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For discussion the existence of invariant subspaces, in 1954, N. Aronszajn and
K. T. Smith has proved the theorem: Let B be a Banach space and 7" a compact
operator in Banach spaces, then there exists a proper invariant subspaces of 7. But for
general bounded operator, even in Hilbert apace, it is not yet known that whether there
always exists a proper invariant subspace. Recently in 1966, A. R. Bernstein and A.
Robinson has proved the theorem : If A is a linear bounded operator on a Hilbert space
H of dimension greater than 1 and if p is a non-zero polynomial such that p(A4) is
compact, then there exists a non-trivial subspace of H invariant under A. The proof
was based on the framework of Non-standard analysis. And at the same time P.R.
Halmos has proved the same theorem that was expressed in ths standard framework
of classical analysis.

Now, in this present paper, I want to show that the result [2] can be extended
to the case of general Banach spaces, that is, if A is a linear bounded operator in a
Banach space B of infinite dimension and if p is a non-zero polynomial such that p(A)
is compact, then there exists a non-trivial subspace of B invariant under A.

Let A be a linear bounded operator in a Banach space B, A (B)cB. A closed
linear subspace LC B is said to be a proper invariant subspace under A4, if (0)%L+B,
then A(L)c L.

A compact operator (completely continuous operator) A in B means that if, for
any bounded subset E of B, A(E) is relatively compact in B. An equivalent condition
is that for any bounded sequence {x,} in B, there is a subsequence {xs,} such that
the sequence {A(xs,)} converges in B.

Theorem. If A is a linear bounded operator in a Banach space B of infinite

dimension and if p is a non-zero polynomial such that p(A) is compact, then there
exists a non-trivial subspace of B invariant under A.

Proof. Consider an arbitrary f+0 in B. The closed subspace {A"f}s generated
by f and its successive images, Af, A%f, .. is clearly an invariant subspace of A.

Hence we can limit ourselves to the case that

(1) {A"fl¢=B
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This formula implies the following properties :
(2) B is separable.
(3) All the elements A"f are +0 and linearly independent.
Suppose that we have the relation
MmA™ fHa A" f+ -+ ayA™ f=0 where a;#0
i=1,2,--,k, and 0<n <N < - <1y

Then we have Ame/=(= L) (@Anfradrf+tamidmf)

and hence all the A"f’s would lie in the subspace generated by those with indices
n<ne, Which is in contradiction to (1) and the infinite dimension of B.

Since in every separable Banach space we can define an equivalent strictly convex
norm, i.e. such that if x#y and | x| = |y]| #0, then |x+yl <lx|+ [yl {see J.A.
Clarkson ). We shall suppose that the norm in a separable Banach space B is
strictly convex. ‘

Now we consider an arbitrary finite dimensional subspace Lc B. For every xe¢ B
we can consider the minimal distance d(x, L) from x to L. Since L is of finite
dimension, the shortest distance is certainly attained and in view of the strict convexity
of the norm it is immediately proved that there exists a unique point Pxe L which
realizes this minimal distance, i.e.

|x—Px| =d(x, L)=min | x—y .
yelL
lerepresents an operator in B, in general non-linear, we shall call P the metric
projection on L, or brief, the projection on L.

By the definition of projection P we have the following properties :

(a-1) P is idempotent: P=P:?

(a-2) P is homogenuous: P(ax)=aPx for every acek (field)
(a-3) P is quasi-additive: P (y+x)=y-+Px for every ye L
(a-4) P is bounded: | Px—x| < x|, [ Px||<2]x].
(a-5) [|x—Px| —|y—Pxl|I<[x—y].

(a-6) If L'cL and P' is the projection on L' then
|x—Px|| < |x—P' x|

" Consider now a sequence of closed subspace {L:}, where L,C B.

Definition. If lim Ly=set of all xe¢ B such that for some xieL:, xe—x,
then we called lim Ly is the limit inferior of the sequences {L}.
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By the above definition, we have the following properties :
(b-1) lim Ly is a closed subspace.

(b=2) If every Ly is finite dimensional then xe lim L if and only if p. x—x,
where Py, is the projection on L.

Now we prove the main theorem, with f satisfying (1). We construct the

k-dimensional subspace. .
(4) L®={Anf}i

We denote by P®, the metric projection on L®, by (1) it is clearly lim
L®=PB. And by (a-2) we have

(5) P ® gy for all x¢B.

We can use the classical result that it may be represented by a triangular matrix
which gives that there exists an increasing sequence of subspaces.

(6) 0=L&OC L&D L&D ... CL&® — [ &
and P %% denotes the ptojection on L%, where i<k.

The following [Lemma 1| and [Corollary 1] are due [1].

Lemma 1. Let {kn} and {in} be sequences of integers such that kn,/ o and
0<in<kn. Further, let xnc L%min), If Axn——y then ye lim L%mim),

Corollary 1. For any sequence {k,} and {in} satisfying the condition of the
lemma 1, then lim L%wiw §s an invariant subspace of A.

Lemma 2. Let {kn} and {in} be sequences of integers such that kpy, oo and
0<im<km. if the lim of every subsequence of L%m'm> s equal to zero and p(2) is
a non-zero polynomial, i.e. p(2)#0, such that p(A) is compact operator in B, then
for any bounded sequence {xm}, Xme L%mind, we have p(A)—>0.

Proof By compact operator p(A), the bounded sequence {x,} is transformed
into a relatively compact sequence {p(A)xn}. Therefore it is enough to prove that
if any subsequence {p(A)xm;} converges to some y, then y=0. By hypothesis
and (5), we have

D (A) Xmy— P ¥mi> p(A) dm; | < | y—P %ns y| + [ p(A) Xm;—y [| —0.
and | y—P Emp p(A)xm; | < | y—p(A) xm; | + | p)A) Znj— P 99 p(A) X [—0,
where p*m is the proiection on L @mj),

By definition of inferior limit, we get yc lim L %mj? ®m and

lim L ®m;.i%n>>  lim L %mi%*m>), hence y=0.
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We choose now an arbitrary a with
(7) 0<a<l, Ip(A)fl>alp(A)l-1f]
Since fe L™, we have by (6) and (a-6)
Al =1f=P%Of|Z|f=P%Pf] = Z [[f=P*Of|=0

There exists therefore for each £=1,2, .-+, a unique indice 7 (k), 0 <i (k)<k,

such that
(8) | f=P %@ fl za| f|| > || f= P& i f]
Let 24, k=1,2, ceveet , be an element of L w0+ such that
(9) lal=1  P®i®> =0,

Such an element can be obtained from an arbitrary element
u e L@+ ] &i®) by putting zp= | u— P%i®) g |1 (g — Pk.i @) 4)
by (a—2) and (a-3), then (9) is proved.
Since the dimensions of L% i@+ and L%i®> differ by 1. Hence every element

ye L*i®+D s representable in a unique way in the form y=x+4bz with x=P®i®)y

correspondingly, we shall put
(10) PGt WD f= iy - by 2
P®i®ID Af=g'p+ bk 2k, 2 and x're LE1E)
By (a-4), we have
(11) L% || = || Pt p&i® £l <4 f]
[x'ell <41 Af]
We now prove the following statements:
(1) For every sequence km, oo, lim L%m i %) £ B,
(II) For some sequence k'm0, lim L%mi&mw+D (),
(ILT) If for every sequnce kn, oo, lim L%mni®w> =0, then for every sequence
k'm0, lim L®mt®mtD £ B,
Proof of (1). If lim L%mi®&m)> =P, then by (a-2)
P%miGm)) f——f Which contradicts to (8 ).
Proof of (11). Suppose the contrary, then the bounded sequence {P ¢i®+D £}

is transformed into a sequence {p (A) P ®i®+Df} converging to 0. By lemma 2, since

P(A) f=p(A)(f—P®i®D f) 4 p(4) Phi @D f
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We get Hp(A)fH <lim | p (A) (f— P %i®+D f)|
<lim inf | p(A)]| -] f~ P&+ @0 |

Which, by (8), gives [|p(A)fl <allp(A)|l-|f| is contradiction to (7).
Proof of (IID. Suppose that for every km "o, lim L%miGkm*D=P,
By (b-2), we have P®mi®m+D f_,f and P®'mi®m+DAf 5 Af,
Then by [10] we have

f=lm (% + by 2i4,)

Af=lim (Xe,+b'e, 2e,)

Hence p(A)f=lim (p(A) %, +p{A)bir,, 2,,)
p(A)Af=lim (p(A) X, +D(A) Dk, 200,,)

By and lemma 2, it follows that

p(A) f=lim p(A) by, 2¢,
p(A)Af=lim p(A) ¥V, 2,

Hence b's.,,/be:,, converges to some number ¢, and f=cAf which contradicts to (3).

We complete the proof of the theorem as follow : If there is any sequence k, "o,

such that S=1lim L%mi?%m>(0), then in view of statement (I) and corollary 1, S
is a proper invariant subspace. If there is no such sequence {km}, then by statement
(I), we choose a sequence k'» "o, so that

S'=lim L% mi &+ ()

By statement (III) and corollary 1, S’ is then a proper invariant subspace.
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