SOME THEOREMS ON FIXED POINTS*

By

S. P. SINGH

(Received Feb. 16, 1970)

Let X be a metric space. A mapping $T: X \to X$ is called a contraction mapping if

$$d\left(Tx,\,Ty\right) \le kd\left(x,\,y\right) \tag{A}$$

for all $x, y \in X$ and 0 < k < 1.

The well–known Banach contraction principle states that a contraction mapping on a complete metric space X has a unique fixed point. A mapping $T: X \to X$ such that

$$d(Tx, Ty) < d(x, y), \qquad (x \neq y)$$
(B)

 $x, y \in X$, is called a *contractive mapping*. A contractive mapping on a complete metric space need not have a fixed point. For example, let X be the set of real numbers with the usual metric. Let

$$T: X \to X$$

defined by $Tx=x+\frac{\pi}{2}$ -arc tan x. Then T is a contractive mapping but it has no fixed point because arc tan $x<\frac{\pi}{2}$ for every x. However, if the space X is compact, a contractive mapping has a unique fixed point [1].

Recently Kannan [3] proved the following theorem:

If T is a mapping of a complete metric space X into itself such that

$$d(Tx, Ty) \le \alpha \left\{ d(x, Tx) + d(y, Ty) \right\} \tag{C}$$

for all $x, y \in X$ and $0 < \alpha < \frac{1}{2}$, then T has a unique fixed point.

The aim of this paper is to give extensions of the above theorem by taking $\alpha = \frac{1}{2}$.

Theorem 1. Let X be a metric space and let $T: X \rightarrow X$ be a continuous mapping such that

$$d(Tx, Ty) < \frac{1}{2} \{d(x, Tx) + d(y, Ty)\}$$

for $x \neq y$. If for some $x_0 \in X$, the sequence $\{T^n x_0\}$ has a subsequence $\{T^{n_i} x_0\}$ converging to x, then $T^n x_0$ converges to x and x is a unique fixed point of T.

^{*} This work was done while the author was a fellow of the Summer Research Institute, McGill University, Montreal, Quebec, 1969.

Proof. The sequence $d(T^n x_0, T^{n+1} x_0)$ is non-increasing. Since T is continuous we get

$$\lim_{i \to \infty} T^{n_i+1} x_0 = Tx$$

$$\lim_{i \to \infty} T^{n_i+2} x_0 = T^2 x$$

and

Therefore,

$$d(x, Tx) = \lim_{i \to \infty} d(T^{n_i} x_0, T^{n_i+1} x_0)$$

$$= \lim_{i \to \infty} d(T^{n_i+1} x_0, T^{n_i+2} x_0)$$

$$= d(Tx, T^2x).$$

If $x \neq Tx$, then $d(Tx, T^2x) < d(x, Tx)$. This implies d(x, Tx) < d(x, Tx), impossible, therefore d(x, Tx) = 0 i. e. x is a fixed point of T.

Uniqueness follows immediately. Let x and y be two fixed points $x \neq y$. Then x = Tx and y = Ty imply

$$d(Tx, Ty) < \frac{1}{2} \{d(x, Tx) + d(y, Ty)\} = 0$$

a contradiction to the fact that $d(Tx, Ty) \ge 0$. Thus the proof.

Theorem 2. Let T be a continuous map of a metric space X into itself such that

- $(1) d(Tx, Ty) \le \frac{1}{2} \{d(x, Tx) + d(y, Ty)\}$
- $(2) if x \neq Tx, then d(Tx, T^2x) < d(x, Tx),$
- (3) for some $x_0 \in X$, the sequence $\{T^n x_0\}$ has a subsequence $\{T^{n_i} x_0\}$ converging to x. Then the sequence $T^n x_0$ converges to x and x is a unique fixed point

Proof. By (1) the sequence $d(T^n x_0, T^{n+1} x_0)$ is non-increasing. Since T is continuous we have

$$d(x, Tx) = \lim_{i \to \infty} d(T^{n_i} x_0, T^{n_i+1} x_0)$$

$$= \lim_{i \to \infty} d(T^{n_i+1} x_0, T^{n_i+2} x_0)$$

$$= d(Tx, T^2 x)$$

contradiction to (2) unless x = Tx. Also, from (1) it follows that for all $n, d(T^{N+n}x_0, x) \le d(T^Nx_0, x)$, whence $T^nx_0 \to x$.

Theorem 3. Let T be a mapping of a metric space X into itself such that

- (a) $d(Tx, Ty) \leq d(x, y)$ for all $x, y \in X$,
- (b) $d(Tx, Ty) < \frac{1}{2} \{d(x, Tx) + d(y, Ty)\} \text{ for all } x, y \in X,$
- (c) if for some $x_0 \in X$, the sequence $T^n x_0$ has a subsequence $T^{n_i} x_0$ converging to x then $T^n x_0 \to x$ and x is a unique fixed point.

Proof. Since T satisfies (a), by a Theorem of *Edelstein* [2], x generates an isometric sequence, i. e. for any integers m>0, n>0,

$$d(T^m x, T^n x) = d(T^{m+k} x, T^{n+k} x), k=1,2,3,\cdots$$

Letting m=1, and n=2, we have

$$d(Tx, T^2 x) = d(T^{k+1} x, T^{k+2} x); k=1, 2, 3, \dots$$

We conclude that $d(Tx, T^2x) = 0$, since T satisfies (b).

Since T is continuous, we get

$$\lim_{i\to\infty} d(T^{n_i}x, T^{n_i+1}x) = d(x, Tx)$$

and

$$\lim_{i\to\infty} d(T^{n_i+1} x, T^{n_i+2} x) = d(Tx, T^2 x).$$

Thus

$$d(x, Tx) = d(Tx, T^2x) = 0.$$

This implies that $x = Tx = \lim_{n \to \infty} T^n x_0$.

The author wishes to express his sincere thanks to professor M. Orihara for his valuable suggestions.

REFERENCES

- [1] Edelstein, M.: On fixed and periodic points under contractive mappings. Journ. London Math. Soc. 37 (1962) 74-79.
- [2] Edelstein, M.: On non-expansive mappings. Proc. Amer. Math. Soc. 15 (1964) 689-695.
- [3] Kannan, R.: Some results on fixed points-II, Amer. Math. Monthly, 76 (1969) 405-408.

Department of Mathematics

Memorial University of Newfoundland

St. John's, Newfoundland, Canada