NON-CONNECTION METHOD FOR LINEAR
CONNECTIONS IN THE LARGE.

By

TSURUSABURO TAKASU.

Introduction.

In [1---9, 19-.-25], the present author has extended the branches of gcometry
tabulated below to the case, where the group paramecters are appropriate
functions of coordinates and realized all the extended gecometries so obtained

in the differentiable manifolds:

Lie’s higher sphere geometry . -----cooruoimiii

. Parabolic Lie geom. Dual parabolic Lie geom.

3

.S ) .

& Equiform Laguerre geom. Dual equiform Laguerre geom.

N

£ o . R ‘

S ! |

%0 Dual conformal geom. Conformal geom.

K

N I | |

> Laguerre geom. | l Dual Laguerre geom.

<, |

. T
Sphere-geometrical  Sphere-geometrical Sphere-geometrical
Euclidean geom. Non-Euclidean geom. Dual Euclidean geom.
Projective-geome- Projective-geome- Projective-geometrical
trical Euclid. geom. trical Non-Euclid. geom. Dual euclidean geom.

Equifom geom. l Dual equiform geom.

|

Equ’i-lafﬁnc geom. Dual equi-affine geom.
l__ l

Affine geom. Dual affine geom.

! ‘

Projective geometry..-.-...-... Lic’s line-spliere transf.-.---cocooeveeeenenei.
(In 3 dimension)

Projective-geometrical

In and [24], he began to establish theories of
extended linear connections in the large | extended principal fibre bundles

with structure groups extended as are explained above. These results are
situated among others as are indicated by * in the following system:
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F. Klein’s ‘““Erlanger Programm’’ «—

‘L

J. A. Schouten’s program
recommended by E. Cartan Non-holonomic systems
1926 Horak, Vranceanu, Schouten
l 1926-1928
. Teleparallelism
{ E. Cartan, Weitzenbdck
l 1926 1928
S. S. Chern, C. Ehresmann, A. G. Walker, T. J. Willmore T. Tahasu's extensions* |
A. Lichnerowicz Global connections in of classical geometries
Global theory of connections relation to distributions by group parameter
1951-1953 1949-1958 extensions
1956-1961

T. Otsuki, A. Arangnol l
General connections |

1957-1961
T. Takasw’s program*
T. Takasu Realizations of the extended|
Global theory of connections geometries in the global -
{with structure groups obtained differentiable manifolds
by group para;neter eatensions 1951-1961
1 -

Newton

A. Einstein’s scecial relativity
1906

l

A. Einstein’s general relativity
916

”' A. Einstein’s generalized gravitation
theory

i
!
1955 :

T. Takasw’s relativity theory <«—
as an extended equiform Laguerre geometry ¥  Physically naturally led
realized in the ordinary space
1951-1959
|

v
Future

In this paper, we will show that our extended geometries yield us non-
connection methods for conmection spaces (differentiable manifolds) in the large
with ,
extended ordinary

#) That is under the author’s extended Lorentz transformation group.
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structure groups in such a way that the respective connection spaces are obtained
from the respective classical spaces tabulated above firstly.
Thus e. g. the

Riemannian affine connection
space is obtained from the classical

Euclidean g affine

space by our extended

Euclidean transformation. i affine transformation.

The present paper is a detailed and revised exposition of [24], in which
rather laborious proofs for “Some Preliminary Formulas™ (Art. 7) are omitted and
the temsor character considerations of the equations of structure (Art. 9;
are lacking, and [9].

As our first step, we treat in the following lines the cases of the exfended
Euclidean space and the extended affine space.

§1. Preliminaries.

1. Differentiable Manifolds. In order to fix our conceptions, we will first
ricapitulate some definitions, etc.

Let R™ be an #n-dimensional Cartesian space provided with the real
coordinates (x*), (A=1,2,---,1). We call the topological representation of an open
subset U, of an n—dimensional manifold M (considered below) on an open subset
%{Us) of R™ a system of local coordinates (or a local chart, [12]) of M. U, is
called the domain of the coordinates system. To each point x of UsCM, there
corresponds a point P of R™, which is represented by (x*). The (x*) are called the
coordinates of P tn the chart under consideration.

A differentiable manifold M of the class C¢, (v=positive integer or v=2 or
v=w) is an m-dimensional manifold, to which a system A (atlas) of charts
satisfying the following conditions are associated [12]:

A M=UU,,

A, If xeUNU,, (U, U,: two domains of charts of A), and (x*),(y*) are
the local coordinates having U, and U. as the domains respectively, then

P =y* (") xi=2x" ()
are functions of class C* such that
o(y)_ 2(x)
> () #0, (5 +0.
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Two atlas A and B are said to be equivalent, when their reunion is also
an atlas of class C».

In order that two atlas A and B of one and the same differentiable
manifold M may be equivalent, it is necessary and sufficient that A, B satisfy
the axiom A,. :

Two equivalent atlas are said to define one and the same structure of
differentiable manifold of class C® on M.

A system of local coordinates of M is said to be compatible with the
structure of differentiable manifold (or to be admissible) when the reunion of

its domain with an atlas defining M as differentiable manifold is also an atlas
of the same class.

2. II-Geodesic Curves. Set
(2.1) o' ol (V) dx, (Lm,..,\u,..=1,2,..,n),
where the Pfaffians o’ are assumed to be not exact (i. e. anholonomic) in general
and to be linearly independent, so that the condition
(2.2) |l (x”)] #0 in M
is satisfied.
Since (2.1) is written in an énvariant form, o' are global in U U,.
For the syatem o (x¥), we introduce 2} (x*) by the condition :
(2.3) Qiw,=8; — Dol =8,
where the &s are Kronecker deltas. Owing to (2.2), (%) is the reciprocal matrix
of (w!) divided by |w?|
We define the connection parameters 42, and 4., by

~

[ AR def lea_co,i:_w, o

mw= Toxr T Troxv’
(2.4) X ‘
‘/1mnd=cr wfx aa‘{’)an _Q'fln aﬂ;z ?
the last identity arising from (2.3). Thereby the operator—i)n—is defined as follows:
O & gu O
(2.5) = Qs S
Indeed,
% ﬂgp 9
. ¢ (x++dx)—p(x) . oxH dx+ ) oxr 1@
lim 7 =lim —-5—o— =lm — @~
dx»—0 @ dxr—0 OO ggu R @
. O o¢
R I T T I o0
=lim —5 5 —=lim —————=lim —Q* =610 = 8=,
dx"‘_’o 81,&)1’ l__)o @ (Dl—)o @ 20x+ 2 oxH 3x“
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Consider a parametrized curve x*=x(f), where ¢ is assumed to be an
invariant (e.g. the ordinary affine length).
A straight forward calculation shows us the following identity :

(2 24 A 220
0o et ),

We consider the combined manifold ({x*}, {w!(x")}) forming a principal
fibre bundle, the {w.(x*)} making the structure group. Although the group
elements contain the local coordinates, the function forms depending on the
ordinary group parameters (¢, Cz, *+*, C;) make the group elements independent of
the local coordinates in a certain sense.

From (2.6), we obtain

. d o _ 1 o dixh g odxe de
@n ) g =" | () g +10"g ar =
which is global. " which is local.

The differential equations

oy dix 5 dxt dxY
(i) =g+ L7 a

define the autoparallel curves (i. e. paths) of the teleparallelism of ! (x*) and 2} (x*).
Indeed, from '

=0, (A =3\+1))

137

4 01+4,%%" 0:-0, A ol i, Bt -0,

we can easily deduce (2.4),. The (i) #s convenient for the study of the global
properties. Indeed, the identity (2.6):

' , d o - dx, ., dx* dx¥
(2.6) i dt dt ~— dr +4 dt dt’

transforms the global path (i) piece-wise onto the local path (ii) by the inverse
transformation

2.1y dx*= 2} (x)
of (2.1).
The differential equations (i) are integrated readily :
(2.8) o'=aldl, (a': const.),
(2.9) , f 7‘;’% dt=a't+¢, (¢ : const),

the integration being guided by the simple clear form a'dtf of
We set
El def git ¢!, (a': const.),
so that
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(2.10) groar [ 9 grogipyen
dt
Hereby we have to convince ourselves with the fact that the function —%—dt

is itself the very function alf+c¢'. Otherwise, it must have followed from
that #=const., what is now not the case.

From we see that the curves represented by (2.7), (i) or by
behave as for meet and join like straight lines. We will call these curves II-
geodesic curves (read: geodesic curves of the second kind). ‘

The definition of £ means that we adopt such curves as E'-axes.

The formula tells us that (E'—c') is the projection of ¢ by a'.

Although o' are anholonomic in general, me may write o' in the form
of curve-differential :

(2.11) df'=cw'=al (x*) dx* (t)=a'dt
Jor 1l-geodesic line-elements, where
(2.12) @, (@) & ol (1), (6, (x) #0in M) |

The line-element d£!t) corresponds to a line-element of an arbitrary 11-
geodesic curve [2.10) Thereby u runs 1,2, .. ,# independently as ! runs
1,2,-.-,n. Thus in we may omit t and write down as follows :

(2.13) dE'=a’, (x*) dx~.

That the anholonomic Pfaffian ! (x*) dx* can be expressed in the form of
the differential dE' is an unexpected result encountered by the readers.

The first equation (i) of (2.7) may now be rewitten as follows:

(2.14) a¥ o,
Multiplying with 2, we see that the relations

(2.15) L‘fg—wm 2

hold along the 1l-geodesic line-elements.

We will call the (&) the 1l-geodesic parallel coordinates corresponding to
al (x*) referred to the 1l-geodesic coordinate axes. The (E') are global for U U,
having been obitained by pasting the ordinary paths (2.7), (ii) for Us etc.

3. Extension of the Affine Transformation Group by Extending the Group
Parameters to Functions of Coordinates. When the differentiable manifold M
is the classical affine space, so that the (x*) are the ordinary parallel coordinates,
the UU, reduces to a single subset U,, which is the classical affine space.

) In general case, the II-geodesic parallel coordinates (£') can stand for (x¥),
so that the UU, consists of a single subset U, and in place of [2.I3), we come
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to consider
(3.1) dE'=d., (E?)dE™, (| a, (E?)| #0in M)
for Il-geodesic line-elements corresponding to al, (7). We take Il-geodesic curves

as tangents to curves to be studied.
We eonsider a transformation

(3.2) E=dl, (Er)Em+dl, ( @, (E?)|#0 in M).
We will call the transformations (3.2, which transform II-geodesic curves &, (f)
into II-geodesic curves £!(f) corresponding to a., (£?), extended affine trans-

[

Jormation. By such a transformation, II-geodesic curves

dg _
3.3) ar =0
are transformed into II-geodesic curves
. d?El
(3.4) T

Now, by (3.1), we have

N AN i

i dt att”
Hence, by the demands (3.3) and (3.4), we must have
(3.5) da;, (E?)dE™=0

Jor the 1l-geodesic line-elements.
Integrating (3.1) along the II-geodesic £-axis, we obtain

El=al, (Er)Em— f gm,,fl,f‘_%i(gf), dt.
Now

. [emdas €0 gy [ e ) gy [ gpn— [ ({98 gragn)

= const.
by [3.5), the condition for that the repeated integral may be converted into the
double integral (that the integrand is continuous) being cvidently satisfied.
Hence, for the a! in (3.2), we have

(3.6) al=const.
From (3.2) and [3.5), we see that
3.7) da, (Er)Em=0

Jor the ll-geodesic line-elements.
The totality of the extended affine transformations

(3.8) Er=ay (E)E*+ay, (ap=const, |ai(£") #0)
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whose Inverse transformation is

(3.9) Eo=0% (EY) Em+ 2%, (2%=const., |2% (EY)| +0)
with

(3.10) ay 2., =68, «—— a, 2p=4,,
forms a group, ®, say. For, the combination of with

(3.11) Ei=al, Er)Ert+a,, (@ =const, |& (E9)|#0),
gives

(3.12) E=bi(E") E*+b}, (bi—conmst, |BL(E")|+0),
where,

(3.13) bi (&) =an (a} (E") E* +af) at (E7),

(3.14) bi=bt (E) ar +ab,

(3.15) b, (E)=a., (ag (") E*+al)
We shall see that

(3.16) bi=>b%, (E") a™ +a:=const.

owing to the summation with respect to m, for which it suffices to prove that
(3.17) ardb, (£7)=0
on summation with respect to m. For the condition (3.7) for that the £'-
axes may be Il-geodesic curves corresponding to @, (£?) becomes
(3.18) Emdat, (E7)=0.
We shall show that (3.17) follows from (3.18). Indeed (3.18) becomes
{a; () E*+ar)da, (E7)={ap (Y E¥+ay} db', (£7)=0,
so that
(3.19)  avdal, E)=ardb, (E')
=—ap (") db, (E) E*
= —ay (") db!, (&) E*— {E*day (E1}b:, (E7)
by the differential equation
(3.20) Eday (£°)=0
for the II-geodesic curves corresponding to a? (£9).
Thus we have
(821)  ardl (Er)=—&*d {ap () b4 (£7)) = —&%d {ap (£7) @ (E,)} = — E*db, (E1)=0
by the differential equation
(3.22) E*db; (£7)=0
for the II-geodesic curves corresponding to b; (£7). The (3:21) shows us (3.17).

We shall call the group ® the extended affine group. The most general
extended affine group & contains the ordinary affine group € (in an abstract
sense) as a subgroup.

The totality of the elements of &, which are free from €, together with
the unit transformation, forms a subgroup 9 of &, so that we have
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(3.23) G=09H+96.
4. Extended Equi-affine Group. The totality of the elements of the exten-
ded affine group such that

4.1) | a (EP)|=1
forms a subgroup of &, which we will call the extended equi-affine group.
The general n-volume
(4.2) B+ diE, - E A dnEY)= | diE' doE? - duE™ |
is an invariant under the extended equi-affine group.
5. An Invariant Parameter of Curves under the Extended Equi-affine
Group. Denoting the derivatives with respect to

t by dashes ‘ s by dots,

we introduce an invariant parameter s of curves under the extended equi-affine
group by the demand:

51) EEBm pE g (B

Owing to the konown peculiar form of the left-hand side, we may condition s
by the demand:
(5.2) EE-E| =L
The (5.2) may be rewritten as follows:
* .. (M
EE~E=[1000 -1
| grgf o B
g g B
< .. )
En En En cos E"
which tells us that ds®®+D/2 represents n! times the generalized n-volume of n+1
consecutive points:
(5.3) ds=|dg d?E --- dnE | 2/nn¥D
When (£!) are ordinary parallel coordinates, s is the ordinary affine-length. Thus
the ordinary affine-length is an invariant under the extended equi-affine group.
6. Extended Affine Principal Fibre Bundles. As was stated in Art. 2, we

consider an extended affine principal fibre bundle on a differentiable manifold
M = U U, such that the structure group is

(6.1) (@; (x”) or (a(x), 2} (x")).
We shall call a frame the object formed by a point Pe M and linearly
independent tangent vectors at P. The principal fibre bundle B is the space of
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all frames over' M; its dimension is n2+n. To a local coordinate system x* in
M, there correspond a system of local coordinates x*, 2i(x*) in B defined by the
condition that veclors of the frame are (cf. (25)) given by

o o 0
2 = 2 = = .
(6.-) . e Q, axA aEl a)l
Since
(6.3) | 2} (x¥) | #0,

these vectors are linearly independent and we have relations (2.3).

Suppose we restrict ourselves to UsU Up, where U, and Up correspond to
x* and x** respectively. Denote the local coordinate system in B corresponding
to x** by x**, 2%} (#*) and introduce the w*,(2*) by the law (2.3). Then we have

*A Dxr
(6.4) =, oH =0l 25,

which implies in particular

6.5) o*ldx* =oldxe.

It follows that the differential form w'=e! (%) dx* have as representatives the

two sides of the above equation, is independent of the choice of the local
coordinates and is thus defined in the large in B.

Suppose now an (extended) linear connection to be given in M. In the
expression
(6.6) DX* def X3 dxn df dX*+wiX*,
we regard the X* as independent variables and apply it to each of the vectors
of our frame. Then

(6.7) D} = d 2+ w22
are linear differential forms in x*, Qi (x*). From

ax*)\
(6.8) DX*=pDX*,  (pi=2E2),
we get
(6.9) Do¥i =98 pou

ox
This, togetner with [6.4) gives
(6.10) o™, D* = ! DO,
It follows that the two members of the equation are representatives, in the

coordinates ** and x* respectively, of differential forms in B. We shall denote
them by 6 :

(6.11) g:, &f o}, D2,
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Notice that, whereas the ' are defined in B by means of the differential
structure in M only, the ¢, are defined only when M has an (extended) linear
connection. It is clear that these #2+4# linear differential forms o' and #;, are
linearly independent.

7. Some Preliminary Formulas. The formulas run:

(7.1) dt'=ov'=o) (x7)dx*,
whose inverse transformation is
7.2) dx*=02} (x7 (£7)) dE".
The formulas for the transformation of the connection parameters P;, are
(7.3) ] ax"’__ w OX% OX7 + o xw

o x ! onm oxnt oxar
For the transformations [(7.1)] and (7.2), we have

(7-4\ LZ&n‘Q}{—:L;‘, - ;,'+ an

which follows also from and

Ay T S vy ! oder . 024 _ o O
T4 La=Liol0Qit+d, (Lo, Joi=—01228)
" ; w" of O a o0
(7.4) Li, =L, Qorwo"+ 12, ( 13 det O3 o', — !, Sav )

In case L}, =12, (7.4) gives
Linn = "1:,,(0194‘,"(-); + Afnn

-9:,%“”»‘ {22+ Mo =2, "“’" + 1‘,,,,,=—w'a"" +.1,,=0,
(7.4)" L,.=o,
which follows also from (7.4)” on putting A2, —L:,.
From (7.4) and (7.4)", we obtain

75) 207 =2 (61— ©),
(7.6) 07 =202 (02— B2)
in concordance with where
(7.7) g, 4t Li,dx,
7.7y @2 def A2 dx¥ = Nidoo!,.
From (7.7) follows:
(7.8) do’=o!13,dx* = "= — ). 1,0,

The first half of (7.8) follows also from the parallelity of o} in .I}, and the last
part is seen as follows:
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— A = "ag Totd2:
o
=t idw]=w"A;,dx".

From (7.8), it follows that
(7.9) Moy= —tQEQIA, B, 4 A o= — o8O,

The parallelity of 2} in A2, tells us:
(7.10) dn=— A2 Q4dx>,

which becomes further to

(7.11) dQ#= __/1/: ‘Qi»dxv= ’-Q“i®ﬁ=9£0?—g"ﬂﬁ
by virtue of (7.4)". .
From (7.6), (7.8) and [7.11), we obtain

(7.12)  dO;={(2:0;—B:2) 0" + 2;0"07} (0; — ©;)+ Qiwld (0} — B)).

13
@; =21 22:d,

d0;=d (01294 ) ndxr = d0i 2% N dwr+ 01a 2% Ndw>

— — 290 2% Adx+ 24d T2 Ndw>

l
= — @, Adwr+ 21d 22 Ndw,

where d denotes the exterior differential, so that

dO: = — @ A @2+ 0id 2P A dv,
# ef e T oxY

Hence we have
(7.13) dO+ O NO:=2}ddo)’,

— 3/1 o2, (A2 A e .
_%l:< ax“ _a—x%> (A‘ﬁ 4” AtaA;lﬁ)] dx* Adx .
=4R?,,,dx* NdxP, say.

Similarly, we have

(7.14)  dOi+0iNG:= 1,[(%%? —aaLﬁ;) — (Lt Lg.— L2 L;,) | dze Adx#

=4 R, ,dx® ANdxP, say
and do., + 0L NG,

(7.15 i (% - )~ (LhaLh— LiaLt) Jo Aw?

=3R', 0% A®, say.
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Further, we have
(7.16) A durdut = — do' dx* = ' d 2} dE".
For,

B3} ot dDieoh =l dQidE = — Didetoh = — delda™.
0)

AL oo =o'

8. Recapitulation of Some Theorems of H. Friesecke and J. A Schouten.

In order to make a closer examination of various mathematical conditions
easier, we will recapitulate some theorems of H. Friesecke and J. A Schouten
([29], [30], [31]). |

Two vectors at a point are said to have the same direction, if corresponding
components are proportional. Accordingly, if a set of functions A* (x?) satisfy

dr? . ax’
(8.1) T L =0,
the vectors of components
(8.2) Ar=0AA,

where ¢ is any function of #, for a curve C, should be interpreted as parallel
with respeet to the given curve C. From (8.1) and (8.2), we have

dai? 2
(8.3) 73 S+ L2 Am d =N (D,
where
_dlogo(t)
(8.4) [ —g

Conversely, if we have any set of functions A* of ¢, which satisfy (8.3),
they are components of a family of contravariant vectors parallel with respect
to C; and by means of (8.2) and (8.4), we find the vectors satisfying (8.1).

From (8.3), we have, on eliminating f(#) and omitting the bars,

B9 e ) (B e )

as the conditions of parallelism which hold for (8.2) whatever be ¢.

As a particular example of the foregoing, we consider the curves, whose
tangents are parallel with respect to the curves. From (8.5), it follows that the
equations of these curves are

dx° (d*x* ., dx* dxv\ _ dx*(d*x°
(86) ~ar (dﬁ +r ) -4 (dtz

41, 9% d"”) 0.

dt dt
where
(8.7) i =3 (L}, +L2),
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and that, conversely, any curve defined by these equations possesses the above
property.

From the form of (8.6), it is evident that all connected spaces, for which
the symmetrical parts of the parameters L, are the same but the skew
symmetrical parts of L), are arbitrary have the same paths.

In the following, however, it will be shown that this is not a necessary
condition.

Let L2, and L,, be the parameters of two different connections. We inquire
whether it is possible that parallel directions along every curve in the space are
the same for the two connections. To this end we make use of the equations
of parallelism in the form (8.5). Subtracting these equations from the correspon-
ding ones in the L’s, we have

(8.8) (8:a2, —&iaz,) AN ‘fi’;” -0,
where
8.9) @, 48 L1 13,.

From the principle (7.3), it is seen that a2, are the components of a tensor. Since
these equations must hold for any curve and for vectors parallel to any vector
with respect to this curve, we must have

(8.10) o:al,+ozal,—da;, —dka;,=0.
Contracting for T and p, we have
(8.11) al, =20,¢»,
where ¢, is the vector defined by
(8.12) 2ndv=a,.
Conversely; if we take
(8.13) Li,=L:, +28¢,,

where ¢, is an arbitrary non-null vector, the above conditions are satisfied.
Hence we have )

Theorem 1°. (H. Friesecke, [26]) Eguations (8.12), im which ¢, is an
arbitrary covariant non-null vector, defines the most general change of connection,
which preserves parallelism.

From the form of (8.13), it is seen that both sets of connection parameters
cannot be symmetric in the subscripts. (As for an actual example of the case,
where one set does not posses this property, see Eisenhart [29], Art. 14.) Hence
we have :

Theorem 2°. It is not possible to have two symmetric connections, with
respect to which parallel directions along any curve in the space are the same for
both connections.
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If
I3, def (L2413, Qi 4t (L3, —L3),
we have
(814) r:v=r:v+8f‘¢Y+8i¢“,
and
(8.15) Q=2+ 8y — 8l

From the definition (8.6) of the paths of a connected manifold, it follows
that the paths are the same for all connections related as in (812). This can be
shown directly by means of as follows:

L3, =L, +25i¢,, Li,=Li,+25'¢,,
Il =3(L3,+ L) =3 (L3 + L3, + 8}y +8ids.

Conversely, if we apply to equations (8.6) the same reasoning as was
adopted to (8.5), we can show that expressions of the form give the most
general relation connecting the Is so that the equations (8.6) are unaltered.
Hence we have

Theorem 3°. (H. Friesecke, [26]) Equations and an arbitrary choice
of 92, define the most general change in connection, which preserves the paths.

The necessary and sufficient condition (8.6) for that a curve x*=x*(#) may

A
be a path, tells us that the tangent vector a’—; at a point remains tangent if it
is displaced parallel along the curve. The condition (8.6) may be rewritten as

follows:

8 dx}‘ __diA_I_l‘u dx“' dx" _a(t) ClxA

dt dt at " dt dt T dt

from which we see that the paths only depend on I, If a new curve
parameter 2:

(8.16)

(8.17) z2=2z(l); t=1t(z2)
is introduced, the equation takes the form
a’x* | o dxe dx* _ dxr(d’z _ | dz \( dz \"?
(8.18) R " Y €D

and the right-hand sid of these equations reduces to zero, if 2z is a solution of

the ordinary differential equation of second order:

d3z dz _
i i
If this is the case, z is called an affine parameter on the path. The general

solution of has the form

(8.19)

(8.20) 2=C, f eJ9y . c,.  (C,£0:C,, Cy; const)
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and accordingly the affine parameter is fixed to within the place of the null-
point and a constant factor. This implies that two segments on the same path
have an invariant ratio of “length” that can be measured by means of one
parameter chosen arbitrarily from all possible affine parameters.

In an ordinary Riemannian space V™, the length s on a real path is
always an affine parameter (cf. (5.3)), because —da’—? is a unit-vector and the
covariant differential of a unit-vector is always perpendicular to the vector.
Hence the equation of a path in V" takes the form

dzxr | ., dx* dxv
+1 ds ds

(8.21)

We ask whether it is possible to transform a connection I}, in such a
way that all paths remain paths. If |
(8.22) ri— Ii,+P,
P;! is necessarily a tensor and we may take P¢l, =0, because the alternating
part does not affect the paths. According to [8.16), we must have
dx* v A
(8.23) P o% 4% _ g 132

: A
for every choice of ‘% with a function B(#) that depends on this choice. But

this is possible only when P! has the form ([30], p. 132; [28], p.9):
(8.24) Prl=¢udl+ o,
by [814). If [8.24) is satisfied, the new affine parameter ‘z has the form

2¢udx>
(8.25) 12— C, j e dz+Cy (C,£0;C, Co: const.),

whence follows that
Theorem 4. ([31], p.156) z is an affine parameter for the transformed
connection when and only when
{8.26) Gudx*=0
at all the points of the path considered i.e. when at all points ¢, is tangent fto
the path.
This is seen as well from as from
:8.27) (¢'ud! +¢n82) dxrdxv = (g dx* + (vdx®) dx* =0.
Theorem 5°. ([31], p.156) z remains affine parameter for all paths when
and only when
:8.28) ¢a=0.
Hence the
Theorem 6°. ([31], p.156) A symmetric connection is wholly determined by
its paths and the afjine parameters on them.
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9. A System of Profitable Hypercomplex Units. For subsequent use, we
will introduce a system of profitable hypercomplex units «, by the condition:
(9.1) Y5Yo+YaVp=28pq, (p,9=1,2..,n),
where 8, are Kronecker deltas. Hereby it should be noticed that
9.2) (VoY =V oY eV Ya= —VsYsYaYe=—1, (pF#Q)
and that generally
9.3) (VA7) (7o B?) = AP B? + 157, A? B

(v#q)
= APB?+} (757, APBi+7,Y»A'B?)
(P#q) (p#q)
=A?B?+14 (’?’p’Yqu B4y, A*B?)
PFEQ [¢.2.1')]
=APBr+4} (’(Yp;:yg) (ArBs— ABp).
pFq

Let us set for this as follows:
(9.4) (7»A?)(v,BY)=A?*B?+DA? \B>.
Subsequently we will utilize this formalism.

§2. A Duality in the Equations of Structure for
Linear Connections in the Large.

10. A Duality in the Equations of Structure for Linear Connections in
the Large. Let us now establish the following theorem 1mply1ng a duality in
the linear connections in the large. )

Theorem. In order that n linearly independent linear differential forms

(10.1) o'=o) (xY) dx*
and

(10.2) ¢.=L., (%) o™ [cf. (6.11) and (7.6)]
defined on the n*+n dimensional principal fibve bundle ‘B consisting of (&'} and
{w!} may define an extended linear connection on a differentiable manifold M, it
is necessary and sufficient that the conditions

(10.3) dw'+8.w™ do' + 0. N\ o™
=} (d*x* + .1 dx*dx”)+ 4SS, 0™ =do'+3T 0™ N\No™
=} (d2x* 4 0idx+) =o); (ddx* + 60} ANdx+), [ddx* =0]
=} (d2x* +4S} dx+dxY), =} (ddx* + 34T} dx* Ndx), '
(10.4) (d6%:+6:0")—(dO:+OL0}) (dO:+0: 167
—(0:—-One, =} Q4{(d0}+0:N;)
=i {(d:+010:)—(dO}+0:0;) —(dO}+O:NO)}
—(0:—-0) e}, [e:=0], = wkQ4 (db:+ 0} NG,
(10 4), (lepq Llh g th lq) 1 “’g R.lpqw/: = ’5 f(R l/mﬁ -R ;mp)
@504 {3 (Qhes — Qhuas) — (LI, — A1,) 135} =} ¥

Q lR a3y [R?,&/x,;:.o-s’
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are satisfied, where the d denotes the exterior differentials and

(105) S, 4 202 (S}, — (M. + 4}, Thn 8 0} Q8 2 (T}, — (A}, — A0},
(10 6) "i' def aLlu aLtm vam‘n gf.f a_[‘lk_n ale
' ma = m T gn T o™ ot
+(LinLi+ Lt L) — (Lt Ly, — LizLia)
_(ou!Ji.{}ﬂ !J“ { R;ua Ql/:v) 4/1 vr)}’ _mlglgy QvR’A{w’
(10.7) S, L3 4+ L3, Ti, 8L L3,
oL;, ,oL; oL;, oL
() d([ Uy 1. Y4, o def “Yiav in
(10.8) 27, = ETTRE YT Ri ox* ox¥
+(L L:v+L‘ Ld ) —(Llana—L‘l”L:y)'
M af a‘d v aA" P ef a4 v a’i" "
(10.9) O3, & Tt + T e T ST
+(A;pA:y+AlvA:,u) —(ALA/I:L 42»/1311)
Proof. Necessity. We have fy,wp=fy;,mpdx” and (74):
Y (L;:l— Aﬁl) = L;‘fn QL'YLQ?G’?-
Multiplying these in the form: (y.L},) (v»@?), we obtain
pw +'Y'I'YZ' (quwp)— 4hpwp+'707ﬂ ( 1 qu)+L!w.QdeV(D£'
+fyqryp (L/.WQIA‘,'(); l‘_twfdxa'),
(r#Q
. , >1073 200 8.(. )
0 +'();r;')'quAq("’ =} (Wbﬂ’k w?+ 8302 )-l-');i);;, [w ( b L2 R0 ) w?

{10.10) 915-""(7'1')’7’['2'1‘”” = o} (A2 +60;2; )+"Yq'Yp Coz(a"‘ + L} Qﬁ.@*) w”]
r¥q)
whence follows:

DiOityypli o) =dOi+ 0,91+ v,,w(a"‘ + L7, 20, ) o,

(p# (r#Q

so that

ol
1011) a2+, ( ‘j" oo? ) = (240~ G220+ Yoy (%Ll — LA 22 w.
) P¥Fq

¥
Now we have
10.12) dz® o1 (7, 2) (") = A2 + Yy Qi
Hence
d dx* =d (ry,Qiry ,07) = dix? +ysd (or?)
=dQiw? + Qidw” + Yi¥» (dRw? + Qidw?)
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— (20—

2:0%) P + idw? + a7y, (240" —
P#¢

200%) 0P+ 2idwr]

=22 (dw?+0%0')—dx+0} + YeYz (2idw? + 2i0iw? — 2w?d])
P

on the other hand. Therefore
(10.13) 2 (dw? + 67w

N+ YaYp (Qidw? + 21007)
(¢.2.1)]

=d%x* +dx+0:+ 'ng'p) {2:0'w? +d (Riw”)}.
(p#q

Now

dx+9: +YaYs (R26: w')==0‘dx"+'ym, (270 wrd x>).

Hence

(10.14) 2} (dor? +870")+YaYs (Ador® + 2i670")

=d%x*+ L}, dx*dx" +‘7qu {Q:0:0w2dx>+d (2iw?)}, (d (2;0?)=0),

from which we read out:

(10.15) i (dw?+60i0")
=dx* +Gidx+
=d'x*+ L dx*dx’
=d*x* 43S}, dxrdx".
This formula maps the local paths

d’x" . dx* dx* _
ar Tl ar =%

2} (do?+ 0 N w")
=ddx*+6 \dx*
=L} dx" Ndx*,
=T} dx*Ndx".

(ddx* =0)

(ddx?) + L dx* /\

of the domain U, of (x°) piece-wise continuingly into the global

(I1-geodesic) curves in U Us:

d o’ o™ "
gt —ar T g g =0

Further we have

dt " dt dt ’
‘. d(‘,) +L7’ A " _0
I A i

d {470 (2:07)) =(d2367 + Qi.dﬁi’)+'¥q3p) (@07 + 2:dg?)
p¥q
= (104 — 6:02z) 07 + 2:dO? + Yoy ((R:0: — 022) 97 + :dO?)

=} (07 +0760) — 230,07 + v5Yp (%d0} + 2i6r67 —
r¥q

on one hand and

+D [d2NO? + 22 (([d20d+ 2 dw?) A

2:0:67)

@)+ 2 wid (6, — )}

04— 0:)+ X wid (0:— )}

=d2:07 + (d2; (91— B®})— Qrw2dQ} (62— B;) + 2d (0] — 7))
+D (AN + (dX N0 — O} — Liwrd QN0 — )+ 2:d (0 —O))} |

=dQ,(0:— 0+ 2id (0% —

®N+D [d NG —

@)+ 2:d (9; — )]
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by (7.5), (7.6), and the first and the third terms cancelling, on the
other hand, so that
2} (367 +020})— 240307 + D3O + 2105 NG? — Q10 \6F)
= a2, (0,—©,)+2:d (0, — ©))+D {d2; A0, — ©])+ 2d (0, — B})}
=—240; (0;—0})+24d (0} — O +D { — 2O: A0} — B®})+ 24d (62— ©4)}

by Thus we have
Q; (A7 +636})+ D2} (ddr + O3 \6?)
=—0; (0: — O} +0:24(0:— ©;:)+ 2:d (0:— B;)
+D{ - 2O, N0 — B+ 0N 24 (0: — B©2) + 24d (62— B)))
=—2240.0)+ 24010, + 210:0} + 2:d (6: — B})
+D2 [OINB:+0:N0:+d (62— B2)}.
Hence we have
(10.17) Q] (d6?+036})+D{2: (d6? + 602 \G})}
=24 {-20:0:+0:0:+©0:0:+d (0:— B0}
+D2 {OING + O NO +d (62— ©O)}
=24 {(df;+0.0;)— (dO; - @,0;)—26;0}}
+ D24 {(dfi+60iN0:)—(dO}+ O NB2)}.

(10.18) 2 (d62+626%) Q3 (d6? + 62 A\6?)

=82 {(d6:+0:0:)— (dO:— ©:0:) =24 {df}+0: N\6:)— (dO:+ B NB:)}

—20:@; =04 (dO:+0iNG2).
=24 {(d0} +6:0:)—(dO} +B:6:) :
- —2(0!-0}).e:).
In order to bring these formulas to improved forms, we prepare two
preliminary formulas. For the first place, we see w?=w?dx?,
o' d®x’ =dw? —dw?dx",
A’ =do?+ Pw'w®, [(7.8)]
Liwid* s =250k (L2, — A2,) d?x° = LY, (dw? + 2,0 o),
(10.19) - Liw?d?xy = L%, (dew? + O,
For the second place, we seek for the expression for 1, in
d o 7 o o _ (d%, . dx* dx*
(10.20) ar gt g GG 4.
For this purpose, we utilize the special line-elements, i. e. those of the II-geodesic

curves ((2.14),(2.15) ) : o'=ad'dt,dx*=a'2} dt. From [10.20), we have

(10.21) 1 e =l ( ah._%gti +A;pg;:gz_ahak)
= (1 + 05 2002: 12 ) a"a*
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for ail ratios of a* Thus we obtain

(10-22) Am A+ o1, pv/l:u/’ (.-‘)ltl.—(”)llz-‘-wl -(-)n("y
where
(10.23) ©.=0, B,=—w'20}
as will be seen by comparing [10.20) with the identity (2.6).
For %24(6?—®?)®; in [10.4) 0=d®. + O, A,
we have =w!2 (dO}+ O \NO);)
— 0507 = — (05— ) O = 5924 (0 — ©7) O, = 1wt R}, ,dx* AdxP.

by virtue of [10.22} and (7.6).

Thus (10.18) becomes
(10.24) 23 {(d6?+0:6})—(dO? +6L0)) 04 (dOr+ 04N 0%)
—(d67 — 0% 0))} =2 {(dO:+0: NO:) — (A, + O ND);) }
— 01{(d01+010:)— ([dO} + B0 —(0: — @)D}, | =24 (dOi+0:NE;),
or
(10.25) 23 (Q%,,— LinAye— Li,A%,) 0k}
_-Q" {% (Q,mp O.‘paﬁ) (Lfa va) Vit p}
Further, by m we haye
(de+®Pm') Lt ordixr = wts2; (L2, — 1i,) d*x”,
so that (10.4) follows from ((10.4)
Sufficiency. 1t suffices to determine
0i=L}dx,
when o' are given and 6} and ©; satisfy (10.15) and (10.17):
Q3 (d6? + 6201 +D (24 (d6? +67 N6}
= 22 { (d6: +030:) — (dO} — ©10;) — 26);6})
+D {(dO:+6: NO:)—(dO} + O N},

"pR TYCCRCH —-(-)"}R.f.“_,:,.

where L2, is a function of x? independent of 2;. Now

do' =doldx" + w,d*x" ' dw? = do? Adx*
=o' Qidwldx* + o' d?x" = w?Qidw) Ndx*
= —(0'd2%) (w!dx*)+ o' dix* ’ = —(wPd?;) \ (w.dx")
= — ' d20! + ol d*x*, ' = —w?d2\ N\ o/,

dxt = Qewldx.
If we introduce these values into (10.3):
2 (dew?+ 0™ + 'yq')',, (Qidwr + 2/050")
=d3x* + L‘1 dx"d:vcy + fyqu,, (Qu0iwrdxv),

v
(p¥q)

then we obtain
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2} (—0?d2;0! + wrd*x* + 030™) + Yoz (— Qiw?d2i0’ + 240" wP)
=dix* + 040l dxY + Yo (L0202 200, dx¥)*,
The left-hand side is
Q) (— 02d 20’ + O30™) + d2 x> + Ya¥p (—2iw?d2;0? + 240" w?)
=(—-d2;+ 2i0}) o? + D (—d2}+ 0 Aw? =2dx* +D (92 Adxr)
=4S} dxrdx’+D 3T dx* Adx>)
=4S}, 20?dx+D (3T}, 2i0? Adx),
what shows us by * that .
—dQ;+ 210, +D(—d2i+ 2100 = 0224+ D (2:07%)
=453, 20dx>—D (3T, Q:dx)
is a linear combination of w'. It suffices now to show that L2, in
0 &I L dx,
which we will define thus by :
Qe0r —d Q= 2:6x,
are functions of #* only, independent of 27.
From we have
(10.27) dQi0: +2:d6:
=d 2405 + 24d0 + d2Q}.

If we take (10.18),{10.4) and
a0’ =(2i0; - 0.2, 6;

dQiNG} + 2ido;
=dM NG+ 24dB),  (dd24=0).

AU NG} =(246% — 22N\ 6}
into account, then we obtain

(216, — 6192 6 (216, —0:2%) \N6*

+ 2} (@4 mn0™ 0" — 8160 + LEdw?)
= (240~ 6:21) 0; + 21d6} + d*2},
$24 (dO —6:02) + d* i + 20246:62
=0 h (%Q.ltmnwmw" + L:jdwj)’
whence we see that

do:— L3, d?x \

+ 2} (R 0™ Aw™ + 6 A6
=(240; — 612 ) A 02+ 24d6?,
24 (d6i—B: 162
=42R! 0" N o™,

do:

is a quadratic differential form in dx* on one hand, since the terms of d2x¥
cancell among themselves by virtue of the relations and (7.4)":
- L -4, =QlerelLh,.

On the other hand, we have 6:=L12 dx,

2__TJ 2 SV aL:‘J X 1% aL}w a
doi— L} d*x” 2 dx<dx® + é:(55:41’.941.7:",

ox

where

do;=%dx*/\dxv+%%§d9:/\dx’,
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oL}, y0._ 9L}, 02 ;.. oL,
5 Qad H a.Q“ —2dc"= " dc,
the ¢ being the ordinary transformation parameters contained in ! and Q.

=0, so that L} does not contain ¢". If we had

Therefore we must have aaLc,.
%}‘:"9&0 then L}, must have contained £:, so that L}, must have contained
¢r, contrary to the last result, since L?, could have contained ¢" only through 2:.

Hence we must have aI;) =0 Q.E.D.

A duality in the linear connections in the large. A duality is read out
from the last theorem, since theorems may be established for other linear

connections in the large. ([1], [2], [3], [4], [5], [6], [8], [9], [19], [20], [21], [22]).

11. Bianchi Identities and Some Formulas.

Formulas.
(11.1) 'S}, dx+dx” o' T dx* Adx¥

= [(A mnt A n) + (L nt L n)] wmwn’ = [(Afnm - Agnn)+ (Lsnm - Lgnn)] o™ No™,
(11.2) @Q%n.0™w™+2LEdw™ RE o™ Ao™

=[%+§Hz +(LinLin+ LiuLin =[Pk -Blh (s 0~ L L)

LAy + M) o™ 0™ + 2L Y 0t d? x> + LY (A= Ana)] 0™ A" ;

(11.3) 2iS: oo™ 2T 0™ Ao™

= — (A2, +A2)+(LL, +L2,)] dx+dx>, =[(43,—A4},)+(L},—L:,)] dx* Adx,
(114) @<, dx*dx*+2L: d*x" R:, . dx* /\dx"

aL .
T usiitio | TRttt
L (A7, +4:,)] dxdxv+2L; 2!),,'.dw’”. L; (1, — .4;,)] dx» Ndx>.

Proof. o'd*x*=c'd(2%0™)=0'd ( 2%"" o™o"+24do™ )= A, 0" 0"+ do',

dot + G50t = om0, 0m) dat +0: Ao =227 A (@10m)
+ (LY 0™ 0™+ o' d?x* + (L o™ Aw™
=Q” £ omw"+ L, 0™o" =Q‘;,,-a-a%§‘—m”/\w’"+l,fmm’"/\m"
_ dw', o', _ %, _ ou 00,
%[(9"’" e+ 2, %) =4 (2n 20 -2 %)
Lo+ L)) om0+ dixm +(Liu— L) 0™ Ae”
= % [ - (Afnn + Aﬂ‘m) + (L ma T an)] o"o" = %[ - (Ainn - ’451111) + (qun - L;m)] o N\
+ o' dx".

*) This contradicts in case L3, = {1} only apparently with (14.10). Indeed the expressibility (14.9)
is valid only but for undergoing extended orthogonal transformations of the type a, (¢?,¢").
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do;+0%6;=d ( ’imw"‘)
e+

+LA ( aw,,!),"_{_ all_J,.Q, )] @™
+ L”,,(th2x”'
the and the being taken into

( lm(’)m) (Ljnw
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doi+0i NG =d

( lmwm)

— (%t BLh) (1, 13— L L3

( lmw) ( ann)

+L L(.@f‘.’ £y /- a"’j" !.)-"m)] o™ Ao®,

account.

Similarly for the formulas with Greek indices.

Notation.
(11'5) (‘s-"l g 2.1% Sfunwm(ona ]
(11.6) Cidt & Q4n™om.

Bianchi Identities.

(1L7) d6!'+66:—Glot=26dw",
(11.8) d6:—G6.0:—C!0}= —dldLie")
+(OLLL,+ 0L, )dor" + d26 — 2610:6".

Proof. Owing to (11.5) and (11.6),

become
103y  do'+0i0*=dw'+E!,
(104  dOi.+60%.=L;,do"+C;.
Applying the operator

d

o [10.3}, we obtain

—do*0.+ w'db,. = dC,

—do* 0+ o* (G, + L . do" — 646,

~db’,

2 0idew*+ CLw*— 06/ =dE!,

wnence follows
Similarly from [10.4},-we obtain
d*@. +de’.0;—6’.do;

= d (L}, do")+dGL,

— (L}, deo"+ €% —6707,)0 4+ 6% (L; ,do” + @ff
=d (L. dw")+dCL,

whence follows (11.8).

Cor. For the linear connections

become

Fl def 1 Tl

= "Aom,
T, &0 3 Rimn@™ A"

dT+ TN +T N0 =0,
TL+ LA+ TIAG =

the equations of structure and

do'+8 No*=T!,
doi+ 0. NG, =T

d

—do* N0+ o* Ndb, =d3!,
— T+ AOYNOL + * AT+ LN

=d3!,
— TN —T NG =dT!,
—(d¢ . N0+ 6, A db))
=d"~is
070k | —(ZL+02NOLING;
+OINEZL+0rNGL) =dTL,
under consideration, and (11.8)
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(11 9) kmn + ngmzl + anlm

af’fnn + asnl + aSlm

+(S mL}‘z +S% Lfm +SimLa),
(11.10) ?Q.’imﬂ__‘_ aQ.‘;m + aQ.kl:m_
P Sl

= (Q.",,,.,.L + & mL’m +Q%mL)
= (@%mn Ll + Q1 Lim + QlumLS,)
o,
o’o™ "o
Proof. d@G'+Ct4—
d€=—1d (S}, 0™")
_ %asm

4
H—a-;’-”vaa)mw" + S,m,dwmwn,

+

o' =264 do?,

€6, =3 (Si.0™o™ (L 0P)
=4Sk, L wPom™»™,
=3 (Qpmo™0") ©?
=1 QYm0 0",

- 260" = — S}, dw™ o™,

Hence

(as""‘ +St.LL, ) 0Po™e®
== Q.pmnmpwmwn’
.'imn + Q.‘-;nnl + Ql;;lm
_5 [0S, 38!

np+
p<m<n (I)p

+(Sk,LL,+ Sk ,,L,‘,,,, +Sin

BS;,,,

,,.,,\:I oo™ o™,

R Lmn+Rmnl+R nim
k

(0 o™ '
+ (T'I{mL.Iiﬂl + Tr{lem + TI‘I)I.LIL] ]
aR Imn + dena + BR Lsm

o8N
= (R.jmn is + R.jnxL im + ijmL )
- (R.{an;: + R.{mLfm + R .lsmL,j‘n),

+ Ty len (14,12,

,‘fn + ijngn + LkansL:m)-

d34+TNE+T N0 =0,
d¥=3d(T..0™ A"
=} Zomn aT"‘" o’ Ao Ao+ TL.dlo™ A\ o®)

—a—T-——:f"v o’ Ao™ Ao™ by virtue of
W

Tffm+ T;m =Oa

1
2

TING: =3 (T 0™ NN (L ,w?)
=3Tt.LLo? Ao™Aw™,
TN =34 RL 0™ A @) A\ 0P
=31R ;.0 No™ A\ ™,
e
( T +TELL ) 0’ Ao™ Ao
w? r
=R: ., . 0P No™ Aw",
R imn + R}r‘ml + R ;flm
_vs [T, , 2T, . 0T},
p_;mz<n TP o™ + "

+ ( Er’fnLﬁ:p + T:kam + T:mLi-n)J TOLIAN O AN (')",

whence (11.9) follows by the arbitrariness of w? Aw™ A", (p<m<n).

" Further,
8}, — 610! — 016} = —d (Lirder®)
+(01L,+6\L5%,)do" +d*6. — 265,8:6%,
d(g —_ 1 aQ kmn 0P0™w n+2_Q o ( mmn),

(‘Skeg = %Q.kmn t pmpmmmn,
6:6:=31Q\..L, 0’0" 0™
Hence

d3}+ILNG—OLNT!=0,

d3;= }—a—Rl——""“‘ 0’ A™ A\ ",
©?

NG =
OLNT =

%R-tkangpﬂ)” No™ A o™,
%R.lf,an;'cprp/\ o™ A\ 0",
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4
(T~ QhomLly= Qi) 077" (PRems 4 Ry, L,
+ ':_);kamn (wma)ﬂ) R.tmn Ltkp) (l)p/\wm /\wn — 0’
2 )¢
= ( 2#{37: —-2L;,L ,,,L},,)w‘a)’"w" + 1@ mnd(@™w™),

since (11.8):
dG. -0 - 60, = —d (L., do")+ (0% L}, + 6:L],) do" + d*0} — 201606,
[dO:=dL} 0"+ L., do"]
= —d (dL},0™) + (0 LL,+ 6L, deo™— 2066,
BLin yrgmeon + PLiim g (omeom) + L4, L wrdem + L Liyomdo™
o'o "
—2LL L, Lo o™
= ( a—tg‘; - 2L{,,L§ijn)w‘wmw" + QI—‘;‘}" (0"do™+ o™dw™)
o'e ®
+(L LY+ LY, LYy,) o"do™

Zlen _ansLinLi) wrorer+ (2him 4 By 11 11 4 1,14 wndom

—(ZL o1y 115, ) wtomor + §Qmd (070"

Hence (11.13) follows as before.

§ 3. Non-Connection Method in the Linear
Connections in the Large.

12. Non-Connection Method for Linear Connections in the Large.
Multiplying (7.4)” with w}2%2:, we obatin

(12.1) L, =l (L2, — 12).
Hence
d o o o _ d o _ dx" dx”
(12.2) ar at g g ar di +ob (L =LY g ~ar
Now we have (2.6):
g _ d o _ [(dx , dx* dx+
(123) 7t =g =ol(Gr + 0 )
Adding and side by side, we obtain
d {-“ . dE» dE° —w d?x* | p, dx* dx
12.4) ar T g gy (G + LG )

We have set
(12.5) ri, df L(Li,+Li), 2, 4 3(Li—L:),
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and we have

(12.6) 2 dxrdav=0.
Similarly,
(12.7) Iy 98 §(Log+Ley), 250 4f 3 (Lo — Loy
(12,8) & dErdE=0.
Thus may be rewritten as follows:
&g dEr dE _ (dxr ., dxt dx)
(129) av ¥ gy g5 ~oage t ar ar )
gives (cf. (7.6))
(12.10) Plo=olQn (T =A%), (B, 4t 3 (1 +.03)).

From [12.9), we obtain the
Theorem 1°. The necessary and sufficient condition for that the 11-geodesic
curves in the large

o

(12.11) Fi =0
may consist of piece-wise pasting and curvature changing continuation of the
local paths

(12.12) drir 2 4 o
s that

(12.13) I, dérdE«=0.

From [(12.13) and (12.10), we obtain the
Theorem 2°. The necessary and sufficient condition for that the 11-geodesic
curves in the large may oonsist of the piece-wise pasting continuation of
the local paths is that (cf. (7.16)
(12.14) rdx-dx=. 1,‘,,dxﬂdx"
Theoren 3. The 1l-geodesic curves in the large (12.11) consist actually of
the piece-wise pasting and curvature changing continuation of the local

I1-geodesic curves (2.7), (ii) l paths

by the development by the developing factor }aﬁ (%).
Proof. We have Now, by Theorem 3’ of Art. 8, the existence of
an arbitrary vector ¢, (cf.(8.14)) such that
(12.15) i, = A, + 8+ 8,
suffices for the commonness of paths:

dx: 2 dxr dxs _ dix 2 dx+ dx’
(12.16) ar g ar =gt a0
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We obtain
(12.17) ri, =4, +Qetell,
from Combining with (12.17), we see that
(12.18) iy + 83 = Qiwrwil™,
and by contraction u—A, we see that the vector ¢, exists actually as follows:
(12.19) () gy=wilL=T%— 4,

by [12.1} Thus from Theorem 3° of Art. 8, our present Theorem 3° follows.
Theorem 4°. The t is an affine parameter for the paths (12.12).

Proof. From and [(12.15), we have
(8t¢v+8:¢“) dxrdxy=2 (gbydx") dx+=0
for all values of dx*. Hence

_ 1 1 o 1o o
(12.20) g[lydx”:’H_—lwquq_meg_ﬁ—_ﬁ(o, @,,) 0

(by (7.6) and (12.19)) at all points of the path. Thus, by Theorem 4° of Art. 8, we
see that ¢ is an affine parameter for the paths [(12.12

Conclusion. The 11-geodesic curves (12.11):

dZEl _
(12.21) at: =0,
whose finite equations are of the forms
(12.22) Ei=a't+c, (@%, ¢t=const.),

behave as for meet and join like straight lines and yield us a non-connection
method for linear connections L., in the large.

13. Non-Connection Method for Extended Affine Connections in the Large.
If we restrict ourselves to the case of the symmetric part of the general linear
connections L?,, the results of the present §3 yield us a non-connection method
Jor extended affine connections in the large. The identities [12.3):

(13.1) ag _ (dzx* 4 g dx dx")

dtr = “*\ag T ar at
and [12.9):
at _ o (d*x* |, dxt dxY
(13.2) = NG T )
may be converted into their inverses
dEt _di*x* dx* dx¥
0 = A :
13.3) g =ar T ar @

and
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Qld%fl_d?x"_'_rl dx* dx¥

134 Ydif At T dt dt

respectively. The factor 2% projects piece-wise the global path %:0 piece-wise
onto the local path (13.3)=(13.4)=0, which is a 1l-geodesic curve as well as a
geodesic curve.

Thus the inverse transformation

(13'5) xr=0'84+ 02 (1% %0, 2%=const.)
of the transformation
(13.6) =l (x) x*+a', (| w!'+#0, at=const.)

maps the local affine connection space {x*} comtinuingly onto the global extended
affine space, where no connection is necessary.

§4. Non-Connection Method for the Extended
Euclidean Connections in the Large.

14. Local Riemannian Connection. The non-connection method for linear
connections in the large stated in Art. 12 has been made substantially from the
view point of principal fibre bundles with extended structure groups, the group
parameters being appropriate functions of local coordinates. It is valid Jor the
extended affine connections in the large, for which the local connection parameters
are I'.,, and the structure group is the author’s extended affine group (cf.[3.23)).
The extended affine connections in the large imply the extended Ewuclidean
connections in the large, for which the local connection parameters are (1), special
I'i, and the structure group is the author's extended Euclidean transformations :

(14.1) E=a, (EP)E™+a., (@ =const.),
where
(14.2) |al, (E?)|=1 or -—1

ts an orthogonal determinant.

There are some peculiar points to be espacially noticed. So I will expose
in the following lines such aspects.

Let the fundamental quadratic differential form for the classical =-
dimensional local Riemannian geometry be

(14.3) ds? =g, dx dx* >0, (.= |Lur '#0).
It is known that is always expressible in the following form :
(14.4) ds’=ole!, (I=1,2,---,m)
but for undergoing orthogonal transformations, where
(14.5) o'=d, (x)dx*, (i) |#0)

But the orthogonal transformations hitherto known have exclusively been of
constant coefficients. Now the present author has discovered [2] orthogonal
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tarnsformations with appropriate functions of coordinates as coefficients, the
concerning invariants being retained. We will refer to such transformations as
extended orthogonal transformations. They constitute a group, an extended
orthogonal transformation group.

We utilize the ' éppcarirlg in (14.4) as the ' in (2.1).

It is readily seen that

(14.6) o'o'=olowldx dx?,
so that

(14.7) =00,
(14.8) | &uv | =lewhi o] =1l Ex0.

»¥ = [cofactor of guv In |guv|]/|&uv!

_ cofactor of ! in | cofactor of ! in |e!|
| @ | ' ol ’

(14.9) vy =21,

Hence

1) _ 1gAc OLuc | OLoy ag
tal=1g <ax*+dx“ ax’>

=102 aw ' OJw, 90, , 00!
Yoin (ox ot @it omr O O g O ar)
Ow! _ Ow} ow!
) . 1{ A2 1 () l ¢ v
0 15110 (3 2 o (25 282
According to we set
(14.11) ALY =3 L+ A,)+ g+ i,

so that

(1412) 8+ 8ipu= QM[ g;’f.—:ﬁ)ﬂv (2‘;’2 S;"i)]

Contracting u—\:

: Sw, __ ow; d0l _ Ow!}
(N =-( o (i l e . GO, i o __ a
(n+1) ¢ = 221 w222 — 22 )+t (—“axA Gk )]

=Q,{(awl,__awﬁ)___/1, — A

ox¥ 0ox° "
(14.13) (n+1) g =AM, — 12,
what proves the unexpected result:
dx* dx* dx¥ _d*x*, ,; dx* dx*
14.14) et T e s @

Second proof for (14.14). It suffices to prove that
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T amf,_aco,f) . [ Q! ) v
(14.15) 2 0l (22— 202 )t o} (22 — 001 ) | dxndxr=0.

For it, we proceed as follows.

00 (0L _ B0 o Qegeni D00
(14.15) = 2050, (225 — 292 ) dxmdar = 20 Otdet— 22 Qiwr)

=20 ( 2rdw',—$2; ow, fi:—w’)

0! o
=20 (2ido’, — 2:dw'd?)
=2¢ (diw‘, e H )= 0.
Third proof for (14.14).
Qios =2},

Q37 — 01
E (D

2 2:: twPSt = 2iw",
Qwr=2",
Fho? (252 = Qoo (123
Q2 Q2P = Q3 Qo
.Q;‘,.Q;dx‘“ =0 dxe,

QLQ: u dx =010 awudxd =02 de.

T o
Hence, by multiplying with «f},,
Qs (:a-‘ff‘dx" ) =0,
so that
(14.15) = 2050¢( 222 — 202 ) g0

=209 ( deot— 0P dx¥)=
2003 ( dat— 2% dr')=0
Fourth proof for (14.14). It is evident that

(Ze. - .g:’, ) dxedzr=o.

Now along any II-geodesic curve, we have
dx° = Q:dE = a*Q:ds, (@*= const.)

by (2.15). Hence

87
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(22— Bo:) gegiann 0.
Along the II-geodesic &"—axis, we have
a*=23j,
so that
(35 3) =
and that

o HP ,.( 20;, g;,’ ) dx+dx¥=0.

Fifth proof for (14.14). We obtain

d*x* dx“ dax¥ _ dix® | ., dx* dx* _
a5 T A G5 =0 ast T A s s =

as solutions of one and the same extremal problem 8s=0, the variations of

+{

parameters being

5 dx’

ax’ P dg' _ d), 5.ax dx“ 15 9% dx*
ds

ds 0ox* ds ds ds’
(The cyclic case!)
Sixth proof for (14.14). In the theory of anholonomic system [33,34],

the following formulas are known :

ox7,

(14.16) ds® = g.,dx"dx" = guo"e* = guw'oidx-dx’,
d o w"' o* d2xr | 1, dx* dxv
(14.17) Ao ) oo (TR (A 2,
where {,%} is constructed 'in terms of g. In case we have
(14.18) . &re=On,
so that
(14.19) {#}=0
and thus (14.17) becomes \
d:g dx* dx¥
(14.20) % =0 (Gm v E);

which, taken together with the author’s identity (13.1), shows our relation (14.14).

15. Equations of Structure. In our case I':,={.}, owing to the peculiar
relations (14.13), and (14.11), (14.13),(14.19) and [[14.15), the equations of
structure [(10.3) and (10.4) become extremely simple: —

In order that n linearly independent linear differential forms

(15.1) o' =} (x¥) dx+
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defined on the n*+n dimensional principal fibre bundle B consisting of {x*} and
{w!} may define an extended linear connection {.} over a differentiable manifold
M, it is necessary and sufficient that the condition o

(152) de'=el(dar+Andseds) | do'=w! [ddx*+{1)de Adev]
=ob (@2 +{1) dxrds) | —o! [dd2r +3TAdxs Adx"] =0,
(ddx*=0)

s satisfied, what is now the case.

Proof. In the of Art. 10, we have
0i=0’ Tuin=0’ Tpfu'__os R."lmn’:os L;‘u=09 Q{‘lnn=0'
Thus the

Theorem. # linearly independent lincar differential forms
(15.3) ' o' =o', (x*) dx*
defined on the n*+n dimensional principal fibre bundle B consisting of {x*} and
{wl} define surely an extended linear conmection {)} over 12 differentiable mani-
Jold M.

Cor. In case of (15.3), we have

(15.4) dO*+0:0:=(dO.+©:0)), L dOi+OING:=dO+ONO;,
(15.5) 3 (Qhap—Blp) dx2dxB +({ 1)~ A2 )d%%° | R, ,dx* NdxP =R/, dx* \dxP.
=206 |

16. Bianchi Identities and Some Formulas. By the reason mentioned in
Art. 14, the formulas (11.1), (11.2), (11.3), (11.4) and the Bianchi identities
(11.8) as well as (11.9) and (11.10) become all
0=0.
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