ is clas8ica11y valid iff $H_{0}$ is a thesis of the intuitionistic predicate calculus.

(The structure of $H_{0}$ gives further generalizations of the last theorem.)

So the strong absorption relation means: write 2 negations after each general
quantifier of a regarded formula and negate it 2-times, if it is not negated (it is
a very important property of the calculus, e.g. defining $\prod$ by means of $\sum$ ).

Therefore we can determine the classically valid formulas according to the
last strong absorption relation writing a suitable formula instead of $E$ in D. 4.
Try to reformulate D. 4. without the added negations ?

It remainu to complete the construction by maximal non-classical filters; ones
have the following properties ( $H_{0}$-arbitrary):

L1U. If $E^{\prime}\in U$, then $EeU$. If $EeU,$ $E^{\prime}eU$, then $E^{\prime\prime}\in U$.
$L2U$ . If $E\supset F\in U$, then $E\in U$ or $F\in U$.

If $F\in U$, then $E\supset F\in U$. If $E=G^{\prime}eU$, for some $G$ , then $E\supset FeU$.
And LU3.–LU6. without changes.
So the difference between $H_{0}$-maximal filter, with arbitrary $H_{0}$ , and $H_{0}$-maximal

filter with $H_{0}=F^{\prime}$ , for some $F$, is in L1U and $L2U$ ; proving ones we additionally
use the following intuitionistic theses: $E+E^{\prime}+E^{\prime\prime}$ and $(E^{\prime}+F)\supset(E\supset F)$ , respec-
tively.

The basic idea of the following proof is a construction of an intuitionistic
chain family $Q^{0}$ .

First of all regard an infinite sequence of regarded calculi: $L_{0},$ $L_{1},\cdots,$ $L_{m},$ $\cdots$ ,
where $L_{m+1}$ results from $L_{m}$ by adding an infinite number of new free variables,
$m=0,1,$ $\cdots$ , and $L_{0}$ also has an infinite number of free variables.

Guess $L_{\omega}$ is the union of all calculi: $L_{0},$ $L_{1},$ $\cdots$
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For an arbitrary maximal filter $U$ in $L_{m}$ introduce the following denotations

-called: extension chain properties:

If $E\in U$, then put $U_{B}=U$.
If $F^{\prime}\in U$, then $U+\{F\}$ is F’-consistent (by $E_{\mathfrak{g}}$); hence there is F’-maximal

filter $U_{1}\supset U\dotplus\{F\}$ in $L_{m}$ with $F^{\prime}\Xi U_{1}$ ; denote the last $U_{1}=U_{F^{\prime}}$ .
If $F\supset GeU$, then it is a G-maximal filter $U_{2}\supset U+\{F\}$ in $L_{m}$ with $GeU_{2}$ ;

denote it $U_{2}=U_{(F\supset G)}$ .
If $\prod aFeU$, then for $x\in L_{m}$ there exists $F(xla)$-maximal filter $U_{3}\supset U$ in $L_{m+1}$

with $F(x/a)SU_{a}$ , for some $xeF$ ; denote it $U_{8}=U^{1)}\Pi_{aF}$.
If $E$ is not of the last 4 forms, then also $U=U_{B}$ .
Let now $U_{0}$ be an arbitrary $H_{0}$-maximal filter in $L_{0}$ ; so $H_{0}eU_{0}$ and $H_{0}$ is

not a thesis in $L_{0}$ . Guess
(1) $H_{0},$ $H_{1},$ $\cdots,$

$H_{n},$ $\cdots$

is a sequence of all formulas of the calculus $L_{0}$ and define a multiple increasing

chain of maximal filters:
$ U_{0}\subset U_{i1}\subset U_{\ell 2}\subset\cdots$

1. $U_{0}=U_{H_{0}}$ , where $H_{0}$ is given above;

2. $U_{01}=U_{H_{1}}$ , where $U_{H_{1}}$ is defined above with $U=U_{0}$ ; obviously $U_{0}\subset U_{01}$ ;

3. Guess we defined $U_{0}\subset U_{01}\subset\cdots\subset U_{0m-1}$ ; then $U_{0m}=U_{H_{m}}$ , where $U_{H_{m}}$ is defined
above with $U=U_{0m-1}$ ;

4. $U_{11}=U_{H_{2}}$ , where $U_{H_{2}}$ is defined above with $U=U_{0}$ and not $U_{01}$ as in 2;

5. Guess we defined $U_{0}\subset U_{11}\subset U_{12}\subset\cdots\subset U_{1m-1}$ ; then $U_{1m}=U_{Hm}$ , where $U_{H_{m}}$ is
defined above with $U=U_{1m-1}$ ;

6. $U_{21}=U_{H_{3}}$ , where $U_{H_{3}}$ is defined above with $U=U_{0}$ and not $U_{01}$ or $U_{11}$ as in
2 or 4.

7. Guess we defined $U_{0}\subset U_{21}\subset\cdots\subset U_{2m-1}$ ; then analogously $U_{2m}=U_{H_{m+2}}$ , where
$U_{H_{m+2}}$ is defined above with $U=U_{2m-1}$ ;

8. $U_{31}=U_{H_{4}}$ , where $U_{H_{4}}$ is defined above with $U=U_{0}$ and not $U_{01},$ $U_{11}$ or $U_{21}$ as
as in 2, 4, 7;

9. And analogously to 7, 8 till infinity.

$\ovalbox{\tt\small REJECT} 1)$If $L_{0}$ hasa finite number of free variables, then in the definitionofinthedefinition of $H_{0}$-maximal
filter, p. 13., omit the last two lines: “ $U_{m}+\{H_{m+1}, H(xla)\}$ , if $U_{m}+H_{m+1}$ is consistent
and $ H_{m+1}=\cdots$ ”.

Then guess also the following extension property:
If $\sum aF\in U$, then for $x\overline{\in}L_{m}$ there exists $(\sum aF)^{\prime}$-maximal filter $U_{4}\supset U+\{F(x/a)\}$ in $L_{m+1}$

with $F(xla)\in U_{4}$ , for some $x\overline{\in}F$ ; denote it $U_{4}=U_{\Sigma aF}$ .
So $L_{0},$ $L_{1},$ $\cdots$ may have a finite number of free variables but $L_{\omega}$ must have an infinite

number of ones.
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Thus we obtained a sequence of maximal filters $U_{0},$ $U_{1}^{1},$ $U_{2}^{1},$ $\cdots$ and we go

over to the calculus $L_{1}$ replacing (1) by the sequence of all formula8 of $L_{2}$ .
Perform operations 1–9 with the last maximal filters (i.e. replacing $U_{0}$ by

alternatively: $U_{1}^{1},$ $U_{2}^{1},$ $\cdots$ ). Hence we obtain a new sequence of maximal filters
$U_{0},$ $U_{1}^{2},$ $U_{2}^{2},$ $\cdots$ and we go over to the calculus $L_{3}$ ; and iterate the operations till
infinity.

The results of those operations give the intuitionistic chain family.

Because $L_{0}$ has an infinite number of free variables, therefore it is a one-one
correspondence $q$ between formulas of $L_{\omega}$ and those free variables denoting: $g(x)$

$=E_{g(x),}x\in L_{0}$ .
Guess now $S$ is a new sign of a monadic relation, i.e. $S\in L_{\omega}$ , and let $U$ be

a regarded maximal filter; then put:

$(S)$ $ S(x)\in$ U.iff. $E_{g(x)}\in U.1$ )

D. 6. Two different definitions:
(1) $Q^{0}$ has the following elements: the maximal filter $U_{0}$ in $L_{0}$ with $H_{0}eU_{0}$

and all filters of the generated intuitionistic chain with the described
extension chain propertiev and $(S)$ ;

(2) $Q^{0}$ is the set of all maximal filters (or with restrictions to parts of $H_{0}$)

with all generated chains and extension properties described above. (So

we start here not from $U_{0}$ but from an arbitrary maximal filter.)

D. 7. For D. 6., (1):

$(1, 1)$ $(U_{2}\geq U_{1})/\{i_{i}\}$ iff $U_{2}/\{i_{\ell}\}$ contains all atoms belonging to $U_{1}$ with indices
belonging to $\{i_{\iota}\}$ . For D. 6., (2):

$(1, 2)$ $(U_{2}\geq U_{1})/\{i_{i}\}$ iff $U_{2}/\{i_{l}\}$ contains all formulas belonging to $U_{1}/\{i_{\ell}\}$ ,

where $U/\{i_{i}\}$ is the set of all formulas belonging to $U$ with indices belong-

ing to $\{i_{i}\}$ . And it is reformulated analogously to $(1, 1)$ introducing new
signs of monadic relations $g_{1},$ $g_{2},$ $\cdots$

So let $E_{1},$ $E_{2},$ $\cdots$ be all formulas of the predicate calculus; then put:
$q_{i}(0)\in U$ iff $E_{i}\in U,$ $i=1,2,$ $\cdots$ ; then obviously $(1, 2)$ has the sense of $(1, 1)$

but for the generated set of maximal filters with new signs $g_{1},$ $g_{2},$
$\cdots$ .

Of course the chains $Q^{0}$ generated by $H_{0}$ in D. 6. and D. 7. have the follow-
ing propertes:

(1’) If $U_{1},$ $U_{2}\in Q^{0},$ $\{i_{\ell}\}=0,1,$ $\cdots$ , then:
1) If $L_{0}$ has a finite number of free variables, then $S$ is replaced by a finite number

of monadic relations: $S_{1},$ $S_{2},$
$\cdots,$

$S_{r}$ . (Then we have more formulas of $L_{0}$ than free varia-
bles; and analogously for $L_{1},$ $L_{2},$ $\cdots$ )
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$(U_{2}\geq U_{1})/\{i_{i}\}$ iff. ( $U_{1},$ $U_{2}$ are equal for $atoms$) $\vee(U_{2}\supset U_{1})$ .
(2) For subformulas of a given formula $H_{0}$ and an arbitrary finite sequence $\{i_{t}\}$

the chain $ U_{0}/\{i_{\ell}\}\subset U_{1}/\{i_{\iota}\}\subset\cdots$ has a finite number of different elements, i.e.
they are only finite chains composed of subformulas of $H_{0}$ with indices $\{i_{\ell}\}$ in
the described form.
Lindenbaum’s algebras of subformulas of $H_{0}$ or D. 7. $(1, 2)$ indicate analogical

asymptoticly finite adequate generalized models for other (constructive) calculi,

e.g. restricting ourselves to $Q$ with properties: $F^{\prime}+F^{\prime\prime}\in P(k, Q)$ or $(F\supset H)\supset$

$\supset\{(F^{\prime}\supset H)\supset E\}\in P(k, Q)$ , for closed $H$ ; and in the last case we obtain LU1.–
LU6. for closed $H$.

The reader should remember the generation of $Q^{0}$ and all properties of D. 6.
and D. 7., for we do not cite their applications.

T. 4. 1. Let $\{i_{\ell}\}=0,1,$ $\cdots$ and let $Q_{0}$ be the set of all models $M^{u}$ defined in
the equivalence:

$F_{J^{m}}(\gamma_{1}, \cdots, \gamma_{m})\in M^{u}$ .iff. $f_{J^{m}}(x_{r_{1}}, \cdots, x_{r_{m}})\in U$ ;

Then:
$V\{Q_{0}, M^{u}, \{i_{\ell}\}, E\}=1$ .iff. EG $U$ .

Proof:–The case D. 6. (1) and D. 6. (2) are similar; so we restrict ourselves to
D. 6. (1) and D. 7. (1) and the appropriate reading of the following proof remains
for readers.

Because $\{i_{\ell}\}=0,1,$ $\cdots,$ $U_{0}\subset U$, for all $U\in Q^{0}$ and $(1^{o})$ , therefore:
If $M^{u_{1}},$ $M^{u_{2}}\in Q_{0}$ , then:

$(M^{u_{2}}\geq M^{u_{1}})/\{i_{\ell}\}$ iff. $U_{2}\supset U_{1}$ .
And we shall write $(M^{u_{2}}\supset M^{u_{1}})$ instead of $(M^{u_{2}}\geq M^{u_{1}})/\{i_{i}\}$ .

Of course, T. 4. 1. holds for atoms.
Let it hold for formulas of the length $<m$ ; we shall prove it for formulas

of the length $m$ :
We regard different cases according to the structure of $E$ :

1. $E=F^{\prime}$ , for some $F$ ; then by the inductive hypothesis:
$V\{M^{u}, F^{\prime}\}=1.\rightarrow.(M^{u_{1}})\{(M^{u_{1}}\supset M^{u})\rightarrow V\{M^{u_{1}}, F\}=0\}.\rightarrow.(U_{1})\{(U_{1}\supset U)\rightarrow(FeU_{1})\}^{1)}$

Putting $U_{1}=U_{F^{\prime}}$ we obtain a contradiction; and the inverse implication:
$ F^{\prime}\in U.\rightarrow.(U_{1})\{(U_{1}\supset U)\rightarrow(F^{\prime}\in U_{1})\}.\rightarrow$

$(U_{1})\{(U_{1}\supset U)\rightarrow(F\in U_{1})\}.\rightarrow.(M^{u_{1}})\{(M^{u_{1}}\supset M^{u})\rightarrow V\{M^{u_{1}}, F\}=0\}.\rightarrow.V\{M^{u}, F^{\prime}\}=1$ .
1) $V\{M, E\}$ is an abbreviation of $V\{Q_{0}, M, \{i_{\iota}\}, E\}$ for $\{i_{\ell}\}=0,1,2,$ $\cdots$ .
2) And if $Q^{o}$ is one-elementing, then the reader should simultaneously verify the

classical completeness proof.
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2. $E=F\supset G$ , for some $F$ and $G$ ; then by the inductive hypotheis:
$V\{M^{u}, F\supset G\}=1.\rightarrow.(M^{u_{1}})\{(M^{u_{1}}\supset M^{u})\rightarrow(V\{M^{u_{1}},F\}=0\vee V\{M^{u_{1}}, G\}=1)\}$

$\rightarrow(U_{1})\{(U_{1}\supset U)\rightarrow(FeU_{1}\vee G\in U_{1})\}$ ; putting $U_{1}=U_{(p\supset g)}$ we obtain a contradic-
tion. And the inverse implication:
$ F\supset G\in U.\rightarrow.(U_{1})\{(U_{1}\supset U)\rightarrow(F\supset G\in U_{1})\}.\rightarrow.(U_{1})\{(U_{1}\supset U)\rightarrow(F\in U_{1}\vee G\in U_{1})\}.\rightarrow$ .
$\rightarrow.(M^{u_{1}})\{(M^{u_{1}}\supset M^{u})\rightarrow(V\{M^{u_{1}}, F\}=0\vee V\{M^{u_{1}}, G\}=1)\}.\rightarrow.V\{M^{u}, F\supset G\}=1$ .

3. The cases that $E$ is an alternative or conjuction of two formulas are trivial
and remain for readers.

4. Because $\{i_{\ell}\}=0,1,2,$ $\cdots$ , therefore the case $E=\Sigma aF$ is also immediately.
5. $E=\prod aF$, for some $F$ ; then by the inductive hypothesis:

$ V\{M^{u}, \prod aF\}=1.\rightarrow.(M^{u_{1}})(i)\{(M^{u_{1}}\supset M)\rightarrow(V\{M^{u_{1}}, F(x_{\ell}la)\}=1\}.\rightarrow$ .
$\rightarrow.(U_{1})(i)\{(U_{1}\supset U)\rightarrow(F(x_{\ell}/a)\in U_{1})\}$ . Putting $U_{1}=U_{n_{aF}}$ we obtain a contradic-

tion; the inverse implication:
$\prod aF\in U.\rightarrow.(U_{1})(i)\{(U_{1}\supset U)\rightarrow(F(x_{\ell}/a)\in U_{1})\}.\rightarrow$ .
$\rightarrow.(M^{u_{1}})(i)\{(M^{u_{1}}\supset M^{u})\rightarrow V\{M^{u_{1}}, F(x_{\ell}/a)\}=1.\rightarrow.V\{M^{u}, \prod aF\}=1$ , q.e.d.
T. 4. 1. with L. 30. and $W=V$ in the domain of all numbers $\geq 0$ imply:
T. 4. 2. Let $\{l\}\supset i(E)$ and let here hold other assumptions of T. 4. 1., then:

$W\{\aleph_{0}, Q_{0}, M^{u}, \{l\}, E\}=1.\rightarrow E\in U/\{l\}$ .
It remains to replace $\aleph_{0}$ in T. 4. 2. by an arbitrary number $k\geq n(E)$ :
First of all note that adding to each model a new sequence of monadic rela-

tions $h_{1},$ $h_{2},$ $\cdots$ , with $h_{\ell}(j)$ iff $i=j$ , we obtain the following property introduced
in my cited Papers:

$R(Q).iff.(M_{1})(M_{2})(i)(j)\{(M_{1}, M_{2}\in Q)\wedge(M_{1}/i/=M_{2}/j/)\rightarrow(i=j)\}$

So after the last extension of models in D. 6. (1) with D. 7. (1) we obtain a
generalized model $Q_{0}$ with $R(Q_{0})$ ; and it holds:

T. 5. Let $Q$ be the smallest set of finite models of power $k$ with $Q\supset M_{1}[k]$ ,
for all $M_{1}\in Q_{0},$ $M\in Q_{0},$ $M^{*}\in Q,$ $F\in E,$ $k\geq n(E)$ and $l+p(F)\leq k$ ; then:
(1) If $R(Q_{0})$ and $M/\{i_{\ell}\}=M^{*}/\{l\}$ , then:

$W\{\aleph_{0}, Q, M, t\aleph_{0}\},$ $F$} $=1$ iff. $W\{k, Q, M^{*}, \{l\}, F\}=1$ ;
(2) If $(M_{1}\geq M)/\{l\}$ is replaced by $(M_{1}=M)/\{l\}$ in $(Od)-(Od6)$ , i.e. we regard the

new “ classical” predicate calculus, with one-elementing $Q_{0}=\{M^{0}\}$ and $E$ is an
alternative of closed formulas $\sum a_{1}\cdots\sum a_{\ell}\prod a_{\ell+1}\cdots\prod a_{m}H$, where $H$ has not
quantifiers, and $W\{\aleph_{0}, Q_{0}, M^{0}, t\aleph_{0}\},$ $E$} $=0$ ; then omitting the last relation $R$

1) It gives the evaluation function in the model $M$.
T. 5. $(2^{o})$ may be generalized but it is formulated with respect to the classical pre-

dicate calculus.
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we obtain: If $M^{0}/\{i_{i}\}=M^{*}/\{l\}$ and $W\{\aleph_{0}, Q, M^{0}, t\aleph_{0}\},$ $F$ } $=0$ , then $W\{k,$ $Q,$ $M^{*}$ ,
$\{l\},$ $F$} $=0$ ; so $EeP^{0}$ in the new classical predicate calculus with $E_{13}$ restricted
to propositional formulas.

Proof:–We prove $(1^{o})$ and $(2^{o})$ by induction with respect to the length of the
formula $F$. And the proof of $(1^{O})$ is simple in our asIumption having noted:

$R(Q_{0})\wedge(M/\{i_{i}\}=M^{*}/\{l\})\wedge(M_{1}/\{j_{i}\}=M_{1}^{*}/\{l\})\wedge((M_{1}/\{j_{1}\}\geq M)/\{i_{\iota}\}$

V $(M_{1}^{*}/\{l\}\geq M^{*})/\{l\}).\rightarrow(i_{1}=j_{1})\wedge\cdots$ A $(i_{\ell}=j_{\ell})$

The whole proof is similar to my publi8hed one and so we restrict ourselves
to 8 cases:

If $F$ is an atom, then obviously (1’) holds.
Let $(1^{o})$ hold for formulas of the length $<n$ ; we prove it for formulas of

the length $n$ :
Regard cases:

(1) $F=G^{\prime}$ , for some $G$ .
Then by (Od2) and the inductive assumption:
$W\{\aleph_{0}, Q_{0}, M, t\aleph_{0}\},$ $F^{\prime}$ } $=1$ iff. $(t)(M_{1})\{(t\geq l)\wedge(M_{1}\geq M)\rightarrow$

$\rightarrow W\{\aleph_{0}, Q, M_{1}, \{\aleph_{0}\}, F\}=0\}$ iff. $(t)(M_{1}^{*})\{(t\leq t\leq k-p(F))\wedge(M_{1}^{*}\geq M^{*})/\{l\}\rightarrow$

$\rightarrow W\{k, Q, M_{1}^{*}, \{t\}, F\}=0\}$ iff. $W\{k, Q, M_{1}^{*}, \{l\}, F^{\prime}\}=1$ .
(2) $F=\prod aG$ , for 8ome $G$ .

Then by (Od6) and the inductive assumption:
$W\{\aleph_{0}, Q_{0}, M, \{\aleph_{0}\}, \prod aF\}=1$ Iff. $(i)(M_{1})\{(M_{1}\geq M)\rightarrow$

$\rightarrow W\{\aleph_{0}, Q_{0}, M_{1}, t\aleph_{0}\},$ $F(x_{\ell}la)$ } $=1$} iff. $(i)(M_{1}^{*})\{i\leq k)\wedge(t=\max(i, l))\wedge$

A $(M_{1}^{*}\geq M^{*})/\{l\}\rightarrow W\{k, Q, M_{1}^{*}, \{t\}, F(x_{\ell}/a)\}=1\}$ iff. $W\{k, Q, M, \{l\}, \prod aF\}=1$ .
The proof of $(2^{o})$ is almost identical with the published one but in (2) we

have only an implication and starting the induction from $H$ we point out that
each substitution of $\prod a_{+1}\cdots\prod a,{}_{n}H$ is always $0$ in the model $M^{0}$ .

The whole proof remains for readers.
The generalized model $Q$ defined in T. 5. (1) hag the embedding property, page 12,

and my invariance relation holds for $Q$ .
From T. 4. 1. and T. 5. follow:
T. 6. 1. Classical predicate calculus:–Replace $(M_{1}\geq M)/\{l\}$ by $(M_{1}=M)/\{l\}$ and

Let $E$ be in a normal form; then:
$E$ is a thesis of the classical predicate calculus iff $E\in P$.
T. 6.2. Intuitioni8tic predicate calculus:$-E$ is a thesis of the calculus iff
1) We regard here the functional $W$ and Skolem’s normal forms remain true.
If we define $\Pi$ by $\sum$ , the assumption of normal forms may be omitted.
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$E\in P$ .
And T. 6. 2. for Heyting’s predicate calculus is proven in the following cases

of definitions $(Od)-(Od6)$ :
1. $k=\aleph_{0}$ and $Q_{0}$ multiple increasing chains, i.e. a tree of models with a defined

model included in all other ones.
2. The last $Q_{0}$ enlarged by means of monadic relations $h_{1},$ $h_{2},$ $\cdots$ with $h_{\ell}(j)$ iff

$i=j$ and truncated to arbitrary $k\geq n(E)$ .
3. $k=\aleph_{0}$ and $Q$ the set of all models of power $k$ according to D. 6. (2) with

D. 7. $(1, 2)$ . The enlargement of $Q$ by means of new relations and truncation
to arbitrary $k\geq n(E)$ remain here for readers.

And in view of my bad existence in Israel it was open, if the infinity $\aleph_{0}$

can be replaced by an arbitrary number $k\geq n(E)$ in T. 4. 2. of Heyting’s calculus

in the general case without an infinite 8equence of monadic relations. So let us
note that it can be reduced to a given finite number of monadic relation in the

following manner:
Look to definitions $(Od2)-(Od6)!-$

For a given finite $k$ the operators of conjuction, alternative and $\sum$ correspond

only one model to formulas but the operators of negation, implication and $\prod$ cor-
respond a finite set of models to the formulas. The same picture we have in a
domain of power $\aleph_{0}$ if we restrict it for a moment to a given finite $k$ ; and the

last correspondence may be preserved for finite $k$ , if we add a finite number of

new monadic relations likely to T. 5. $(1^{o})$ . But the la8t number of those monadic

relations tends to infinity for $ k\rightarrow\infty$ .
Such is a temporary reply to the last question and it is not so very important

in this paper, for we determided intuitionistic predicate calculi with algorithmic

approximations according to T. 6. and D. 4. (e.g. defining a18o $\prod$ by $\sum$ ); so for-

mulas of the intuitionistic calculi can be verified in many ways and let us indicate

three ones:
1. The evaluation functional $W$ of $(Od)-(Od6)$ ;

2. The functional $W$ with a finite number of added monadic relations;

3. Replacing the inequality of $(Od)-(Od6)$ by the equality: $(M_{1}=M)/\{l\}$ .
The determined predicate calculi are constructive by virtue of the above and

L. 8. or additionally:

L. 8. $0$ . Let for each $M_{1},$ $M_{2}\in Q$ :
Either $(M_{\iota}\geq M_{2})/\{0\}$ or $\{M_{2}\geq M_{\iota}$) $/\{0\}$ .
(It may be said that it is not a re8triction for $Q$ , if we define all relations
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by means of one relation of $n\geq 2$ arguments; and it is an exercise for readers.)

Let $F$ and $G$ be closed and $F+G\in P(k, Q)$ ; then $F\in P(k, Q)$ or $G\in P(k, Q)$ .
An immediate proof is a contrary. Let L. 8. $0$ . do not hold. Then there exist

$M_{1},$ $M_{2}eQ$ such that: $W\{M_{1}, \{0\}, F\}=0$ and $W\{M_{2}, \{0\}, G\}=0$ . By the assumption
we may guess: $(M_{1}\geq M_{2})/\{0\}$ ; hence by virtue of L. 80.: $W\{M_{1}, \{0\}, G\}=0$ ; hence
$W\{M_{1}, \{0\}, F+G\}=0$ , i.e. a contradiction with the assumptions.

D. 4. and T. 6. give different generalizations of Herbrand’s theorems in the
constructive calculi. $1$ )

$-$

Regarding here an arbitrary formula $E$ we may consider even and odd quanti-
fiers of $E$ (e.g. $\prod$ is in the scope of even or odd number of negations of $E$,
respectively), and the complete description of Herbrand’s theorems remain for
readers (with different forms of their formulation).

The reader should note that (3d) may be replaced by;
(3d) $V\{k, Q, M, \{i_{\ell}\}, F\supset G\}=1$ iff. $(M_{1})\{(M_{1}\geq M)/\{i_{i}\}\rightarrow$

$\rightarrow(V\{k, Q, M_{1}, \{i_{\ell}\}, F^{\prime}\}=1V\{k, Q, M_{1}, \{i_{\ell}\}, G\}=1)\}$ .
Then it is possible to regard the structure of $F$ in (2d) with further genera-

lizations.
My lectures in the Annual Meetings of Dutch Mathematicians and Bonn Mathe-

matical Seminar of 1972 replace the quantifier $(t)$ in (Od2) and (Od3) by new indices
according to the following example:
$(d^{\prime}2)$ $V\{k, Q, M, \{i_{\ell}\}, F^{\prime}\}=1$ iff. $(M_{1})(i)\{(i\leq k)\wedge(1+n(E)\leq k)\wedge$

$\wedge(M_{1}=M)/\{i_{\ell}\}\rightarrow V\{k, M, \{i_{\ell}\}, i, F\}=0\}$

And analogously for implication and general quantifier, i.e. the inequality is re-
placed by the equality with a longer sequence $\{i_{\ell}\},$ $i$ instead of $\{i_{i}\}$ but then $F+F^{\prime}$

is falsed only, if $F$ contains the general quantifier; of course, the last replace-
ment is a special kind of an inclusion.

According to L. 8. and L. 8. $0$ . we obtain different constructive properties of
the intuitionistic predicate calculi and for the functional $W$ and closed formulas:

L. 13. $ F+G\in$ P.iff. $(F\in P)(G\in P)$

Properties of evaluation functionals in Generalized Models closed under per-
mutations of numbers likely to my published papers remain for readers.

The paper gives new ultraproducts; and adequate characterizations of con-
structive theories by means of generalized ultraproducts will be published. . .

T. 3. and T. 6. 1. with T. 6. 2. give simple deductions of formulas of regarded
calculi:

1) For we start from $U_{0}$ , see footnotes 1, p. 20.
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So as exercises–assuming that free variables of $E$ are constants prove im-
mediately:
$\prod aE\supset(\sum aE^{\prime})^{\prime}\in P,$ $\sum aE\supset(\prod aE^{\prime})^{\prime}\in P,$ $(F\supset G)\supset(G^{\prime}\supset(G^{\prime}\supset F^{\prime})\in P$, and Glivenko’s
theorems: $\{E^{\prime}\supset(F\supset G^{\prime})\}\supset\{E^{\prime}\supset(F^{\prime\prime}\supset G^{\prime})\}\in P,$ $(E\supset F)\supset(E\supset F^{\prime\prime})\in P$ .

The above considerations imply Generalized Models for Modal Predicate Calculi
and they will be published in another paper, $[11, [4]-[21]$ .

Introducing the Theory of Natural Numbers we suppose that all elements of
a Generalized Model are identical on signs of natural numbers; then we obtain
all analogical theorems with both constructive properties of $+and\sum,$ $[41]-[49]$ .

Partition calculi in generalized models will be published in an other paper,
[37], [39], [2], [31

Forcing Theory has a simpler picture in Generalized Models, [321, [381, [401,

with stronger theorems.
Of course, the regarded predicate calculi are decidable with probability 1 and

decidable in partitions, [301, $[311, [33]$ , [841, [861, [371, [391, [501.

I owe the occa8ion to reassume:
The exposition deals with the oldest problem of sciences–the decidability

problem–solved first in primitive computations, afterwards in partition theorems
and according to this lecture and we presented three ways of algorithmization of
mathematical sciences:
1. Evaluation in generalized models.
2. Evaluation in usual models with my truncated general quantifier.

3. Evaluation in usual models with the usual interpretation of quantifiers but
with a negation of an intuitionistic property or with a classical negation and
with a modal operator or topology. Having received the results, it appears a
problem:

Is it the best algorithmization ?
And analogously to the lecture, about a half year ago, I obtained generalized

models for the classical predicate calculus composed only of 2 finite models $M_{0}\subset M^{0}$

with stronger complementions of important results.
Hence, taking the Cartesian product of both models $M_{0}$ and $M^{0}$ and identify-

ing two non-designated values $(0,1)$ and $(1, 0)$ we obtain Lukasiewicz’s epoch

(citation) result of 3-valued calculus.
Thus was created a general approach in algorithmization of mathematical

sciences (with many valued calculi) and my assertion:
Finite mathematical sciences are a generalization of infinite ones.
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And it is an obvious conclusion from the lecture with indicated differences in
both ways: finite and infinite ones.

So is sketched the unification of mathematical achievements–the only one
right direction of knowledge in compulsory studies of mathematical 8ciences in-
cluding statistics and especially–computers; and many new-old problems with
automatical predictions of artificial inteligence are seen. . .

Generalized Models demand monographies.
I believe that this approrch gives the reader a feeling in the epoc idea8 with

their strength and influenoe at forms of mathematical outlooks of all generations.
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