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For discussion the existence of invariant subspaces, in 1954, N. Aronszajn and
K. T. Smith [1] has proved the $threm$ : Let $B$ be a Banach spaoe and $T$ a compact
operator in Banach spaces, then there exists a proper invariant subspaces of $T$. But for
general bounded operator, even in Hilbert apace, it is not yet known that whether there
always exists a proper invariant subspace. Recently in 1966, A. R. Bernstein and $A$ .
Robinson [2] has proved the $threm$ : If $A$ is a linear bounded operator on a Hilbert space
$H$ of dimension greater than 1 and if $p$ is a non-zero polynomial such that $p(A)$ is
compact, then there exists a non-trivial subspace of $H$ invariant under $A$ . The proof
was based on the framework of Non-standard analysis. And at the same time P. $R$.
Halmos [3] has proved the same theorem that was expressed in ths standard framework
of classical analysis.

Now, in this present paper, I want to show that the result [2] can be extended
to the case of general Banach spaces, that is, if $A$ is a linear bounded operator in a
Banach space $B$ of infinite dimension and if $p$ is a non-zero polynomial such that $p(A)$

is compact, then there exists a non-trivial subspace of $B$ invariant under $A$ .
Let $A$ be a linear bounded operator in a Banach space $B,$ $A(B)\subset B.$ A closed

linear subspace $L\subset B$ is said to be a proper invariant subspace under $A$ , if $(O)\neq L\neq B$ ,

then $A(L)\subset L$ .
A compact operator (completely continuous operator) $A$ in $B$ means that if, for

any bounded subset $E$ of $B,$ $A(E)$ is relatively compact in $B$. An equivalent condition
is that for any bounded sequence $\{x_{n}\}$ in $B$ , there is a subsequence $\{x_{n_{k}}\}$ such that
the sequence $\{A(x_{n_{k}})\}$ converges in $B$.

Theorem. If $A$ is a linear bounded operator in a Banach space $B$ of infinite
dimension and if $p$ is a non-zero polynomial such that $p(A)$ is compact, then there
exists a non-trivial subspace of $B$ invariant under $A$ .

Proof. Consider an arbitrary $f\neq 0$ in $B$. The closed subspace $\{A^{n}f\}_{0}^{\infty}$ generated
by $f$ and its successive images, $Af,$ $A^{2}f,$ $\cdots$ is clearly an invariant subspace of $A$ .

Hence we can limit ourselves to the case that

(1) $\{A^{n}f\}_{0}^{\infty}=B$
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This formula implies the following properties:

(2) $B$ is separable.

(3) All the elements A $f$ $are\neq 0$ and linearly independent.

Suppose that we have the relation

$a_{1}A^{m_{1}}f+a_{2}A^{n_{2}}f+\cdots+a_{k}A^{n_{k}}f=0$ where $a_{i}\neq 0$

$i=1,2,$ $\cdots$ , $k$ , and $0\leq n_{1}<n_{2}<\ldots<n_{k}$

Then we have $A^{n_{k}}f=(-\frac{1}{a_{k}})(a_{1}A^{n_{1}}f+a_{l}A^{r_{2}}f+\cdots+a_{k-1}A^{n_{k-1}}f\downarrow)$

and hence all the $A^{n}f^{\prime}s$ would lie in the subspace generated by those witb indices
$n<n_{k}$ , Which is in contradiction to (1) and the infinite dimension of $B$.

Since in every separable Banach spaoe we can define an equivalent strictly convex
norm, $i.e$. such that if $x\neq y$ and $\Vert x\Vert=\Vert y\Vert\neq 0$ , then $\Vert x+y\Vert<\Vert x\Vert+\Vert y\Vert$ $\backslash Sae$

’ J. $A$ .
Clarkson [4]). We shall suppose that the norm in a separable Banach space $B$ is

strictly convex.

Now we consider an arbitrary finite dimensional subspace $L\subset B$. For every $x\epsilon B$

we can consider the minimal distance $d(x, L)$ from $x$ to $L$ . Since $L$ is of finite
dimension, the shortest distance is certainly attained and in view of the strict $nvexity$

of the norm it is immediately proved that there exists a unique point $Px\epsilon L$ which
realizes this minimal distance, $i$ . $e$ .

$\Vert$ x-Px $\Vert=d(x, L)=\min_{y\epsilon L}\Vert x-y\Vert$ .

$Px$ represents an operator in $B$, in general non-linear, we shall call $P$ the metric
projection on $L$ , or brief, the projection on $L$ .

By the definition of projection $P$ we have the following properties:

$(a-1)$ $P$ is idempotent: $P=P^{2}$

$(a-2)$ $P$ is $homoge\eta uous:P(ax)=aPx$ for every a $\epsilon k$ (field)

$(a-3)$ $P$ is quasi-additive: $P(y+x)=y+Px$ for every $y\epsilon L$

$(a-4)$ $P$ is bounded: $\Vert$ Px-x $\Vert\leq\Vert x\Vert$ , $\Vert Px\Vert\leq 2\Vert x\Vert$ .
$(a-5)$ $|\Vert$ x-Px $\Vert-\Vert$ y-Px $\Vert|\leq\Vert x-y\Vert$ .
$(a-6)$ If $L^{\prime}\subset L$ and $P^{\prime}$ is the projection on $L^{\prime}$ then

$\Vert$ x-Px $\Vert\leq\Vert x-P^{\prime}x\Vert$

Consider now a sequence of closed subspace $\{L_{k}\}$ , where $L_{k}\cdot\subset B$.

Definition. If lim $L_{k}=set$ of all $x\epsilon B$ such that for some $x_{k}\epsilon L_{k},$ $x_{k}-x$,

then we called lim $L_{k}$ is the limit inferior of the sequences $\{L_{k}\}$ .
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By the above definition, we have the following properties:

$(b-1)$ lim $L_{k}$ is a closed subspace.
$(b-2)$ If every $L_{k}$ is finite dimensional then $ x\epsilon$ lim $L_{k}$ if and only if $p_{\kappa X}\rightarrow x$,

where $P_{k}$ is the projection on $L_{h}$ .
Now we prove the main theorem, with $f$ satisfying (1). We construct the

$k$-dimensional subspace.

(4) $L^{(k)}=\{A^{n}f\}_{0}^{k-1}$

We denote by $P^{(k)}$ , the metric projection on $L^{(k)}$ , by (1) it is clearly lim
$L^{(8;)}=B$. And by $(a-2)$ we have

(5) $P^{(k)}x\rightarrow x$ for all $x\epsilon B$.
We can use the classical result that it may be represented by a triangular matrix

which gives that there exists an increasing sequence of subspaces.

(6) $ 0=L^{(k,0)}\subset L^{(k,1)}\subset L^{(k,2)}\subset\cdots$ $\subset L^{(k,t)}=L^{(k)}$

$aIldP^{(k.\ell})$ denotes the ptojection on $L^{(k.i)}$ , where $i\leq k$ .
The following Lemma 1 and Corollary 1 are due [1].

Lemma 1. Let $\{k_{m}\}$ and $\{i_{m}\}$ be sequences of integers such that $ k_{m}\nearrow\infty$ and
$0\leq i_{m}\leq k_{m}$ . Further, let $x_{n}\epsilon L^{(k_{m},i_{m})}$ . If $Ax_{m}\rightarrow y$ then $ y\epsilon$ lim $L^{(k_{m},i_{m})}$ .

Corollary 1. For any sequence $\{k_{m}\}$ and $\{i_{m}\}$ satisfying the condition of the
lemma 1, then lim $L^{(k_{m},i_{m})}$ is an invariant subspace of $A$ .

Lemma 2. Let $\{k_{m}\}$ and $\{i_{m}\}$ be sequences of integers such that $ k_{n*}\nearrow\infty$ and
$0\leq i_{m}\leq k_{m}$ . if the lim of every subsequence of $L^{(k_{m},i_{m})}$ is equal to zero and $p(z)$ is
a non-zero polynomial, $i$ . $e$. $P(z)\neq 0$ , such that $P(A)$ is compact operator in $B$, then
for any bounded sequence $\{x_{m}\},$ $x_{m}\epsilon L^{(k_{m}.i_{m})}$ , we have $p(A)-O$ .

Proof By compact operator $p(A)$ , the bounded sequence $\{x_{m}\}$ is transformed
into a relatively $mpact$ sequence $\{p(A)x_{m}\}$ . Therefore it is enough to prove that
if any subsequence $\{p(A)x_{mj}\}$ converges to some $y$ , then $y=0$ . By hypothesis
and (5), we have

$\Vert p(A)x_{m_{j}}-P^{(k_{mj})}p(A)x_{m_{j}}\Vert\leq\Vert y-P^{(k_{mj}})y\Vert+\Vert p(A)x_{m_{j}}-y\Vert-0$ .
and $\Vert y-P^{(k}$ )

$(A)x_{m_{j}}\Vert\leq\Vert y-p(A)x_{m_{j}}\Vert+\Vert p)A)x_{m_{j}}-P^{(km_{j)}}p(A)x_{m_{j}}\Vert-0$ ,

where $p^{(km_{t})}$ is the proiection on $L^{(\kappa_{mj})}$ .
By definition of inferior limit, we get $yc$ lim $L^{(ki(k))}mj\cdot mj$ and

lim $L^{(k_{mj^{i(k}mj}}.$)) $\subset\varliminf L^{(k}m,\iota^{(t_{m}))}$ , hence $y=0$ .
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We choose now an arbitrary $a$ with

(7) $0<a<1$ , $\Vert p(A)f\Vert>a\Vert p(A)\Vert\cdot\Vert f\Vert$

Since $f\epsilon L^{(k)}$ . we have by (6) and $(a-6)$

$\Vert$ fll $=\Vert f-P^{(k,0)}f\Vert\geq\Vert f-P^{(k,1)}f|\geq\ldots\geq\Vert f-P^{(k.k)}f||=0$

There exists therefore for each $k=1,2,$ $\cdots$ , a unique indice $i(k),$ $0\leq i(k)<k$ ,

such that

(8) $\Vert f-P^{(k.i(k))}f\Vert\geq a\Vert f\Vert>\Vert f-P^{(k,i(k)+1)}f\Vert$

Let $z_{k},$ $k=1,2,$ $\cdots\cdots$ , be an element of $L^{(k.i(k)+1)}$ such that

(9) $\Vert z_{k}\Vert=1$ , $P^{(k.i(k))}z_{k}=0$ .
Such an element can be obtained from an arbitrary element
$u\epsilon L^{(k,i(k)+1)}-L^{(k,i(k))}$ , by putting $z_{k}=\Vert u-P^{(k,i(k))}u\Vert^{-1}(u-P^{(k,i(k))}u)$

by $(a-2)$ and $(a-3)$ , then (9) is proved.

Since the dimensions of $L^{(k,i(k)+1)}$ and $L^{(k,i(k))}$ differ by 1. Hence every element
$y\epsilon L^{(ki(k)+1)}$ is representable in a unique way in the form $y=x+bz_{k}$ with $x=P^{(k,\ell_{(}k))}y$

correspondingly, we shall put

(10) $P^{(k,i(k)+1)}f=x_{k}+b_{k}z_{k}$

$P^{(k,i(k)+1)}Af=x_{k}^{\prime}+b_{k}^{\prime}z_{k}$ , $x_{k}$ and $x_{k}^{\prime}\epsilon L^{(k,itk))}$

By $(a-4)$ , we have

(11) $\Vert x_{k}\Vert=\Vert P^{(k,i(k))}P^{(k,i(k)+1)}f\Vert\leq 4\Vert f\Vert$

$\Vert x_{k}^{\prime}\Vert\leq 4\Vert Af\Vert$

We now prove the following statements;

(I) For every sequence $ k_{m}\nearrow\infty$ , lim $L^{(k_{m}.i(k_{m}))}\neq B$.
(II) For some sequence $ h_{m}^{\prime}\nearrow\infty$ , lim $L^{(\kappa;_{m},i(k\prime_{m})+1)}\neq 0$ .
(III) If for every sequnce $ k_{m}\nearrow\infty$ , lim $L^{(k_{m},i(k_{m}))}=0$ , then for every sequence

$ k_{m}^{\prime}\nearrow\infty$ , lim $L^{(k\prime_{m^{i(k\prime}m}}$ ) $+\iota$ ) $\neq B$.
Proof of (I). If lim $L^{(k_{m}.i(k_{m}))}=B$ , then by $(a-2)$

$P^{(k_{m},i(k_{m}))}f-f$. Which contradicts to (8).

Proof of (II). Suppose the contrary, then the bounded sequence $\{P^{(1i(k)+1)}f\}$

is transformed into a sequence $\{p(A)P^{(k_{l}(k)+I)}f\}$ converging to $0$ . By lemma 2, since
$p(A)f=p(A)(f-P^{(k,i(k)+1)}f)+p(A)P^{(k,i(k)+1)}f$
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We get $\Vert p(A)f\Vert\leq\lim\Vert p(A)(f-P^{(k,i(k)+1)}f)\Vert$

$\leq\lim$ $inf\Vert p(A)\Vert\cdot\Vert f-P^{(k.i(k)+1)}f\Vert$

Which, by (8), gives I $ p(A)f\Vert\leq a\Vert p(A)\Vert\cdot\Vert f\Vert$ is contradiction to (7).

Proof of ($III|$ . Suppose that for every $ k_{m}\nearrow\infty$ , lim $L^{(k_{m},i(r_{m})\cdot\cdot 1)}=B$.
By $(b-2)$ , we have $P^{(k_{m}^{\prime}\prime i(k_{m}^{\prime})+1)}f\rightarrow f$ and $P^{(k\prime_{m^{b(k\prime}m}}$ ) $+1$ )$4f-Af$.
Then by (10) we have

$f=\lim(x_{k^{\prime}}m+b_{k^{\prime}}mz_{k^{\prime}}m)$

$Af=\lim(x_{k^{\prime}}^{\prime}m+b_{k^{\prime}}^{\prime}mz_{k^{\prime}}m)$

Hence $p(A)f=\lim(l(A)x_{t_{m}^{\prime}}+p(A)b_{k^{\prime}}mz_{k},m)$

$p(A)Af=\lim(l(A)x_{k^{\prime}}^{\prime}m+p(A)b_{k^{J}}^{\prime}mz_{k^{\prime}}m)$

By (11) and lemma 2, it follows that

$p(A)f=\lim p(A)b_{k_{mm}^{\prime Z_{k^{\prime}}}}$

$l(A)Af=\lim p(AJb_{k_{m}^{\prime}}^{\prime}z_{k_{m}^{\prime}}$

Hence $b_{k^{\prime}}^{\prime}m/b_{k^{\prime}}m$ converges to some number $c$ , and $f=cAf$ which contradicts to (3).

We complete the $pr\infty f$ of the theorem as follow: If there is any sequence $ k_{m}\nearrow\infty$ ,

such that $S=\varliminf L^{(k_{m}.i(k_{m}))}\neq(0)$ , then in view of statement (I) and corollary 1, $S$

is a proper invariant subspace. If there is no such sequence $\{k_{m}\}$ , then by statement
(II), we choose a sequence $ k_{m}^{\prime}\nearrow\infty$ , so that

$S^{\prime}=\varliminf L^{(k_{m^{i}m}^{\prime,(k^{\prime})+1)}}\neq 0$

By statement (III) and corollary 1, $S^{\prime}$ is then a proper invariant subspace.
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