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1. Throughout this paper the algebras considered are non-associative ($i.e.$ , not
necessarily associative) and $J(x, y, z)$ will denote $(xy)z+(yz)x+(zx)y$ under usual
multiplication operation, which expression, for simplicity, may be written as

$xy\cdot z+yz\cdot x+zx\cdot y$ .
A. A. Sagle [1] studied Malcev algebras. In this note, firstly we give a

characterization of Maclev algebra8 in terms of Jacobi-Teiehmuller identity

(Theorem 2.2), and then use the same to give alternative simpler proofs of some
of the results proved by Sagle (Propositions 4.1 and 5.1). Kass and Witthoft [3]

found the irreducible homogeneous polynomial identities of degree less that or equal

to four in anticommutative algebras over a field of characteristic different from

two. We use his fifth polynomial

$J(x, y, z)w-J(w, x, y)z+J(z, w, x)y-J(y, z, w)x$ ,

([3], Theorem 2) to define a concept of quasi-lie algebra, and to show that Malcev
algebras and extended lie algebra8 (see Sagle [2]) are not comparable with quasi-

lie algebras. Sagle introduced the concepts of the ‘ Lie subsets’ and ‘ Nucleus’

and showed that, in Malcev algebra, they form a subalgebra and an ideal respec-

tively. In thi8 note, we construct some examples to show that the lie subset and
the nucleus may not be so in quasi-lie algebras.

2. We first state the following lemma of Sagle [1].

Lemma 2.1. An algebra $A$ of characteristic not two is a Malcev algebra if

and only if $A$ satisfies $xy=-yx$ and

$xy\cdot zw=x(wy\cdot z)+w(yz\cdot x)+y(zx\cdot w)+z(xw\cdot y)$ for all $x,$ $y,$ $z,$ $w$ in $A$ .
It is well known that the Teichm\"uller identity

$(wx, y, z)-(w, xy, z)+(w, x, yz)-w(x, y, z)-(w, x, y)z=0$ ,

holds in all non-associative algebras (see Kleinfield [4]) where $(a, b, c)$ is the associator
$(ab)c-a(bc)$ .
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Now we give a characterization of Malcev algebras:

Theorem 2.2. An anticommutative algebra of characteristic not two, is Malcev
if and only if it satisfies the identity

$J(wx, y, z)-J(w, xy, z)+J(w, x, yz)-wJ(x, y, z)-J(w, x, y)z=0.$ $\ldots.(1)$

(We shall call this identity as Jacobi-Teichuller)

Proof. Let $A$ satisfy the Jacobi-Teichmuller identity. Put $w=x$ in (1). Then
the above expression reduces to $-J(x, xy, z)-xJ(x, y, z)=0$ , since the other two
terms reduce to zero.

Hence, we have by interchanging $y$ and $z,$ $J(x, y, xz)=J(x, y, z)x$ for all $x,$ $y,$ $z$

in $A$ , which defines Malcev algebra (Sagle [1]).

Conversely let $A$ be a Malcev algebra, then by lemma 2.1, we have $yx\cdot zw$

$=y(wx\cdot z)+w(xz\cdot y)+x(zy\cdot w)+z(yw\cdot x)$ . Adding to it the Teichmuller identity
$(wx, y, z)-(w, xy, z)+(w, x, yz)-w(x, y, z)-(w, x, y)z=0$ which holds in every non-
associative algebra and adjusting the corresponding terms, we obtain

$J(wx, y, z)-J(w, xy, z)+J(w, x, yz)-wJ(x, y, z)-J(w, x, y)z=0$ .
Hence the proof is complete.

3. We shall call a non-associative algebra a quasi-lie algebra if it is anticom-
mutative and satisfies

$J(x, y, z)w-J(w, x, y)z+J(z, w, x)y-J(y, z, w)x=0$ .
We see immediately from the definition that any anti-commutative algebra of
dimension not exceeding three is a quasi-lie algebra.

Consider the following examples:

Ex. 1. The algebra $A$ having basis $\{e_{1}, e_{2}, e_{8}\}$ with the multiplication table:

$\overline{e_{2}e_{\theta}e_{1}}|^{\frac{e_{1}e_{2}e_{3}}{-e_{1}0-e_{3}-e_{2}e_{\theta}00e_{1}e_{2}}}$

is a quasi-lie algebra of dimension three but it can be easily checked that it is
neither Malcev nor extended lie, $i.e$ . it does not satisfy the identity $J(x, y, xy)=0$ ,
[2].

Ex. 2. The algebra $A$ having basis $\{e_{1}, e_{g}, e_{f}, e\}$ with the multiplication:
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$\overline{e_{4}ee_{3}e_{2}1}|^{\frac{e_{1}e_{2}e_{3}e_{4}}{-e_{3}00e_{1}-e00e_{2}0-e_{1}-e_{2}00e_{8}e_{4}0}}$

is a quasi-lie algebra of dimension four, but not a Malcev algebra since $J(e_{1}, e_{z}, e_{\iota}e,)$

$=e_{2}\neq J(e_{1}, e_{2}, e,)e_{1}=0$ . It is not even an extended lie algebra since $J(e_{1}, e_{i}, e_{1}e_{2})$

$=e_{1}\neq 0$ .
Ex. 3. The non-associative algebra with the basis $\{e_{1}, e,, e_{8}, e, e_{f}, e_{6}, e_{r}\}$ having

the multiplication table:

is a Malcev algebra, but not a quasi-lie algebra, because

$J(e_{4}, e_{f}, e_{0})e_{f}-J(e_{7}, e_{4}, e_{f})e_{6}+J(e_{6}, e_{r}, e)e_{f}-J(e_{\epsilon}, e_{0}, e_{\tau})e=36e_{4}\neq 0$ .
The above examples exhibit that neither the Malcev nor the extended lie algebras
are generalization of quasi-lie algebra and conversely.

4. Sagle [1] defines that a subset $B$ of non-associative algebra $A$ is a lie
subset of $A$ if $J(B, B, B)=0$ . $B$ is a maximal lie subset of $A$ provided $B$ is a
maximal subset of $A$ such that $J(B, B, B)=0$ .

We now give a simpler proof of a Sagle’s theorem 4.1 [1] and show that it
is not true in the case of quasi-lie algebras.

Proposition4.1. Every maximal lie subset $B$ of a Malcev algebra $A$ of
characteristic not two is a subalgebra of $A$ .

Proof. Let $w,$ $x,$ $y,$ $zeB$ . Since $B$ is a lie subset of the Malcev algebra $A$ ,
both $J(x, y, z)$ and $J(w, x, y)$ are equal to zero. Now using Theorem 2.2 above

$J(wx, y, z)-J(w, xy, z)+J(w, x, yz)=0$ $\ldots.(a)$

for all $w,$ $x,$ $y,$ $z$ of $B$ . Consider $J(x, y, z)w-J(w, x, y)z+J(z, w, x)y-J(y, z, w)x$
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in $B$ which i8 identically zero since $B$ is a lie subset, but one can see that in a
Malcev algebra of characteristic different from 2, thiu identity reduces to

$J(wx, y, z)+I(w, x, yz)=0$ $\ldots.(b)$

by Sagle [1], Prop. 2.23.
From $(a)$ and $(b)$ , it follows that $J(w, xy, z)=0$ for all $w,$ $x,$ $y,$ $zeB$. Thus $B$

is a subalgebra.

We have seen that the algebra with basis $\{e_{1}, e_{2}, e_{\epsilon}\}$ considered in Ex. 1 is a
quasi lie algebra and can easily be seen that it has a subspace $B$ generated by
$\{e_{1}, e_{\epsilon}\}$ as a maximal lie subset. This $B$ is not a subalgebra as in the Malcev case
of $A$ since $e_{1}e_{\epsilon}=e_{2}\not\in B$ .

The following example further shows that a maximal lie subset of a Malcev
algebra need not be an ideal.

Ex. 4. The algebra $A$ with basis $\{e_{1}, e_{2}, e_{\epsilon}, e_{4}\}$ having the multiplication table:

is a Malcev algebra. The subspace generated by $\{e_{1}, e_{2}, e\}$ is a maximal lie subset,
but not an ideal.

5. The nucleus $N$ of a Malcev algebra $A$ is defined as

$N=\{xeA|J(x, y, z)=0 y, zeA\}$ .
This implies that $N$ is the maximal 8ubset of $A$ such that $J(N, A, A)=0$ . It can
further be noted by definition of quasi-lie algebra that if $N$ is the nucleus of the
$qua8i$-lie algebra then $N_{8}atisfie\S NJ(A, A, A)=0$ and is also a subalgebra.

It may be remarked that a simpler proof of Sagle’s lemma 5.13 can be obtained
by using our theorem 2.2 and the Jacobi-Teichmuller identity which we have
introduced.

Proposition 5.1. The nucleus of a Malcev algebra $A$ is an ideal of $A$ .
Proof. Let weN and $x,$ $y$ , zeA where $A$ is a Malcev algebra, $N$ be its

nucleus. From the Jacobi-Teichmuller identity it follows that

$J(wx, y, z)-wJ(x, y, z)=0.$ $\ldots.(c)$
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Again in the same identity, assuming that $x\in N$ and $x,$ $y,$ $zeA$ , we obtain

$J(wx, y, z)-J(w, xy, z)=0$ .
Because of the anticommutativity, the above expression implies that

$-J(xw, y, z)-J(xy, z, w)=0$ .
Using the result $(c)$ , this gives us

$-xJ(w, y, z)-xJ(y, z, w)=0$ ,

$i.e$ . $2xJ(w, y, z)=0$ .
Since the characteristic is different from 2, we have $xJ(w, y, z)=0$ whenever $xeN$.
Therefore, if $weN$, and $x,$ $y,$ $zeA$ , we have $J(wx, y, z)=0$ implying that $N$ is an
ideal of $A$ .
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