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‘1. Introduction

This article is concerned with variational problems which are invariant under
a certain group of transformations, a so-called infinite continuous group, which
depends upon 7 arbitrary functions and their derivatives up to some given order
¢. Such problems were initially studied by Emmy Noether who, in her classic
paper on the subject, proved the basic result: If a variational integral is invariant
under such a group, then there exist » identity relations between the variational
derivatives and their derivatives up to order q. This theorem, now known as the
Second Noether Theorem, has been discussed by Hilbert [2] in connection with
electrodynamics and gravitation (relativity), by Drobot and Rybarskt [3] in con-
nection with hydromechanics, and by Funk [4], Komorowski [5], Logan [6,1],
Plybon [8], and others, in general.

In this paper we present a new, direet proof of the Second Noether theorem
which avoids the fundamental variational formula for the variation of the action
integral. In the course of the proof, a new set of invariance identities is obtained
for single and multiple integral problems. These invariance identities, which imply
the classical Noether identities, can be computed directly from the Lagrangian and
the defining quantities of the group. Moreover, by introducing the variational
derivatives into the invariance identities, it is shown that conservation laws can be
derived under the assumption of invariance under an infinite continuous group.
This differs from the usual result (First Noether Theorem) where invariance under
a finite continuous group implies the conservation theorems.

We begin in Section 2 by formulating the Noether theorems and, in doing so,
establishing the notation used throughout. The classical proof of the Second
Noether Theorem is outlined in this section since a portion of it will be referred
to in subsequent sections. Sections 3 and 4 contain the new proofs, as well as the

1 The author was supported in this work by the National Science Foundation under
contract 5010-0410-75-SDP.
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invariance identities, for single and multiple integral problems, respectively; the
multiple integral case is somewhat complicated by the appearance of a functional
determinant.

2. The Second Noether Theorem
We consider a curve C in R® given parametrically in the form
r*=x*(t) , k=1,2,...,n 2.1)

where the parameter ¢ ranges over {,<t<t;. We assume that these functions are
of class C? and we denote their derivatives by

dx*
dt ’

d2x®
dt?

THt) = B t) =
We further assume that there is given a function, the Lagrangian, L: R®**'R!
which is of class C? in all of its arguments. Then, we construet the integral-of
L along the curve C, namely,

J(C) = §:°L(t, w(2), #(t))dt , @.2)

where x(t)=(x'(t), - -+, 2"(t)) and Z(t)=(L*({), - - -, E"(t)).

For comparison, and since we shall discuss conservation theorem with respect
to the Second Noether Theorem, we shall begin with the First Noether Theorem
on invariant variational problems. We consider an » parameter group of trans-
formations of the form

t=t@t, z, ¢!, T=Z',%,¢), (2.8)
where ¢, 8=1,2, .-.,7r denote the r independent parameters of the group. It is
assumed that these transformations are C* and that to the values el=e?= ... =¢"=0

of the parameters correspond the identity transformation f=t and Z*=x*. The
corresponding infinitesimal transformation associated with the group (2.3) is given
by

t=t+1.,(, ®)e'+o(le]) , } (2.4)

Tr=x*+£4(t, x)e*+o(le]) ,

where

lel=( nve, lim LD o

1sim0  |g]

and
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e ot(t, x, &) g oz*(t, x, &)

s ’ .
ae‘ e=0 as‘ =0

We will denote the above finite continuous group by G,. The following definition
will enable us to state the First Noether Theorem in concise form.

Definition. J(C) is an invariant of the group G, if

. - ~ - t
S“L <t,a':, -di_”-> df = S 'L, @, #)dt . 2.5)
2y dt to

Theorem 1. (Noether) If J(C) is an invariant of the group G, then there
exist r identities of the form

_B(L)(E—dr)= -j—t <<L~ &* gi;)r,-i- —;%;5’:) : 2.6)

where E\(L) denotes the variational derivatives

Under the assumption that Euler-Lagrange equations are satisfied, i.e., E(L)=0

for all &k, then there result r conservation laws of the form

, oL
9%

<L—~.72: )r,—{- OL e onstant . @2.8)

ox*

We shall show in Section 3 how similar first integrals of the Euler-Lagrange

Equations can be obtained from invariance under an infinite continuous group.
Rather than dependence on parameters, the Second Noether Theorem requires

that the group of transformations depend upon arbitrary functions and their deri-

vatives. In particular, we consider the transformation group

t-zi(ts Z, ¢t(t)! ¢El)(t)9 ccy ¢§Q)(t)) ’ }
Ek—'—-ik(ts z, ¢s(t)r ¢§1)(t)! Sty ¢§Q)(t)) H

where ¢,(t), s=1,.-.,7 are the r arbitrary, independent functions defined on
t,<t<t,, and ¢ denote their p** derivatives. We are using the standard con-
vention that ¢,t)=¢{”(t). The index p then ranges over »=0,1,--.,q. It is
assumed that to the values ¢,(t)=¢(t)= ... =9 P(t)=0 correspond the identity
transformation. The inﬁnitesimal transformation associated with (2.9) is

(2.9)

t=t+ay(t, x)p»+ ..,
(¢, )¢ } (2.10)

Tr=w"+b5 (¢, 1)+ - .-,
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where the “dots” denote higher order terms involving products of the ¢{», and

a0
o9 ${P)=0, Vovs ’
and
v OX*
? =g |8P=0, vave

We denote the above infinite continuous group by G,. and, for conciseness, we use
the following notation for the evaluation of a term at ¢{"=0, vpvs:

)] 4210, vpve =)o -

In terms of differential operators A* and B*’, we can write the infinitesimal trans-
formation as

£=t+A:(¢c)+ Tty }
Fr=a+ BRG)+ - .

(2.11)

We denote their formal adjoints by A* and B*. These are defined by the Lagrange
identity

§:¢H¢ dt = S::¢I?¢dt+[- 10,

to
where H is a differential operator and ¢=¢(t) and ¢=¢(t). The invariance of J(C)
under a G,. group is defined exactly as in the G, group case.

Theorem 2. (Noether) If J(C) is an invariant of the group G,., then thefe
exist r identities involving the variational derivatives of the form

B*(E(L))—A*(#*E,(L))=0 . (2.12)

The classical proof of these identities is carried out by calculating the total
variation 4J of J due to simultaneous variations 4¢ and 4x* of the independent
and dependent variables. This calculation, which is particularly involved for the

multiple integral case (see Gelfand-Fomin [9]), yields the fundamental varia-
tional formula for J:

4J(4t, do¥)= St‘ E(L)(da*—d*dt)dt + I:(L—a'a" %) s+ 2L g :l" . @13
t ox ox* t

The invariance of J under G,. is the same as
4J(A%(g.), B*(.,))=0 . (2.14)
Since the ¢,(t) are arbitrary, (2.14) holds for ¢,(t) which vanish along with their
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derivatives at t, and ¢,. Hence according to [(2.13) and [2.14), we obtain

S:lE,,(L)(B“(szs.)—a'v*A'(¢.»dt=o .
0

Using the adjoint property and again the arbitrariness of the ¢,(t), we conclude
that ‘

St‘ [B(Eu(L))— A" By L)l$.()dt =0 .

to
The independence of the ¢,(t) along with the Fundamental Lemma of the Caleulus
of Variations (see [9]) yield the Noether Identities [(2.12).
- We have given this classical proof since we shall refer in Sections 3 and 4 to
its latter portion. '

3. A New Proof-Single Integral Case

We now give a proof of which avoids the fundamental variational
formula, equation [(2.13), and hence the concept of small variations. The direct
calculation proceeds from the following evident, but basic, observation concerning
the invariance of J(C).

Remark 1. A necessary and sufficient condition for J(C) to be invariant of

G, is that

L (2,2 SF)dtidt=Lt, o, 4), 3.1)
for every ¢.(t), ¢°(t), ---,69(t). Differentiating with respect to ¢» we
obtain

;- dz\ @ dit 0 . - dx \ di
2 —=)—=0. 3.
L5 3 ) 5 () e = (05 5 ) 3 =0 ©.2)
Evaluating at ¢{»=0, vpvs, and noting from (2.10) that
o\ __, [(0F \ _.., [(4E\ _
(zoe )= (sger)=% - (&)=v

equation becomes

(9 di\, 9L , oL, oL a [d&*\ _
L, =, x)< S5t )0+ T o O T 35 5 ( 2 )0_0. (3.9)

The second factor in the first term of the last expression is
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d (lef)_ ? <a_£+a£a.7,,+ ot ¢§"’>-
t

Py T o \ 9t ' ox* o
Evaluated at ¢{»>=0, vsvp, this expression becomes
0 dt \ _ da% , ., da% _ da} 3.4
a¢<,’”<dt)o at % ow - dt (3.4)
To compute the last term in (8.3) we note that
dz* _ dz* di
dt dt dt
Consequently, .
0 dz* \ _dz* o dt 0 dz* \ di
e ( dt )‘ FTANFYID (dt)+ s ( a7 ) at (3.5)
Since '
dz* _ ox* ozr* ., 0Tt ;)
at ot o C T agm P
and
ii_ _ot ot ., o
gt ot Tt T e O

equation can be written at ¢{?’=0 as

._ai.l.ib.’g_a’;l:jk( day | 4 945 >+ ? (aazk ) ,
0

at | ox' at ot o> \ ot
or .
9 (ot \ _ dby . da ,
FYe ( di )o' a O dt (3:6)

The substitution of and [(8.4) into (8.3) enables us to state the following
theorem.

Theorem 3. A necessary condition for J to be an invariant of the group G,
is that the following r-+¢ identities hold true:

L da;’ + aL a; + aI; b’;f + aL (db’;s _i.k.%) :0 . (3-7)

dt at ox oz* \ dt dt

These invariance identities (8.7) can be calculated directly from the Lagrangian
L and the quantities which define the group G,.. It should be noted that these
identities contain only first derivatives of the functions x*(f) which determine the
curve C on the manifold R*. In addition, these identities are more fundamental
than Noether’s identities (2.12) in that (8.7) implies (2.12), but not conversely.
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To prove this last remark we introduce the variational derivative E,(L) into
(3.7) via the following device. We observe that

oL aL oL . oL

at BT A T T T e
and

oL dby _ d <aL bk,)__c_i_(BL)bk,

oz* dt dt \oz* ° dt \ozx/) "’
and

_OoL .,day, oL ., ,  d_ _a_g.,,] _g_(aL).,,,
ozt dt ol T T a4 [aabkx“” tat\aw )5

By successively substituting these last three identities into [3.7) we obtain after
simplification the identities

E(L)(bE—dtas)= - |:<L _ 2L gf)a 4L b’“:l (3.8)

In passing, we note that along the extremal curve we have E,(L)=0, whence the
expressions in the bracket on the right-hand-side of are constant. We there-
fore state the following corollary concerning conservation laws.

Corollary. If J is an invariant of the group G,., then there exist r+q first
integrals of the Euler-Lagrange equations of the form

. 0L oL ;..
(L Z* pym )ap +—= Py —— b%*=constant . 3.9)

Continuing, we multiply the p=0 equation in by &.(t), the p=1 equation by
#{(t), and so on until finally we multiply the p=q equation by ¢{(t). Adding
the resulting ¢+1 equations, we get

oL
ox*

E(L)[B*($)— x"A'(¢.)]——[<L — g )A'(¢.) +9L B'"(qs,)] (3.10)

Integrating (3.10) from ¢, to ¢, and then proceeding as in tne proof in Section
2, we obtain the identities [(2.12).

4. The Multiple Integral Case

Let t=(t%, ¢% .-, t*) denote a point in some given domain DZR*, and let =
(#', 22, ---,2") denote a set of n variables. In the configuration space R**", a v
dimensional hypersurface C, can be represented parametrically in the form

r*=x*(t) ,
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where the index %, like all other small Latin indicies, 4, 7,1, .-+ in the sequel, has
range k=1,2, ---,n. Small Greek indicies will have range 1,2, ..-,v. We assume
that the functions x*(t) are of class C? and we denote their partial derivatives by

We further assume that rank (#%)=v. Given a function L:R**"***—R!' which is
of class C? in all of its arguments, we form the v-fold variational integral

J(C,)= SDL(t, x, &)dt , : : 4.1)

where dt=dt! ... dt", and 2=(I%).

In order not to unduly complicate the notation, we will for multiple integral
problems discuss transformation groups which depend on r arbitrary, indpendent
functions ¢,(t), t€ D, and only their first derivative ¢, (t)=0¢4,/0t*. For con-
venience, we denote '

B.,0(0)=0,(0)
80 that we can use the notation ¢,¢(t), {=0,1, .--,». We assume, then, that the
invariance transformation is of the form
fe=ie(t, %, 6,0, B=8, 2, .0, (4.2)

where the identity is obtained when ¢, =0 for all 8 and {. The infinitesimal form

of becomes
te=tr+a*t g, c(t)+ --- ,
} 4.3)
Fr=xF+boC P, )+ - -,
where the a’s and b’s, which are coefficients in the Taylor series, are functions of
t= and «* and the ‘dots’ denote terms involving products of the ¢,,z. We denote
the above transformation by G,.. Further, by 4 we denote the functional deter-

minant
. ote
A_det( = ) (4.4)
It is evident that
4l=1, (4.5)

where we have again used the notation

) o=*)|4,,c=0, vsv{ .
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We are able to characterize the invariance of the variational integral [(4.1)
with respect to (4.83) by the following observation.

Remark 2. A necessary and sufficient condition for J(C,) to be an invariant
of the group G, is that

L(te, %, ) 4=Lts, 2%, 42) @

for all ¢,,¢(t); e=1,--.,7; {=0,1,..-,v. We 'proceed as in the single integral
case, that is by differentiating with respect to ¢, and setting ¢,,=0 for all
8 and {. We now, however, have the added difficulty of differentiating the func-
tional determinant 4. Since the right-hand-side of is independent of ¢, ¢, we

obtain using
a4 d : -, 0XF
L{t, x* ==
L( o)t e LB 5)

ot« . oxk
=q% :=th,
(3¢..c ) a®t  and (a¢,,c )

the last equation becomes

a4 oL oL oL 1 & ox* '
asl - —— B¢ - =0. 4.7
L( 360 )o+at°‘a oo Ut (T at“)o “4n

In order to compute the first term, we denote the cofactors of the matrix (d¢*/dtf)
by Tg. Then,

=0.

0

Noting that

o4 __d (df“) T8,
a¢:,c a¢t.C dtf
= 0 ate ate 3 at* 0%.,¢ )Tp
T 9..c (atfg e A op,c Otf “
Carrying the differentiation, evaluating at ¢,,;=0, and using
(T%)Ozag ’
we obtain
a4 da*s aa~*t . da**t
= 08 = . 4.8
( 3. )o ( o T ok xﬁ) die (4.8)

It remains to compute the last term in [&7). To do this, we note that in terms
of the barred coordinate system the hypersurface C, is given by

Fr=7*t") .
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According to the chain rule, we then have

dz* _ oz* _di
dté ~ atr def

Expanding the terms, we get

ox* do,r _ ox* ( ote ot ... ot d¢,,;)

ox* ox*
0p,c dtf — ot 5+

“h
oté + ox* @5+

atF | om LF 3p, ¢ dtP
Upon differentiating with respect to ¢,,; we obtain

0°x* 0*x* rrn ad (855" d¢,,;)

3thdp,;  0xdp.c ¢ 0B,c \ 9pc  dtf

O T wa R CUE o)
ot* \ 9tPag,c = 0x*3d,c | b \ O, dEF

o [0 \[/ otc | o ., 0 dg.¢
T e ( ot )( ot T o P gy deh )

The evaluation of this expression at ¢,,:=0 vs, { yields

bkt L, obre . ( dasst ., 0at ) ( o oxt ) .
R e O R S AT T AL
or
a aik — dbk'c L ak da'alc
( 09,,c  OtF >o_ aer e dg 4.9)

Finally, upon substituting [4.9) and [4.8) into [4.7), we obtain the v-dimensional
analog of [Theorem 3.

Theorem 4. A necessary condition for J(C,) to be an invariant of the group
G,., is that the following identities hold true:

da=t | L oL oL [ dbet .. dab<
—_— el ksl - =0 . .
L8 a4 2 b +a¢g( -t ) 0. (4.10)

Equations (4.10) represent a set of identities which the Lagrangian L and its
derivatives must satisfy under the invariance hypothesis. To derive Noether’s
Identities from (4.10), we observe that

oL _ 9L _ 3L ,,_ 3L
at=  dte  oar ¢ agy P’

oL db** = d (aL bmc)_ d (3L )buc,
axr:  dt- dtx \ oz% dt \ oz%

and
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oL ., da#S | AL . . d (0L _, ﬁ,c)_ d (aL >.k -
o TP gt aak e T (8.72:’3, Ted dt= \aax )¢9 -

By successively substituting these three expressions into (4.10), we find after

simplifying that

. d ., oL oL
— ksg k qatl) — 0% — x* B8f Jo ——_p*s¢ ,
EL(L)(b*¢+ g% as%) 7 ((L 5— &% a5t )a + Py b )

a

where the E,(L) are the variational derivatives defined by

oL d (aL
A T (a;z-f, ) “.12)

If the Euler-Lagrange equations hold for the system, i.e. C, is an extremal surface,
then E,(L)=0 and
d

oL
- amfsl . 2 _pEs] | — .
it (H,ga a5 b ) 0, (4.13)

where Hg is the Hamiltonian tensor defined by
oL
Hg=—Lo5+ 3% .
» 8 ﬁ+ 8 e
The vanishing divergences given by are interpreted in the usual way as

conservation laws for the system. By multiplying (4.11) by ¢,,¢, integrating over
D, and using the arbitrariness of the functions ¢,,;, we obtain

S Ey(L)(6% b, c— 5% 6, 0dt=0 . (4.14)
D

The boundary integral vanishes since the ¢, can be chosen such that they along
with their derivatives vanish on Bd D. Integration by parts in to remove
the derivatives from the ¢, yields '

[, {(pevo i) Bty — (oo ) 2 BDD ity dt=0.

Using the independence and arbitrariness of the ¢,(t), we conclude, as in the proof
in Section 2, that

0
otf

0
at#

( bsO— s

) EJ(L) — ( =0 — qath ) (@ E(L)=0 . (4.15)

These are the Noether identities in the v-dimensional case.
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