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1. Intoroduction

The general theory of a-atomic Boolean algebras has been developed by R.S.
Pierce [T]. In this paper, I introduced the concept of the M.—property in a Boolean
algebra. That is, let @ be an infinite cardinal number and let 4 be a Boolean algebra,
then A is said to have the M,-property provided if P={a::&<a} is any subset of A
such that every finite subset of P has non-zero meet, then then there is a non-zero
element @ in A satisfying aca; for £<a. The existence of such a Boolean algebra
will be proved.

It is clear that if A is a Boolean algebra which has the M ~property, then the
minimal g-extension. A of A is a-atomic. Therefore, we can apply the results of
R.S. Pierce for a-atomic Boolean algebra to A’ E.C. Smith and A. Tarski has
proved the theorem in their paper such that if § is a singular, strong limit cardinal
and A4 is an f-complete Boolean algebra which is (a, p)-distributive for every cardinal
a<fB, then A4 is (8, f)-distributive. Moreover, I modified this theorem and applied it to
a Boolean algebra which has the M.-property for every cardinal a< B, Thus I proved
the following theorem.

Suppose that 8 is an arbitrary infinite cardinal number and that A4 is a Boolean
algebra which has the M.—property for every cardinal a< F. Then A is S-representable.

2. Preliminaries

The set-theoretical operations are represented by rounded symbols: ¢, U, N and
C respectively denote membership, union, intersection and inclusion. f A and B are
sets, B~A is the set of all elements of B which are not in A ; the complement (in a
fixed set) of A is designated A°. The empty set is denoted by ¢. |

The following definitions and results concerning the ordinal numbers and the
cardinal numbers are due to Alexander Abian [3].

A set B is called an ordinal nnmber (or simply an ordinal) if 8 can be well
ordered so that for element @ of 3 the initial segment I(a) of f is equal to a, i.e.,
I (a)=a for every acp. For every two ordinal numbers a and §, one and only one of
the following three cases holds (i) a=p {ii) a is equal to an initial segment of 8 (iii)
B is equal to an initial segment of @. We define a<p if a is equal to 8 or « is equal
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to an initial segment of f. If a<p and a=p3, we say that « is less than 3 and as
usual we denote a<pf. Every ordinal number § is equal to the set of all ordinals less
than P. We denote this set W (B). Let us call an ordinal § immediate successor of
ordinal a if a<pg; and if an ordinal 7 is such that @<y, then B<y. Every ordinal
number a has the immediate successor. The immediate successor of a is denoted by
a+1. An ordinal number « is said to be immediate predecessor of an ordinal § if
a<B; and if an ordinal y is such that y<p, then y=a.

Two sets A, B are called equipollent, in symbol - A= B, if there exists a one-to-
one correspondence between them. An ordinal number a is called a cardinal number
(or simply a cardinal), if for every ordinal number B, a=p implies a<p. We say such
a cardinal number an initial number. Every set A is equipollent to an unique cardinal
number «. We denote A=a. Every infinite cardinal number has no immediate
predecessor. We say that a cardinal number § is the immediate successor of a cardinal
a if a<p and, if for no cardinal 7 is it the case that a<y<p. Every cardinal number
a has the unique immediate successor. It is denoted by a*.

If A and B are non-empty sets, then A® will denote the set of all functions of
B into A. For every two cardinal numbers a and 3 the f-th power of a, denoted by
a®, is defined as a® =a?.

For every X of ordinal (cardinal) numbers, the union UX of X is an ordinal
(cardinal) number. Moreover, U X is the least upper bound of X. A cardinal number §
is called singular if it can be represented as the least upper bound of a set S of
cardinals, each of S is less than 8 and S<p. All other cardinals are called regular.

For every indexed family {@;:iel} of cardinal numbers, the sum of all cardinal

numbers belonging to this family is denoted by ¥ *a; and is defined as: U (s x {1}).

el

Accordingly, 2 a;= U U (& X {i}) where a;x {i} is the Cartesian product of a; and {:}.
For every two farmhes {a;:iel} and {B;;iel} of cardinal numbers a;, and B, ar<p:

for every iel implies S* a;< 2 * 8, For an indexed family {a;:iel} of cardinal
tel

numbers, if /=8, and a;=«a for every iel, then we have 3* a;=af, where a‘B—uxv
tel

with a=wu and B=v. If {A::£<a} is any family of sets, pairwise disjoint or not,

then UA;<J3*A.. Finally, for every non-zero cardinal a and every infinite cardinal
£<a f<a

number B, a<p implies af=p.

We shall denote the fundamental Boolean operations, join, meet and inclusion
by+,+and . The generalizations of join and meet denoted by 2 and /I, respectively.
If a is an element of a Boolean algebra A, @ denotes the complement of a in A.
The null and universal elements of a Boolean algebra will be denoted by 0 and 1,
respectively, as well as the ordinary numbers zero and one. A Boolean algebra A is
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called a~complete if and only if whenever B C A and B<a, 3 Blor 3 b) exists in A.

By a field of sets we shall understand any non-empty class b‘I% of subsets of a
fixed set X such that (i) if sets A, B are in F, then their union is in F. (ii) if a set
A isin F, then its complement in the fixed set X is in F. Clearly, every field of
sets is a Boolean algebra, the Boolean operations+, ., — being the set-theoretical union,

intersection and complementation, respectively.

3. The existence of a Boolean algebra which has the M.-property

A set D of elements of a Boolean algebra A is said to be dense (in A) if, for
cvery non-zero element aed, there exists an element deD such that O0xbcCa.

Let « be an infinite cardinal number. A partially ordered set P will be called
a—compact if P is closed under finite meets contains a zero element and satisfies the
condition that M & P,M < a and no finite subset of M has zero meet, then M has
a non-zero lower bound in P. A Boolean algebra A will be called a-atomic if A
contains a dense subset which is a—compact.

Definition. A Boolean algebra A is said to have the M.—property if A itself
1S a-compact. ‘

We shall show that the existence of a Boolean algebra which has the M,-property.

Let Y be an infinite set with Y=8>w and B be the field (i.e. Boolean algebra)
composed of all finite subsets of ¥ and of all cofinite subsets of Y. Let y be any point
which does not belong to Y, and X=YU{y}. The mapping

A if AeB is finite
¢4 ={Au{y} if AeB is cofinite
is an i1somorphism of B onto a field F of subsets of X.
Suppose that _&7is the family which consists of all unions of members of F.
Then 77 is a topology in X and F is an open basis for X. Of course, every set BeF
is open. It is also closed in this topology & since X-B belongs to F. F being reduced,
the space X is totally disconnected.

To prove that X is compact, we suppose that C is an open covering of X. We
can assume that each set B in C belongs to F, because each set B in C is the union
of members of F. Then there is at least one BeC such that ye B. Hence there exists
a cofinite set AeRB such that B=AU {y}. Moreover B¢ is finite. Therefore we can
find a finite sequence B+« , BreC such that X=B;U:-+-- U Bn.

Now we shall prove that a set B < X is open—closed, then BeF. Indeed, B is
the union of a family K of sets in F since B is open. Since B is a closed subset of
the compact space X, there exists a finite sequence By, -+e-- ,Bp,¢e KS F such that
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B=ByU::: UB,. Hence BeF. Consequently, the field F consists of all open-closed .
subsets of X. .

Since the Boolean algebra B is isomorphic to the field F of all open-closed
subsets of the compact totally disconnected space X, X is the Stone space of B.

Theorem 1. The Boolean algebra B has the M.-property for every cardinal
a<fp where w=a.

Proof. To prove that B has the M.~property, it suffices to show that for every
subset M={A::é<a} of B which has the finite intersection property, there is non-
zero element A ¢ B such that A __ A for every £<a. Since {A::¢&<a} has the finite
intersection property, the subset {¢ (A¢):é<a} of F has the same property. Moreover,
X being compact, we obtain ED“ v (A 0.

| Case I. It there is at least one finite set A: in M, then there is a point xeX
distinct from y such that xe n ¢ (A;). This means that the singleton {x} — ¢ (A;) for
every £<a. On the other hand by the property of ¢ that ¢ ({x})={x},0({x})S¢(de)
for every £<a. Consequently, ¢={x} & A; for every é<a and {x} eB.

Case II. Let us assume that there is no finite set A; in M. Suppose now that
ﬂ go(Ae)—-{y}. Then, by the de Morgan law, U ¢ (A§)=Y where Ai=Y~—A;. Each
Ae being finite set, Y Ai=Y. Hence we have ,8 Y< Z'*A <w+a=a<p. This leads
to a contradiction. Therefore ﬂ ¢ (A;) contains a pomt % of X distinct from y. By
means of a similar argument, one can obtain the element {x} ¢ B such that ¢x {x} S A,
for every é<a.

4. The distributivity

A Boolean algebra A is (a, f)-distributive if the following is satisfied: given any

subset {ae,,:E<a,p<B} of A such that all the joins ¥ aq,, for £<a, their meet
<

I ¥ g, and all the meets [l as, s for fepe exist, then the join ¥ 17 as, 7y also

t<a 9<p reB® &>
exists and we have

I % ay,= 2 11 ag, ;.

&< ap<p Sefa €<
If a Boolean algebra A is (a, B)-distributive for every cardinal number S, we say that
A is (a, oo)-distributive. '
Actually, in order to demonstrate that a Boolean algebra A is (@, g)-distributive,
it is sufficient to show that if {ae,,:£&<a,n<p} is any subset of A4 such that all the

§<a <8

joins E as,, for £<a exist and their meet I/ ¥ a;,, exists and is not zero, then there
<
is an fe B~ such that H as, s ois false ; i. e. either Il as, 1, does not exist or is not zero.
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Theorem 2. Suppose that B is a singular cardinal number and that A is an
E-complete Boolean algebra which is («, oo)-distributive for every cardinal a<p. Then
A is (B, oo)-distributive.

Proof. Let y be an arbitrary cardinal number and { a¢,,:£<8,7<y} be any
subset of A4 such that

(1) 113 a,,~0

§<@ <y

B being singular, we can find a set S={B::é<a} of cardinal numbers B¢ such that

B:<p for every é<a<p and B=U B Since f is the least upper bound of S and has
é<a

no immediate predecessor,

(2) for any < B there is a & satisfying %< 8: <p.
Let '
(3) D:={x:x= 1l a,, ;. and fer¥¢} for £<a.
7<B¢

Moreover for each ¢<a, let p:=y@, and find a bijective function F: (or one-to-one
onto map) on 7#¢ onto p.. For every é<a let b; be a function p; such that.

bE<FE)(f)= I Ay 1

7<8¢
for each feyfe. Let be(y)=b;,, for é<a and 7<p:.
Let p= U p; and if p:<p for some §<a, we define b;,,=0 for each p;<7<p.
é<a
Then, by the (a, co)-distributivity of 4

(4) I YDe= II 3 {b:(F:(f))}= T % by,
é<a é<a ferBe &<a p<pg
=123 b€>v= P/ bE:a(e)
<a 3<p gep® §<a

Since fot each é<a we have

I/ a,, 1D X Qs s

7<Bg A<y <8 A<y

by (1), (4) and the (8¢, oo)~distributivity ot A,
OZ\F Iy a, . C T 1 X a,‘,1=17 > 1 a, rm

7<8 a<y §<a y<fg i<y §<a ferfé y<ge

= Il 3 b:(F:(f))=Il 2 D,

§<a fepbe §<a
so that by (4) there is a gep* such that
(5) 11 b, 1,0
If for some p; < 9(¢) theu b, ,,=0. Thus g(&){loe for every é<a. By the definition

of F: we have for each é<a, g (§)=F:(f) for some fey’. Since g is at this time
fixed, this f depend only upon & Accordingly, we denote it f;, that is, g E)=F:(fe).
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Now by (2), we can define an ke by the condition that for each <8, h(n)=/fe (n)
where & is so chosen that f; is the least member of {8::7<f:<B,é<a}, By the
definition of b for each %<}, it follows that

ar/-h(ﬂ)=af,’ fe(n) D 1[<Iﬂ a,, f5(1)=b5 (F€<,f€))=b5! Fef(f)
§
=be, g6 I by g o
é<a

thus by (5) we obtain

T a,,npyD I bey g0,
7<p é<a

which means that A is (3, y)-distributive. 7 being an arbitrary cardinal number, A is
(P, oo)~distributive. The proof is complete. ‘

The following two theorems and corollary are due to R.S. Pierce [1].

Theorem 3. Let A be an a-complete, a—atmoic Boolean algebra. Then A has
the following property :
(P) if {Ae: &<y} is a family of coverings of A such that v<a* and v is cardinal and
if bx0 in A, then there is a choice function ¢ on v such that ¢ (&) c A: with property
that if TZ— W) and T<a*, Then

be IT ¢(§)x0

T
Theorem 4. Suppose that A is an a-complete Boolean algebra which satisfies
the property (P) of Theovem 3. Then A is (a, oo )-distributive. ‘
Proof. Let 7 be an arbitrary cardinal number and let {a:,,:é<a,7<y} be a
subset of A such that Y a;,=1 for every é<a. Let A.={a,:7<r}. Then A,
becomes a covering of fTT Since A satisfies the property (P), for any non-zero element
a, there is a function feys such that a- 1l a; ;o =0. This means that 4 is (a,7)-
distributive [See [4] 19.2 (d:)]. 7 being arbei<t;'ary, it follows that A is (a, co)-distributive.

Corollary. Every a-complete, a-atomic Boolean algebra is (a, oo)-distributive.

If A is a Boolean algebra, then A# will denote the minimal S-extension of A,
i.e. A?is an B-complete Boolean algebra, A is dense in A? and j-generates A°.

Theorem 5. Suppose that 3 is a cardinal number and that A is a Boolean
algebra which has the M.—property for every cardinal a<p. Let A? be a minimal
i~extension of A, then A? is (@, oo)-distributive for every cardinal a<p.

Proof. Since A is dense subalgebra of A%, A% is a-complete, a-atomic for every
cardinal a< 8. By corollary, A? is (a, co)-distributive for every cardinal a<p.

Theorem 6. Suppose that B is a singular cardinal number and that A is
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a Boolean algebra which has the M.—-property for every cardinal a<B. Then A is
(B, oo)~distributive.

Proof. Let A* be a minimal pB-extension of A. Then, by Theorem 5, A% is
(@, co)-distributive for each cardinal a<p. Since § is a singular cardinal, by Theoren 2,
A? is (B, co)-distributive. Moreover, A is a regular subalgebra of A¢. Consequently, A
is (B, oo)-distributive.

5. Representability

Notice that if S is an infinite regular cardinal number and if 7S W(8) and
T< B, then there exists an ordinal number i< B such that r<2 for every reT.

In fact, let us assume that there is no such an A. Then there is at least one
te T for arbitrary 1< such that A<r. Since < and every infinite cardinal number
has no immediate predecessor, there exists an ordinal p with t<p< f. By assumption,
there is an ordinal ve 7" with #<v<fB. Thus we can find an ordinal number veT for
arbitrary A< such A<v. This means that W (5)= U W (¢€), what is the same, = UE
It is clear that >¢ for each &¢ 7. Therefore, it follows that ﬁ>6 for each ET If
a cardinal number 4 has the property that A=¢ for each £eT, then A=¢ for each &eT.
Since § is the least upper bound of {£:&T}, we have 4=p, that is, f= EUT§ This
means that 8 is singular. This leads to contradiction.

Theorem 7. Suppése that B is an infinte regular cardinal number and that
A is a Boolean algebra which has the M.-property for every cardinal a<p. Let A?
be a minimal f-extension of A, then A? has the following property:

(P') if {A::€6<v} is a family of coverings of A*? such that a cardinal v<3 and if
bx0 in AP, then there is a choice function ¢ on v such that ¢ (&)e A: with the
property that if T C W (v) and T/B Then b - ﬂ ¢ (8)=0.

Proof. We can assume that v=p. By transfinite inductive definition we can

define functlons f:8—A and ¢ on 8 with ¢(£)eA; having the following properties

(i) §<n< B implies 0xf()Cf(§)C

(i) f)ce(€)

These are constructed in the following way. Assume that f(¢) has been
defined for every &<z, where <B. By the M.,-property, c= g ;f (¢)x0. We
assume that ¢=1, when r=0. Then we can find a ¢(0)eA, such that ¢(0)«b0.
Such an element ¢ (0) exists, because b=b+1=b-2 Ag=2 {b-a:ac As}. Since A is
a dense subalgebra of A#, we can choose arbitrarily a f(0) ¢ A satisfying 0x1(0,C¢(0)-b.
Suppose that ¢ (¢), f(¢) have been defined for every £<z, where 0<z<p. Then we
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have ccb. Choose ¢ (r)eA. so that ¢(z)«cx0. As before, some element of 4. will
satisfy this requirement. Using the fact that A is dense, it is possible to find f(r)e A.
such that O#f( )C¢ (r)+ c. From this construction, it is evident that f(r)Ce(z). If
¢<r, then we obtain ¢= H flp)<f(€). Accoridingly, it follows that f(§)DcDc+¢(r)D

f(z), that is, f(z)cf(§). Thus, the conditions (i) and (ii) are fulfilled.

Now if 7€ W (j) and T<B, then since B is infinite regular cardinal number,
there exists A< such that §<24 for every &eT.

b I () Db-e{{w(é-)Db -egf(f) .

e
> 11 F@)5F ()0
what is the same, b-elggo(f)#().

A Boolean algebra A is said to have the property (P;) where B is an infinite
cardinal, if the following is satisfied : if {a@:,:& <} is a subset of A such that all
the joins <Z as,, for £< B exist and their meet Elgﬂ vi a:,, exists and is not 0, then
there is a functmn fep? such that 17 a:, 7 sy is false for every v<f;i.e. either Hag, 785

does not exist or else is not zero.

Theorem 8. If an p-complete Boolean algebra A éatisﬁes the following
property :

if {A::8<B} is a family of coverings of A such that if bx0 in A, then
there is a choice function ¢ on B such ¢ (£)e A with the property that if T S W ()
and T<pB, then b1l ¢ (£)=0, then A has the property (P).

Proof. Suppose that {ac,,: &, 7<pB} is any subset of 4 such that eI(Iﬂ Eﬁae,v-—aﬁeo
Let ac,=a for every £<p and let A:={as,,:7<pB+1). In this way every A. becomes
a covering of A. Hence, by the property of A, for this a=0 in A, there is a function
fe(B+1) such that a- 17 ac, ;yx0 for every v<B. It is clear that f(£)x8 for every
€< fB. Consequently, there exists a function fepB# such that H ae; ey 50 for every

v<p. Hence it follows that A has the property (P;.]

A Boolean algebra is said to be p-representable provided it is isomorphic to an
S-regular subalgebra of quotient algebra F/I where F is an f-field of sets and 7 is
an f-ideal of F. Thus an p-complete Boolean algebra is f-representable if and only if
it is is isomorphic to a quotient algebra F/I where F is an f-field of sets, and I is an
p-ideal of F.

Actually, in order to demonstrate that a Boolean algebra 4 is p-representable,
it is sufficient to show that whenever {ac,,:&, 7<p} is any subset of A such that all
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the joins X' g, exist for £<p and their meet /7 3 as,, exists and is not 0, then
§<B 7<8

7<8
there is an feB# such that eIZ a:, 1 &»*0 for every finite subset T of W (f).
The following theorem was proved by E.C. Smith 5]

Theorem 9. Every p-complete Boolean algebra which has the property (Ps)
is B-representable.

Theorem 10. Suppose that S is an infinite regular cardinal number and that
A is a Boolean algebra which has the M.-property for every cardinal a<p. Then
A is B-representable.

Proof. Let A be a minimal S-extension of A, then by Theorem 7, Af has
the property (P’). Therefore, by Theorem 8, *4# has property (Pg). Accordingly, by

A? is B representable. A is the regular subalgebra of 44, because A is the
dense subalgebra of A?. Thus A is S-representable.

Theorem 11. Suppose that B is an arbitrary infinite cardinal number and
that A is a Boolean algebra which has the M.-property for every cardinal a<p.
Then A is p-representable.

Proof. If $ is a regular cardinal number, then, by Theorem 10, it follows
immediately that A is g-representable.

Next, if § is a singular cardinal number, then, by [Theorem 6} it follows that
A is (B, co)-distributive. Hence, A4 is (8, B)-distributive. Since every (8, 8)-distributive
Boolean algebra is §-representable, A4 is B-representable. The proof is complete.

e NN LDl /Ths SRR MUP . RO JART ST S P adUR S AUt

Bibliography

C1] R.S. Pierce, A generalization of atomic Boolean algebras, Pacific. Jour. Math. vol. 9 (1959)
pp. 175-182.

(2] E.C. Smith, Jr. and A. Tarski, Higher degrees of distributivity and completeness in
Boolean algebras, Trans. Amer. Math. Soc. vol. 84 (1957) pp. 230-257.

(3] A. Abian, Theory of Sets and Transfinite Arithmetic. W. B. Saunders Company. 1965.

C4] R. Sikorski, Boolean algebras. Beriin-Gottingen-Heidelberg, 1964.

(5] E.C. Smith, Jr., A distributivity condition for Boolean algebras, Ann. of Math. vol. 64
(1956) pp. 551-561.

GENERAL EDUCATION DEPARTMENT, SAGA UNIVERSITY, SAGA.




	1. Intoroduction
	2. Preliminaries
	3, The existence of a ...
	Theorem 1. ...

	4. The distributivity
	Theorem 3. ...
	Theorem 4. ...
	Theorem 5. ...
	Theorem 6. ...

	5. Representability
	Theorem 9. ...
	Theorem 10. ...
	Theorem 11. ...

	Bibliography

