SOME RESULTS FOR QUEUEING SYSTEM M/M/s (N+s)

TsurucHiyo HoMMmA and SaTokr NiNnomija

§ 1. Introduction

In this paper we shall consider some equilibrium behaviors of the queueing system
M/M/s(N+s) in which (i) there are s servers, (ii) the customers arrive at random at
a mean arrival rate 4 and are served in the order of arrival, (iii) in each server the
service time has the same exponential distribution with a mean service rate g, (iv) the
size of waiting room is N and when a customer arrive to find the waiting room full he
depart never to return. It has been proved by Finch (1959) that in the queueing system
M/G/1(N+1) the successive inter-departure intervals are not independent in the limit
even when the service time is exponential. Using a procedure similar to Finch’s, it will
be shown that in the system M/M/s(N+s) the successive inter-incoming intervals are
also not independent. Next we shall treat the equilibrium distribution of the number of
customers which income the system in a given time interval (0,#). The Laplace trans-
form of the generating function of the obove distribution will be obtained by the method
given by Homma (1957).

On the output process and the overflow process, the similar results will be given.
From these results the equilibrium distribution of the number of service completions in
an arbitrary time interval will be noted to be the same as the incoming diétribution.,
It seems to be difficult to obtain the explicite formulas of the above distributions, but
the above results will be used to make numerical tables. The tables are not completed .

yet and we hope they will soon be done.

§2. The dependence of successive inter-incoming intervals.

Let 7, be the number of customers present in the system M/M/s(N+s) just

after the r-th incoming occures and let

(2.1) ty=P (nrp=j|n,=i), P (j)=P(n,=j)
Now tn the above system, we shall consider the limiting distribution
(2.2) py=lim P @ (), (7=1,2, -+, N+3s).

Then it is seen that the transition matrix T'=]#;| is
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By some calculations, we have
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tll"'ﬁ_’—‘aa t12 I‘_"_—ps
) . .
. i1 2=<i=<s, 1<j7<9),
l+pt“; 2=i=ss =j=1)
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\s+p ( =12 N )
ENgss 55 =IN4e-15 5 1=j=< N+s),

p=4/p.

From (2. 4), all elements of the transition matrix T are determined.

The existence of the limiting distribution {p;} follows from the fact that the

process is a finite, irreducible, aperiodic Markov chain.

The equations which determine the limiting distribution are

From (2.4)

Pr=ti Drttag Podreererecermi +Entss 1 P+ss

Pa=tig Prtbag Pabeeerereeeermmiene i +Exgs 2 DNyss

Dnys—1= Inis-25 Nts—1 Prys—2tEnts-1 Nps1PNys—1+ s, Nys—1 DNsss

Dnys= ENts—1> N4s PNya—1FEnts, Ns DNs.
and (2.5), we have
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b, (1<ic<s)
(2. 6) =
£ pi, (s < i< N+s).
N+8
Using (2.6) and pi=1, we have
t=1
i~1 .
(z—iﬁp’ l1=siss),
(2.7) b= ’ .
L(2)" T h  (s+15i< N+s)
where

S i1 N+s s f—8-1
=1/{z’ Aot 2 2 (L) }
b =1(2—1) 1 =41 8! \s
Next we shall prove that two successive inter-incoming intervals are not inde-

pendent in the limit. Since the discussion follows the line indicated by Finch, the proof
will be simplified.

Now we consider the system M/M/s(N+s). Let I, be the time interval between
r-th and (r+‘1)—th incoming, and let H,,,(f,j) be the joint frequency function for 7,,,

and /,, that is
2. 8) Ho(t,j)dt=P(n,y,=j,t < I, < t+dt), (1=j < N+is).

The existence of the limiting distribution p;=lim P(n,= j) implies the existence of
R 7 —>poco

the limiting distribution

H(t, N+s)=lim H,(t, N+s),
(2.9) r—e
N+s
H(t)=lim (2 H.(tj)),

r—po  j=1
and in the case N>0 these are given by

t
H(t, N+ S) =1>zv+s_1e"f“‘le‘“ +pN+s f S#e-spze—sy(c—z)e—l (t—z),{dx

4]
(2. 10) = 21)N+‘_1e—3#t_n +PN+33,U (e-Spl - e—é‘yt-M)

=Dy sSpert
¢

H{)=(1=pyss)le™ + prys f Spe—Treg=1=) 1y

0
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1= pvse) A& ¥+ pryyu 2 (e —emi),  (asp,
@.11) _ (1—=Dw+s) Dr+ I—sn ( ) (A#sp)
(1 "‘pN+s) XP"“-l-szH A2 te—it, (2=S/,l).

I, and n, will be independent in the limit r—oo if and only if
(2.12) H(t, j)=H(t)p; (j=1,2,---, N+s).

In order to prove that (2.12) is not the case for j=1,2,..-, N+s, it is sufficient
to prove that it is not the case for j=N+s. From (2.10) and (2.11) we can show
the following result

(2.13) H(t, N+s) # H(t)prys, (N> 0.

This shows that for the queueing system M/M/s(N+s), N > 0, the system size
found by a incoming customer and the duration of the interval since the previous
incoming are not independent in the limit. Also from the above result we can easily
prove that two successive incoming intervals are not independent in the limit.

Next we shall consider the above dependence in the case N=0. Since P (n,=1)=1

in the case s=1, it will be evident that /. and #, are independent. In the case N=0,s>1

we have
(2. 14) H(t, s)= Doy AeEHATO 4y ;f‘% {earG=bplt — gmrpt} (u+#2),
Doy APy s A teV , (=12,
(2.15) H(t)= (1= p)deitp ‘s,;—#—zf (e —em), (A sp),
(1—ps) A%+ py 2 £ ¢~ , A=sz).

From these results, we can also show that
(2.16) H{t,s)>H (t) ps
Thus it follows that for the queueing system M/M/s(s),(s > 1), two successive inter-

incoming intervals are not independent in the limit.

§3. The distribution of the number of incoming customers.

Let I, «(f) be the conditional probability that in the queueing system M/M/s
(N+s5s) the number of incoming customers in an arbitrary time interval (0, ) is £ when
the system-size at =0 is m. Also let p,;(#) denote the probability that in (0,#) (i)

customers arrive, (ii) j customers are denied without remitted and (iii) there are no
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survices completed. Then we have the following results.
In the case

O<m<s, N+s—m <k,

t
I 6= £ [ Dwseemss 5 (6) 5 Iivsacss v rsncm (=) dx
0

¢
+J§II DPris-m-350 (%) St Inya-g-1, k- Wps—m-3) (E—%) dx
(]

(3.1) Mg

+ j=%v'+1 Pris-m-3s 0 (%) (N+5— j) plnys_s-1, k- Nte-m-3 (F—X
0

) dx
+ b Dre+2 5 (2) (k=N+s—m),

J=0

0
In the case

(f>N+s—m).
O<m<s, s—m <k < N+s—m,
~ ¢
I, ()= >) f DN+a-m_j 0 (%) Sp Inys J=1 k=(N4e-m—p (£ —%) dx.
J=N+s—m -k o
8—-m ¢
(3' 2) + jZ=’l pS-m—j, 0 (x) (S_j) U Is-j—]s ke (8—mm— ) (t_x) dx
0
+pk’ 0 (t)
In the case 0<m<s, O<k<s—m,
t
(3' 3) I‘m’ k (t): J=s§m-—k Ds m—J> 0 (x) (S—J) H I J=15k (8 - m=-9) (t_x) dx+ph 0 ( )a
) 0
In the case O<m<s, k=0,

(3.4)

]m, 0 (t)=€-“.

If we denote the generating function of {Zm, « ()} by ¢m(t,2), from (3.1) ~ (3. 4)
and some calculations, we have
(3.5)

Om (1, 2)= 3:)[,,,, K (£) 2%
k=

Il
5 g

} ¢
. zN+:-mf Drts-miss 5 (%) SpPN4o-1(t—x, 2) dx
0

N (3
+1§; ZN""—"‘"jf DNys-m—g; 0 (X) Spt Onta-ys 1 (E—x, 2) dx
0

+ ,—2:'1 De-m-350(%) (S—7) sy (t—2x,2) dx
0
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N+s—m~1
Drs o (8) 2E42N+—n 2 DPN+s—mes 5 (8)

k=1 j=0
.|_e—(1+mp)t
In order to obtain the Laplace transform of ¢n (Z, 2), the following three Laplace

transforms A, (), Bm, ¢ (6) and Cn, x(6) will be given by the method seen in Homma’s

paper (1957).

An (6) Ej ( 3 Prseemsn 3 () €00t dt

j=0

J- 2 gsu=itp --m,QJ' e"x"‘l ™ {1 (t— x>}N+J -t dx ] e=out dt

(3.6) )1 (N+j-1)!

0
e R 1 N S
\ 0+s+po’ (@+m+p)(@+m+1+p)(0+5s—14+p) p(0+s)

B+ 0= [ ooy eoredt= | { eenw i (€21 }e-vﬂcdt
) !

[}

(3.7)
p* 1 O<k<s—m—1),

)

Tt mto)frmtito) -O+mtktp) g
Cos e (0 I Prso(l e‘”#f—f {e‘ pt=it f—mlj ew—l —mk i_l_‘,z’t}k ;4)—»: ldx}e"”f"dt

(3.8)

— o i-m P kmm 1 o< o
e <0+s+p) GEmT o b FmA o iFstg TSk N+s—m=1),

where R (4) > 0.
Using (3. 6), (3.7), (3.8) and Laplace transforms of the both sides of (3.5), we have

oo

D, (6, z):_:f (om (1, 2) ) e=00tdt
+8 -m-1

N+s -
=zV+-mA, (0) Onys-y (0, 2) su+ 2 25 Coy s (0) Prym-1 (9, 2)

k=i—m

N+8 m—1

S §-m—1
+3 Z¥ (m+k) ot Bm, i (0) Omyrc-1 (6, 2)+ Ic2=1 2" B, i (0) + k_Z;_

k=0

28 G, & (0)

3

1

N+o=m
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s—m-1
2

k=

where let |
1

2% Bp, 1 (0)=0

when m=s-1.

Next we consider the case sEm<LN+s.
In the case SEm<N+s, N+s—m=k,
tN+3--m —2T ]
Inel)= "% E“%ﬂg%%gﬂLmyanU—@dx
(3. 10) ’
¢ .
+f FNg_mﬂe_ngﬂe__Z;('lx)l Ingo-1s - Was—m(t—x) dx
0 ¢ )
S s €L (A1) - -
R
0 (f>N+s—m).
In the case sEm I N+s, 0< k< N+s—m,
k 7Y 1
Imel)= | 2 emsp@ B ey (1)
(3.11) ’
e 3ntg—at (zt)k
+ - B .
In the case sEm< N+s, k=0,
3.12) I, o (1)=e%,

From (3.10) ~ (3.12) we
D (0,2)(s < m < N+s) quite

can obtain the following result for the Laplace transform

as in the case 0 < m < s.

0

_THEmT s (pa)! s
@m (0, Z)_ j=1 _(0TSM+W+T @'”H-J—l (0’ Z)-I- _(7+S—+p_ ¢m-1 ('9, Z)
S (pg)Nts—m o1
(0 +s+ p)N+3""“ O+s @N'Fs- 1 (0’ Z)
(3.13)
pN+s—m 1 N —1—
T OFs o s ST
N4s-m-1 2)k
FIWS%WQ (s = m < N+s)
Lastly we consider the cases m=0 and m=N++s.
¢
(3.14) I ()= {f €%k Ly k-1 (1=1) dx (k2 1),

e—lt
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t

e sy Izv+s_1, k (t—x) dx (k = 1),

(3.15) Ivis, e ()={ °,

f 7sp Inys-is o (E—%) di+e=nt (k = 0).

0

From these results we have
1 2
. Dy (0, 2)= o
s 1

(3.17) Dyts (0, 5)= O+s Oyis-1(0, 2)+ O+sa

Using (3. 6) ~ (3.8) we obtain the following relations

(
= __p

A ()= A Ol
= _°

(3.18) Br, & (0)=Bnt1s k1 (0)0+m+p ,

s 1 (0)=Crmp1; k- 6. 0
C’lk() C+1k1()0+m+p

\

Thus from (3.18) we can arrange (3.9) as follows:

On(0,2)= L2 Dy (0,2)+ 2 By (6,2)

0+m+p 0+m+p
(3.19)
1
+(7mz)—#— 0<m<s—1)

Using (3.13), (3.16),

(3.17) and (3.19), we can obtain the following equations which
determine @, (4, 2) 0=sm

< N+s, Nz1)

( 1

Dy(8, 2)= Tﬂrz‘?»—@‘ @, z)+_(ﬂ—;m,
- B8, 2)= 5+—’Z_§¢mﬂ(a, z)+ﬁ%7) Doy (0, 2)+ (H_—nh_p)# lsm=s—1),
B (6, 2)= #ﬂ{’:ﬂ@m“(a, Pyt O (02t m(s§m§N+s—l),
Ot = . 0 z)+(7+%)7 :

when R() >0, lz| < 1.
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In order to make insight of this solution, we examine the case s=2, N=2.

Thus taking s=2, N=2 and putting @,=0,(0,z), we have the following solution

(3.21) D= Am//\ 0<m=<4),
where
0+p —pz 0 0 0
-1 0+1+p —pz 0 0
(3.22) L= 0 -2 0+2+p —pz 0
0 0 -2 0+2+p —pz
0 0 0 -2 042 |,

Am is the determinant obtained by replacing each element in the (m-+1)-th column of
A\ by 1/p and it is evident that there is some 4, (0<d<1) and A # 0 for |z| < 4.

In the equilibrium state let p, be the probability that the system-size at an
epoch in the queueing system M/M/s(N+s) is m. Then we have the following well

known results

;” P 0=smss)
(3.23) pn=
"E%-T v (s+1=m=N+s),
W) BN B N ) ,..}
where Dn 1/{ 'm,2=0m! + s! miﬂ(s) )

Therefore in the above case the Laplace transform of the generating function of

the distribution of incoming customers is

(3. 24)

3 M
>
3.
D
3
=
N
il
[y
| D
>
s{
>
K]

0 Amn
Remarks. 1. In the case N=0, that is the system M/M/s(s), the similar results
will be obtained and we shall note that they are identical with those by putting N=0
and omiting the case s < m < N+s—1 in (3. 20).
2. The existence of the solution of the integral equations (3. 5) and its uniqueness
will be shown by the line seen in Homma’s paper (1957).
3. We shall formally give a method by which the mean of incoming customers
in (0,#) is obtained. Now we shall treat the case s=2, N=2. Differentiating both

sides of (3.20) with respect to z and putting z=1, we have
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- 14 1 0 @r
@o 0+p 0/1 0"“0, 1»
l= p . 1 p Ql 1 ’
% 6+1+p Ou + 0+1+p a+ 6+1+p e
r__ 14 . 1 p ’ 2 ’
(8.29) 2= 0+2+p Op + 0+2+p st 0+2+p 2
f_ 0 1 0 . 2 ,
Ps= 0+2+p Ou + 0+2+p Ot 6+2+p =
V=g %
where
v _[0Pnm (6, 2)
d)mh az :|==1-
Therefore we have
(3. 26) D= An/A 0=m=4),
where
0+p0 —p 0 0 0
-1 0+1+4+p —p 0 0
(3.27) A= 0 -2 0+2+p —p 0
0 0 -2 0+2+p —p
0 0 0 -2 0+2 |,

/\n is the determinant obtained by replacing the (;+1)-th column by a column by a

column vector (o/0y, /0y, -, 0/, 0).

Then we have

AW

o/0r  —p 0 0 0

p/0p 0+14p —p 0 0

o/0p -2 0424p —p 0
o/0 0 -2 0+42+p —p
0 0 0 -2 0+2

0 —»
0 6+1+4+p

=P AP 0 -9

G2 62
“ “ 0 0
j 0

0 —p 0 0 0

10 04+14p —p 0 0

=p/0%u|0 -2 04+24p —p 0

0 0 -2 04+24p —p

0 0 0 -2 0+2
0 0 0
—-p. 0 0
0+2+p —p 0
-2 0+24+p —p
0 -2  6+2
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Thus it follows that

B Ot B Ot oo+ 1 0,

O0+p —p 0 0 0
-1 04+1+p —p 0 0
=P 4 P — -
o +02pA' 0 2 0+42+4+p —p 0
0 0 -2 0424+p —p
—pf  —po —pb —pY —pI

Multiplying the m-th row in the above determinant by p;,_;, (1<m=4), adding them to

the 5-th row and using the following results

{ MPm= OPm—1 (m=1,2),
sp:n =pp:n—1 (m=3’ 4)’
we have

4

S p0,=_P — X

m=0 P P O:n G b

Noting that

Ate~tmdt=_0
e

it follows that in the equilibrium state the mean of incoming customers in an arbitrary
time interval (0, #) is
(3.28) (1—p3) at.
4. The above methods given in the special case s=2, N=2 will be similary

used for the general case.

§4. Results for the output process and overflow process.
Let On,«(f) be the conditional probability that in the system M/M/s(N+s) k
departures occure in an arbitrary time interval (0, f) when the system-size is m at {=0.

In the case 0< m<s,

t
Om e lt)= 3 j Drsemsss 3 (%) St Opecty k-1 (=) dx
0

4. 1) + X

N
Jj=1

3
f DNis-mg5 0 (%) Stt Onge—y-1, k-1 (—x) dx
(1}
N4s—m ¢ :

+ b pN+s-—m_j, 0 (x) (N+S'—]) U 0N+:—j—1a k-1 (t_’x) dx’ (k > O)’

j=N+1
J +0
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w N
4.2) Om, o (t)= Jé'o DNye—m+ss 5 (l‘)"l-j:Z; Drta—m—j, 0 (8)+

In the case

TSURUCHIYO HOMMA and SATOKI NINOMIJA

s=mZ N+s,

5N+zl;—'m e—tnz—ix (lx)j

Om, & lt)= |

N4s-m

S Prye-m-p0(l).
J=N+1

Su Om-(..j_.l, k—1 (t—x) dx

=0 J!
(4.3)
t - sur=2z (1) J
+f J'=N§x~m+le——j-r-—‘_‘ St Ons-ty -1 (F—x) dx (k> 0),
o !
(4. 4) Om, 0 (t):e’“l‘f.
In the case m=0,
t
(4.5) Oo, & (t)=f 2 Oy, & (t—x) dx (k> 0),
0
(4. 6) Oy, o ()=e"2.

If we denote

4.7

oo

valt, 2= | ( 5 Ome(z)e

0

~ont gt (R(6)>0,]2z| < 1),

we can obtain the following results by the argument similar to that in deriving (3. 20).

,

\

v, (4, z)=ﬁ v, (o, z)+@7+1?; ,

Vo (0,2)= gt Umis 0,2+ 2 W (0 A (0<mSs),
Vo 0, 9)= g Vs 0,84 555 Tl z)+m (3+A1,fs”i§i)’
Vssalls A=W 0,2l

From (4.8) the form of Laplace transform ¥, (6, 2) will be expressed by such

determinants as (3. 22).

4.9)

where

4.10)

Um0, 2)=An/L'

O+p —p0
—z 0+1+p
A= 0 -2z
0 0
0 0

For example, in the syetem M/M/2 (4) we have

0=s=m=<4),
0 0 0
—p 0 0
0+2+p —p 0
~2z 04+24p —p
0 —2z 60421,
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and A, is the determinant obtained by replacing each element in the (m+1)-th
column of A’ by 1/p.

Thus the Laplace transform of the equilibrium distribution of number of departures
is given by

4.11) 3 Um0, ) =2 2 B A
m=0 A m=0

Remark. We shall note that (3.24) and (4. 11) are identical.

By a mathematical induction we can prove that two determinants A and A’
are identical for the general case.

Next by a mathematial induction used for the Seneral case we shall show that
4.12) 2 pr Am= 3 B AL

Noting such relations as

1 —pz 0 0 0 O+po —pz 0 0 0
160+14p —p2z 0 0 -1 0+1+p —pz 0 o
(4.13) pLo=|1 =2 642+p —pz 0O (+ 0 -2 0+2+p —pz O
1 0 -2 042+p —pz 0 0 —2 04+24p —pz
0 0 0 -2 0+2 1 0 0 0 0

and using some assumptions for the mathematical induction, it will be sufficient to

prove the following relation for the proof of (4.12).

0+p —pz 0 0 0 O0+p —pz 0 0 1
-1 0+1+4p —pz 0 0 -1 0+14+p —pz O 1
(4.14) 0 -2 60424p —pz 0 |+ 0 -2 60+424p —pz 1
0 0 —2 042+4+p —pz 0 0 -2 0424+p 1
% P j 2 i 0 0 0 0 =25, 0O
0+p —p 0 0 0 0+p —p 0 0 1
-2z 0+14+p —p 0 o0 -2 04+14p —p 0 1|
= 0 =2z 0424p —p 0 |+| 0 -2z 6424+p —p 1
0 0 —2z 0+4+24+p —p 0 0 —220+2+p 1
b b 2 bs 0 0 0 0 -2 0

Using the following relations

2 3 4
pi=Fk, pi=pk, p;=-”2—k, p;=%k, pi=""F,
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- oL Bf}
E l/{l+p+2~+4+8 ,

we have

1st determinant of the left side=2nd determinant of the right side,

1st determinant of the right side=2nd determinant of the left side.
The above method given for the proof of (4. 12) will be used for the general case.
Thus in the system M/M/s (N+s) the equilibrium distribution of number of
departures and of incomings in (0. #) are identical. This derives the well known result
that in the equilibrium state the output process for M/M/s (o) is again a Poisson
process with the same parameter as the input process.

Next we shall treat the overflow process. Let F, ,(f) be the conditional
probability that in the system M/M/s(N+s), k& customers overflow the system
in (0. #), when the system-size is m at {=0.

In the case 0<m<s,

t

[ s bwssmen s (8) Fovaory ooy (t—5) d

0

Fm’k(t)=‘

)

Ibga

t
N .
+ _21 DNys-m-g50(%) St Fygs—y 1,56 (t—%) dx
4u

0

(4.15)
N48-m ¢ .
+ 2 f Dris—m—gs 0 (%) (N+5—7) pt Frpomgs, 1 (—x) dx
J=N+1 o
+p1v+a mtks k (t) (k = 1),
1\: t
Fon, o ()= Ji'of DNs—m—j» 0 (%) Spt Fvgpsrs-y, 0 (E—2%) dx
(4. 16) ’ ' :
N+s;-m t .
+ 2 DNis-m-350 (%) (IN+5—J) pt Fngs—y-1,0(t—x) dx
Jj=N+1 o
N+s-m
+ 2 Pris-m g 0(t)
Jj=0
In the case sESm<N+s-—1,
k ¢ — Az Na—mn4j
- spwg,, €0 (Ax)NTi—mts _
(4 17) Fm,m(t)—ji ) e rsu (N+s_m+j)!FN+.g_1,k_j (¢ )dx

e-—las (Z x) N4 —mi—j
(N+s—m—j)!

t
N4s—m
+ 2 f e ""sp
j=1

0

FEyys g, 6{t—x)dx
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—sat gt (2 t) N+s—m+k (k g 1)

e Nt s—mT R

N48- -z Nt-s—ni=—j
Fmolf)= 3 "‘f et gy €T AR) VT G o () d

=0 (N+s—m—j)!
N+s-m —At Zt) N+s—m—j
4.1 S s €1 ~
4.18) T T N s—mt

In the case m=0,

t
k
Fou(0=2 [ supwssss s (%) Fasesyumy (t—3) dx
0

Jj=0
N t
(4.19) + ,{1 St Pvs—js 0 (%) Fvga—s-1, 6 (t—x) dx
Nts-1 p° .
+j=‘12\"+1 Pvas-10(%) (N+5—7) pt Fyys—j—1, 6 (= %) dxX+DPyyspir x (2),  (B=1),
0

t
N
Fo,o(t)=£0 Drws—g50 (%) Spt Frgs—j—1, 0 (E—x) dx

N4+8—m-1
(4. 20) + 2 Dy+s-5s0 (%) (N+5=7) pt Fiyas 31,0 (t— %) dx

j=N+1

N+3

+ 2 pN+l‘-—J’ 0 (t)'
Jj=0

In the case m=N+s,

k —az i -
@.21) Fuuclt)=2 [ ermsp @ B gy (o x) dtemom €207
7=0J 71! k!
Then the Laplace transform
1m0, 2= [ (5 Fuu(t) ) emat
) k=0
will be given similarly.
The equations which deternime the above Laplace transforms are
(
0,2)=—L 30,2+ L _,
" - P P _m 1
X (09 z) 0+m+pxm+l( > Z)+ 0+m+pxm—l (0: z>+(0+m+‘0)ﬂ’ ( émés))
(4. 22) '
__ P s 1 (s+1<m
X'm(a) Z) 0+S+p Xme, z)+“0“_|_s—+p X‘M—l(a’ Z) (0+S+‘0)ﬂ SN+S"—1),
_ s 1
An+s (0’ Z)_0+S+p(1—2) An+s-1 (0’ Z)+ {0+3+p (1—2) }# .

\
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From the above relations we shall show the form of xm(f,2) for the system

M/M/2 (4),

(4.23) xm (0, 2)=An/AN,
where
O+p —p 0 0 0
-1 f04+14p —p 0 -0
(4. 24) A'= 0 -2 04+24p —p 0
0 0 -2 0424p —p
0 0 0 -2 04+2+4p(1-2)1,

and A, is the determinant obtained by replacing each element in the (m+1)-th column
of A" by 1/p.

Using the method by which (3. 28) has been derived from (3. 26), it follows that
in the equilibrium state the mean of overflowing customers in (0,¢) is pji.Af. But,
considering that the mean of arriving customers in (0, #) is 4¢, the above result will be

easily shown from (3. 28).
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