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§1. Introduction

Let (X, 27) be a uniform space and let 2%(Z)={A: Ax¢, A is closed}.
When %7 is the only uniformity being considered, 2%(%/) will be denoted by
2%, For each entourage Ue %, let H{U)={(A,B):A,Be2* and AcUI[B],
‘B U[A]}. It is well known that {H(U) : Ue %/} is a base for a uniformity for
2% commonly denoted by 2%. The space (2%, 2%) has been extensively studied
in the literature (see [1], [2].

We propose to study in this paper a new uniformity for 2¥f which we shall
also denote by 2%: for each Ue %/, let G(U)={(4, B) : A, Be2¥ and A=B or
AXAUBXBCU)}. Then 2% is the uniformity for 2¥ with {G(U): Ue Z'} as
base.

In §2, we obtain for (X, %), characterizations for indiscreteness, discreteness,
separation, %/ possessing a smallest element, pseudo metrizability in terms of
(2%,2%). We also show that = 77 iff 2¥=27.

In § 3, subspace, uniform continuity, completeness and total boundedness are
studied.

In §4, we show that .77 (2%) is always O-dimensional and that 7 (%)=
Z(Z) implies that .7 (2%)=.7 (2%), but not conversely. We also give another
characterization of 27 possessing a smallest member in terms of 2%,

Set valued maps are considered in §5. In particular, we give conditions
under which the intersection and union of two uniformly continuous set valued
maps are uniformly continuous. We show that the map that takes x into its
closure is uniformly continuous.

§2. Extremal properties, separation, pseudo metrizability

Theorem 2.1. Let (X, %) be a uniform space. Then (2%,2%) is a uniform
space.

Proof. The theorem follows from the following facts which the reader can
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easily verify: (i) 4(2%) (the diagonal in 2% X 2%) is contained in G(U) for all Ue 2
(i) GU)=(GU)™ (i) GU)NG(V)=GUNV) and (iv) G(U)GU)=G(U).

We will find much use for the following

Lemma 2.2. Let (X, %) be a uniform space and Ue %, U=U-%, U closed
If (x,y)e U, then (c(x), c(x, y)) € G(U), ¢ denoting the closure operator.

Proof. Clearly c(x)xc(x) and c( ¥)Xc(y) are subsets of U. Also, c(x)Xc(y)
and ¢(y)Xc(x) are subsets of U. It follows then that c(x, y)Xc(x, y) is a subset
of U and hence (c(x), c(x, y)) € G(U).

Lemma 2.3. Let (X, Z') be a uniform space. (i) If USV in %, then
GU)=G((V); (D) If GU)=G(V), U=U"* and U is closed, then UZV.

Proof. Let (x,y)eU. By lemma 2.2, (c(x), c(x,y)) € G(U) and hence (c(x),
c(x,y))eGV). If c(x)=c(x,y), then (x,y)€c(x)Xc(x)=V. If c(x)xc(x,y), then
(x,v) €clx, y) Xclx, y)S V.

Theorem 2.4. In a uniform space (X, %), the following are equivalent: (i)
(X, Z) is indiscrete (ii) 2¥={X} (iii) (2%, 2%) is separated (iv) (2%, 2%) is indiscrete.

Proof. (i)—(i) If (X, %) is indiscrete, then . 97(%/) is indiscrete and 2X=
{X}. (ii)—(iii) A one point space is always separated. (iii)—(@i) Let (2%,2%) be
separated. Then 4@2%)=N{G(U):Ue Z'}; let (x,y)€ XxX. Now (c(x), c(y)) €
G(U) for all Ue Z and hence c(x)=c(y). |
It follows then that .77 (%) is indiscrete and that %/ is indiscrete. (i)—(iv)
This follows from the fact that G(XXX)=2Xx2% (iv)—(i) Let Ue % Then
G(U)22Fx2¥=G(Xx X). But XXX is closed and symmetric and by lemma 2.3,
it follows that U2 X x X,

Definition 2.5. Let i(x)={x} for each x in X.
Theorem 2.6. A uniform space (X, %) is discrete iff 4(2%) Ui[X]xi[X]e2%.

Proof. Suppose that (X, %) is discrete. Then 4(X)e 2 and G(A(X))GZ”.
But 4(2%) Ui[X]xi[X]12G(4(X)). Conversely, let 4(2%)Ui[X] xi[X]€2%. Then
42X Vi XX X]12G(U) for some Ue %, U=U-t. We will show that U=4(X).
Let (x,y)eU. Since 4(2%)Ui[X]xi[X]e2%, it follows that singleton sets are
closed. Hence ({x},{x,y)e€G(U) and ({x}, {x, y}) € 42%) Ui[ X1 xi[X]. It follows
that x=y.

Theorem 2.7. A uniform. space (X, Z7) is separated iff N2%=4(2%) Ui[X]
Xi[X].
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Proof. Let (X, %) be separated, that is, N Z'=4(X). Now (A4, B)e N2%
iff (A, B)eG(U) for all Ue Z iff A=B or AXAUBXBCU for all U in Z iff
A=B or AXAUBXBc4(X) iff (A, B) e 4(2%) Ui[X]xi[X].

Conversely, let N2%¥=4(2%) Ui[X]1Xi[X]. Take x, y in X. Then ({x},{y})e
i[X]Xi[X]=2% % 2% and {x} is a closed set. Thus (X, %) is separated.

Theorem 2.8, In a uniform space (U, %), % has a smallest member iff
2% has a smallest member.

Proof. If U is the smallest in %/, then G(U) is the smallest in 2¥ by
lemma 2.3. Conversely, let G(U) be smallest in 2%. Let VU, V closed, V=
V-, Then G(V)SGU)SG(W) for all We Z/. Applying lemma 2.3, it follows
that V= W and that V is the smallest element of %

Theorem 2.9. (X, %) is pseudo metrizable iff (2%,2%) is pseudo metrizable.

Proof. If {Ur:n€ P} is a base for %/, then {G(U.):ne P} is a base for
2%, Conversely let {G(Va) : n€ P} be a base for 2% and take UnS Vs, Us=Uz},
Ux closed for each € P. Then for each Ue %, G(U)2G(Va)2G(U,.) for some
# and applying lemma 2.3, we have U2U,.. It follows then that {U.:ne€ P} is
a base for Z. '

Theorem 2.10. Let % and 2" be uniformities for X for which (%)=
F(Z"). Then < ¥ iff 2% <27,

Proof. Suppose that 7S 27”7 and let G(U) be a basic element of 2%. But,
since 2¥(Z/)=2%(7"), and Ue 2" it follows that G(U)€2”. Conversely, let
2#C2” and let Ue . Then G(U)€2% and hence G(U)e2”. Thus G(U)2
G(V) for some Ve 2, V=V, V closed. Applying lemma 2 3, it follow that
U2V and hence Ue 7.

Corollary 2.11. Let % and 2 be uniformities for X. Then %=  iff
2% =27,

Proof. If Z/= 7, then T (Z )= (") and 2*¥=2” by the above the-
orem. Conversely, suppose that 2*=2%, But 2%(Z)X2%(Z/) is the largest
element in 2% and 2*¥( ") X2%( %) is the largest element in 2. It follows then
that 2¥(Z/)=2%(7?") and hence I (Z')=7 (). Applying theorem 2.10, we

have /= 7.
In regard to theorem 2.10, it seems appropriate to present

Example 2.12. Let X be a set with two or more elements and let % and
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Z~ be the indiscrete and discrete uniformities respectively. Then Z/ < 77, but
27&2”, for {(X, X)}e2%, and {(X, X)} € 2” since 42%(Z"))&{(X, X)}.

§3. Subspaces, uniform continuity, completeness, total boundedness

Theorem 3.1. Let (X, Z/) and (Y, °) be uniform spaces. Then (2%,2%)
is a subspace of (2%, 2%) iff (X, %) is a closed subspace of (Y, 7).

Proof. Let (2%,2%) be a subspace of (2¥,2”). Then Xe€2¥<2¥ and hence
X is a closed subset of Y. We show next that ¥ =XXXN %" Let Ue Z;
then G(U)e2¥=2Xx2*N2". Thus G(U)22*x2XNG(V) for some Ve &, V=
V-, V closed in YXY. We will show that U2XXXNV. Let (x1,x2)€e XxXXNYV.
Since X is closed in Y, it follows that the closure of {x} relative to X is the
same as the closure of {x} relative to Y for every x€X. By lemma 2.2,
(c(x1), c(x1, x2)) €2¥X2¥NG(V) and hence (c(x1), c(x1, x2))€ G(U). It follows that
(x1,x2)e U. Next,let Ve 2. We must show that XXXNVe Z. Now G(V)N
2¥x2¥e 2% and hence G(V)N2X¥x2X2G(U) for some Ue ZZ, U=U*, U closed.
Then XxXXNV2U,; for let (x1,x2)€U. By lemma 2.2, (c(x1), c(x1, x2))€ G(U)
and hence (c(x1), c(x1, x2)) € G(V). It follows that (x1, x:)€ XX XN V.

Conversely, let (X, %) be a closed subspace of (Y, 7). We show firstly
that 2¥*<=2¥x2¥N2”. Let G(U) be basic in 2*, But U=XXXNYV for some
Ve 2. Then G(U)=2%x2*NG(V) as the reader can easily show. Similarly,
one shows that 2% 22X x2X¥N2%.

Definition 3.2. Let (X, %) and (Y, ") be two uniform spaces and suppose
f:X->Y, continuity not assumed. Then f:2*—2% is defined as follows: f(A4)=

cf[Al.
Theorem 3.3. Let f: (X, Z/)—(Y, 77) be uniformly continuous. Then f:

(2%, 2%)—>(2%, 2”) is uniformly continuous.

Proof. Let Ve 27, V closed. There exists a Ue % such that fXf[U]=V.
It suffices to show that fXfIG(U)ISG(V); let (A, B)eG(U). We may assume
that AxB. Then AXAUBXBCZU and hence f[A]lXfIAJUfIBIXfIBISfxfIUl=
V. Since V is closed, it follows that f(A)Xf(A)UAB)XfIB)SV and fXf(A, B)
eG(V).

The converse of theorem 3.3 is false as seen in

Example 3.4. Let X be a set with two or more elements and let % and
2" be the indiscrete and discrete uniformity respectively. Let f: X—X be the



A NEW UNIFORMITY FOR HYPERSPACES 73

identity map. Then f: (2%, 2%)—(2%, 2”) is uniformly continuous, but f: (X, %)
—(X, 77) is not uniformly continuous. Note that in this case, 2¥={X} and
hence, f is a constant.

However, when we add a separation condition, we get .

Theorem 3.5. Let (X, Z¥) be a separated uniform space and (Y, 7)) an
arbitrary uniform space. If f:(2%,2%)—(2%,2”) is uniformly continuous, then
(X, ZZ)>(Y, &) is uniformly continuous.

Proof. Let Ve 2. Then there exists a Ue€ % such that U=U"! and
SXSFIGU)]I=G(V). It suffices to show that fXf[U]SV. Let (x1,x:)€eU. Apply-
ing lemma 2.2, we get ({xi}, {x1, x2}) € G(U) and hence (f({x1}), f({x1, x2})) € G(V).
If f({x)=f{x1, x2}), then f(x2) € ¢f(x1) and f(xz) € V[f(x1)]. Hence (f(x1), f(x2))€ V.
If_f({x1})ﬁ;_f({x1 , x21), then (f(x1), f(x2)) e_f({x1 , x2}) ><_,_f({x1 , x2S V.

Theorem 3.6. (2%, 2%) is complete.

Proof. Let S: D—2% be a cauchy net and let x€ X. We will show that
either S is eventually constant, or that S converges to ¢(x). Suppose S does not
converge to ¢(x). Then c¢(x) is not a cluster point of S and hence there exists a
Ue Z7 such that S is eventually in Z°G(U)lc(x)]. There exists a di€ D such
that S(m)e & G(U)[c(x)] for all m=di. But there exists a d:=d:1 such that (S(m),
Sn)eG(U) for all m,n=d:. Now S(d:) ¢ G(U)[c(x)] and since c(x)Xc(x)=U,
it follows that S(de2) XS(d:)%&U. Since (S(m), S(d2)) € G(U) for all m=d:, it is
clear that S(m)=S(d:) for all m=d: and S is eventually a constant.

Theorem 3.7. (2%, 2%) is totally bounded iff for each Ue %/, {B: Be2¥ and
BxB&ZU} is finite.

Proof. Suppose that (2%, 2%) is totally bounded and let U€ %. There exist
then Ei,---, Ex in 2% such that 2¥=G(U)[E1,--, Ex]. Suppose B€2X and BX
BZ£U; (E:i, B)eG(U) for some ¢ and it follows then that B=FE;. Thus {B: Be2*
and BXBZU} is finite.

Conversely, suppose that for each Ue %/, {B: B€2¥ and BXBZU} is finite.
Let Ue % ; let BixB:£U for i=1,---,n and EXECU for all E€2*, ExB;.
Take x€ X arbitrary. Then 2¥=G(U)[c(x), B1,- -, Ba].

§4, The topology of the hyperspace

Definition 4.1. Let (X, Z/) be a uniform space and suppose that Ue %.
Then X (U)={A:Ae€2% and AXACU), H(U)={B:Be2* and BXBZU},
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=¥ U):Vez}, F=u{zzU):UeZ}.

Theorem 4.2. Let (X, Z/) be a uniform space. Then (i) 2¥=UF=
X (U)uLWU) (i) Be <& implies that {B} is open and closed in (2%, 2%) (iii)
Ae .Y implies that 7 =2°({A}) (2°is the closure operator in (2%, 2%) (iv) 7 (U)
is open and closed for each Ue %.

Proof. (i) is clear (ii) Let Be &#&. Then BXB%ZU for some U€ % and
hence {B}=G(U)[B] (iii) If Ae. %, then 2°{AN)=N{GU)[A]: Ue Z'}=7 (iv)
Let C¢ Z7(U). Then CXCZU and hence G(U)[C]={C}c & (U). Thus ¥ (U)
is closed. Let now A€ 7 (U). Then G(U)[A]<. (U) and hence % (U) is open.

Theorem 4.3. (2%, 2%) is Lindelof iff <& (U) is countable for each Ue Z.

Proof. Suppose that (2%,2%) is a Lindelof space. Let Ue Z¥. Now 2%=
(U)UZU)=(U)U U{{B}: Be Z(U)}. By theorem 4.2, ¥ (U) is open
and {B} is open for all Be &Z(U). It follows then that B (U) is countable.
Conversely, suppose that <#Z(U) is countable for each U€ % and let 2%¥=
U{7 :ae 4}, each % being an open set. Let x€ X. Then c(x)€ 2% and hence
c(x)€ @ for some a€d. There exists then a U€ %/ such that G(U)[c(x)]S .
But 7 (U)=G(U)[c(x)] and hence &< & (U)=<#(U), a countable set. It
follows then that (2%, 2%) is Lindelof.

Theorem 4.4. Let (X, Z) be a pseudo metrizable uniform space. Then
(2%, 2%) is a second axiom space iff <& is countable.

Proof. If (2%,2%) is a second axiom space, then &# is countable since {B}
is open for each Be€ <# by (ii) of theorem 4.2. Conversely, suppose that <# is
countable and that {U. : #€ P} is a countable base for %/. Then {{B}: Be #}
U{(Ux) : ne P} is a countable open base for .7 (2¥) as the reader can easily
check.

Theorem 4.5. Let 2 and 277 be uniformities for X and suppose that
T ()T (¥"). Then 7 (2%)x.7 (2%).

Proof. 7 (Z/)>x.7 (%) implies that 2X(Z/)=2%X( 7). But 2%¥(Z/) is the
largest element of .7 (2%) and 2*( %) is the largest element in .7 (2*). Thus
T 2%)x T (27).

The converse of theorem 4.4 is false as shown by

Example 4.6. Let X consist of the positive integers and let Va={(a, b) : a=bd
or azn,b=n}. If 2 is the uniformity for X with {V.:n€ P} as base and if
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7/ is the discrete uniformity for X, then (% )=2(%"). But .7 (2%)=
Z (27). To see this, observe that 4(2%)Ui[X]xi[X]e2¥* since Z/ is discrete
(see theorem 2.6) and (4(2%) Ui[X] X[ XD[{1}]=:¢[X]. Hence i[X] is a neighborhood
(F7(2%)) of {1}. But G(Va)[{1}]<i[X] holds for no integer » since {m :m=n}e
G(Va)[{1}] and {m : m=n} ¢ [ X].

Theorem 4.7. (2%, 7 (2%)) is O-dimensional.

Proof. {{B}:Be FlU{ S (U):Ue Z '} is a base for .7 (2¥) which consists
of sets which are both open and closed (see definition 4.1 and theorem 4.2). The
details are left to the reader.

Lemma 4.8. Let (X, %) be a uniform space. Then N Z'=U{AXA:Ae ¥ }.

Proof. U{AXA:Ae X}SNZ by definition of .7 (see definition 4.1).
Conversely, let (x,y)€ N Z/. Since N%Z is a closed symmetric set containing
4(X), it follows that c({x,y})Xc({x,y)=SNZ. Then c(x,y)e. and (x,y)€
c({x, yh Xc({x, 1.

Theorem 4.9. N Zre Z iff 42%) U Y X € 2% (see theorem 2.8).

Proof. Let 42%)U. "X .7€2%. Then there exists a closed symmetric V'
in Z such that 42%)U¥'X.¥ 2G(V). It suffices to show that U{AXA:
Ae Y12V (see lemma 4.8). Let (x,y)€V; then (c(x), c(x,y)€G(V) by lemma
2.2. If c(x)=c(x,y), then (x,y)€c(x)Xc(x)SU{AX A:Ae ¥} since c(x)e. .
If c(x)>c(x, y), then (c(x), c(x, y)) € "X ¥ and c(x, y)€.. Thus (x, y) €c(x,y) X
clx, S U{AXA:Ae . }. Conversely, let N Z¥e %/. By lemma 4.8, U{AXA:
Ae lez/. Let U=U{AXA:Ae ¥'}. Then 4Q2¥)U XY 2G(U). To
see this, let (C, D)e G(U); if C=D, then (C, D)e 4(2%) and if C>xD, then CxC
UDXDCU=U{AXA:Ae ¥}=N%". Hence C and D are in % and (C, D)e
KX SA2F) U S X .

Thus %7 has a smallest element iff 4(2%) U "X . € 2%,

§5. Set valued uniformly continuous maps

Let ¢ be the function from X into 2*¥ which takes each point x into its
closure.

Theorem 5.1. Let (X, Z/) be a uniform space. Then (i) c: (X, Z)—(2%,
2%) is uniformly continuous and (ii) (c[X], c[X]1Xc[X]1N2%) is indiscrete.

Proof. It suffices to show (ii); but (ii) follows from the fact that c[X]X
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c[X1€GU) for all Ue %.

Corollary 5.2. If (X, Z/) is a separated uniform space and i is the function
from X into 2¥ which takes x into {x}, then (i) i : (X, & )—(2%, 2%) is uniformly
continuous and (ii) (G[X], J[X]1Xx:i[X]N2%) is indiscrete.

Lemma 5.8. Let (X, %) and (Y, 27) be uniform spaces and suppose that
oz : (X, Z7)—(2%,2”) is uniformly continuous and that ¢1 : X—2¥, continuity not
assumed. If ¢1(x)Se:(x) for each x and if ¢i1(x1)=¢1(x2) whenever @a(x1)=¢z(x2),
then ¢1 : (X, 27 )—(2%, 2”) is uniformly continuous.

Proof. The lemma follows from the fact that (g2 X¢2)~'G(V) S (g1 X 01)"G(V).

Corollary 5.4. Let ¢: (X, Z7)—(2Y,2”) be uniformly continuous and suppose
that a: (X, Z7)—(2%,2%) is a constant map. If ¢(x)Na(x)>=~¢ for each x, then
eNa: (X, Z)—(2%,27) is uniformly continuous.

Proof. Let p2=¢ and ¢1=¢Na. Apply lemma 5.3.

Corollary 5.5. Let ¢:: (X, Z)—(2%, 2”) be uniformly continuous and one to
one and suppose that ¢: : X—>2Y (continuity not assumed). If ¢i1(x) S¢2(x) for each
x, then o1 : (X, Z/)— (2%, 2”) is uniformly continuous.

Proof. ¢i1(x1)=¢2(x:) implies that xi1=x: which implies that ¢@i(x1)=e@1i(x2).
Apply lemma 5.3.

Corollary 5.6. Let ¢: (X, %)—(2%, 2%*) be uniformly continuous and one to
one and suppose that a : X—2¥, continuity not assumed. If ¢o(x)Na(x)x¢ for all
x in X, then ¢Nea: (X, Z)—(2%,2%) is uniformly continuous.

Proof. Let ¢:=¢ and ¢1=¢Na in corollary 5.5.

Theorem 5.7. Let ¢i: (X, Z)—(2Y,2”) be uniformly continuous for i=1,2
and suppose that ¢1(x)Nea(x)>x¢ for all x in X. If ¢i(x) Up(x)=01(y) Up(y)
whenever ¢1(x)=¢1(y) ar @a(x)=0¢2(y), then p1U¢@:: (X, Z/)— (2%, 2%) is uniformly
continuous.

Proof. Let V and W be symmetric entourages and suppose that Ve W&V,
It suffices to show that ((¢1 U@z) X (91 Ug2))tG(V) 2(p1 X 1) 'G(W) N (92 X 92)'G(W).
Let (x,9) €(p1Xe) 'G(W)N (02 X02)G(W). If ¢i(x)=¢1(y) or ¢x(x)=¢:(y), then
o1(x) Upz(x)=¢1(y) Upz(y) and (%, y) € (1 Up2) X (01 Ug2))'G(V). Assume then that
p1(x)x¢@1(y) and @2(x)x@2(y). Then @i(x) X@i(x) Upi(y) Xei(») S W for i=1,2. By
symmetry, it suffices to show that (¢1(x)Uepa(x)) X (p1(x) Uee(x)) S V. Let ¥y’ € ¢1(x),
" € pa(x) and ¥’ € p1(x) Npa(x). Then (¥,y’”’)€ W and (¥'/,y’’’)€ W and hence
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(¥, y")evV.

Corollary 5.8. Let ¢:: (X, 2)—(2Y¥,2”) be uniformly continuous for i=1,2
and suppose that ¢i1(x)N¢s(x)>x¢ for all x. If ¢1 and ¢: are each one to one,
then p1U¢@: : (X, Z¥)—(2Y, 2”) is uniformly continuous.
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