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§1. Introduction. Let M* be an oriented closed k-dimensional riemanniar
manifold and x : M*— E™ an isometric immersion of M* into a euclidean #z-space
E®. LetV and 7 denote the covariant differentiations of M* and E", respectively,
and let B be the differential of the immersion x. If u and v are two tangent
vector fields of M*, then the Gauss formula gives

( 1 ) ﬁBu(Bv):Vuv‘ll‘a(u, v) N

where a(u, v) is a normal vector field on M* and is called the second fundamental
form of M* in E». If ei, ---,er is an orthonormal basis in the tangent space
To(M¥*) of M* at p, then the normal vector

k
(2) H:(l/n)izﬂa(ei, e,
is independent of the choice of e, -- -, ex, and is called the mean curvature vector

at p. In the following, let X denote the position vector field of M* in E™.

The purpose of this paper is to prove the following theorem:

Theorem 1. Let M* be a closed k-dimensional riemannian manifold with an
isometric immersion x: M¥*— E" If the position vector X is parallel to the
mean curvature vector H everywhere on M, then MP* is immersed as a minimal
submanifold of a hypersphere of E™.

§2. Proof of Theorem 1. Put

(3) U={pe M*: H+0 at p}.

Then by the fact that there exists no minimal closed submanifold in euclidean
space, we know that U is a non-empty open subset of M*. On the set U, we
choose a unit normal vector field e which is parallel to the mean curvature
normal H. Then, by the assumption that X is parallel to H, we can put

(4) X=fe, on U.

Let Y be an arbitrary tangent vector on M*, we have
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(5) ﬁBYX"——‘(Yf)e'}‘fﬁBYe.

Since, e is a unit vector field and X is the position vector field of M* in E™.
Hence, we have

(6) FsyX,e>=0, and <Fzye,e>=0,

where <, > denotes the scalar product of E”. Therefore, by (5) and (6), we get
Yf=0 for all tangent vector ¥ on M*. Thus, the function f is a constant on
M*. Thus, we get

(7) (X, X>=f%=constant on U .

On the other hand, by a direct computation of the Laplacian of X, we have
the following identity:

8) 4X=FkH, on M*.

Hence, by (7) and (8), we get

(9) AKX, X>)=2k(1+<X, H>)=0, on U.

Therefore, by (7), (9) and the assumption X//H, we get for every component
U* of U

(10) X=cH, on U*, c=—f?=constant.

Hence, by (7) and [(10), we know that <H, H>=f?=constant. Therefore by the
continuity of H on M*, we know that

11) U=M* .
Consequently, by (3), (8), [(10), and [11), we get
12) 4X=(k/lc) X, on MF*,

Therefore, by a result due to Takahashi [2], we know that M* is immersed as
a minimal submanifold of a hypersphere in E”. This completes the proof of
the theorem.

Remark. Minimal submanifold in a euclidean space is an example said that
if the condition of closedness is omitted, then is not longer true, in
general. But in fact, if we assume that M* is non-minimal in E®, then we
have the same result.

Corollary: Lef M* be a k-dimensional submanifold of E®*. If we have
AX=fX for some functions f on M*, then M* is either a minimal submanifold
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of E™ or a minimal submanifold of a hypersphere of E™.
This corollary follows from (8) and the remark.
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