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Introduction.

This paper contains mainly two concepts. One concerns the construction of
a 2n-dinensional real analytic manifold which on one hand is to be the real repre-
sentation of an n-dimensional Kaehlerian space and on the other hand is to be a
submanifold of a (2n+2)-dimensional real analytic manifoled H***?, which whereas
is the representation of an (z+ 1)-dimensional flat Hermitian space. While the other
concerns the inquiry of the conditions to be imposed on the curvature tensor
so that a 2n-dimensional real manifold K*» representing an arbitrary n-dimensional
Kaehlerian space can be imbedded in H?*? isometrically.

In preliminary § 1 we construct such H?#*? by the aid of B. Eckmann and
A. Frolichers’ theorem (4) which serves to endow an almost complex manifold
with a complex structure. In H?? we set up a 2n-dimensional almost analytic
submanifold M, whose notion was previously introduced by J. A. Schouten and
K. Yano in the course of study on their so-called invariant submanifolds (19).
We can show that such M?* is always the real representation of an n-dimensional
sub-Kaehlerian space. Further for the completion of being a submanifold in geo-
metrical sense we define a couple of unit normalson M* by the use of the charac-
teristic property owned by the tensor giving an almost complex structure to M*”,

In § 2 we define the usual tensors accompanied with a submanifold M** to-
gether the fundamental equations followed by. The condition of integrability of
the latter is derived and adding to this a remark is given on the influence of the
tensor giving the complex structure upon these conditional equations.

§ 3 is the proof of the classical theorem of Bonnet following the prototype
which we have and see in the arguments of imbedding a Riemanian space in a
Euclidean space, e. g, (6], (20).

§ 4 is devoted to find the conditions that arc to be fulfilled by the curva-
ture tensor so that an arbitrary K can be imbedded in H?*? isometrically. Our
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main theornm obtained is that its curvature tensor R;jz; should satisfy

Rijp; RiiM=R?, R0, .
for which. As its direct consequence we prove that there exists no K, n>2, of.
non-vanishing constant holomorphic curvature that can be imbedded in H?*? jso-
metrically.

§ 5 is a geometrical interpretation of non-existence theorem of a K*# that is
one for which the Ricci equations contained in the condition of integrability vanish
identically.

A remark is given on the uniqueness of the second fundamental ten- sorsin
accordance with the rank of the matrix composed of the right hand side of the

Ricci equations.
§ 1. Sub-Kaehlerian manifold K*” in a flat Hermitian manifold H>"+?
We adopt the following conventions for indices:

A,B’C,D=1, 2’ ------ ,n+l;—l’ ‘Q, ............ ,T‘__l_’
@9A9H9F=1,2, ......... ,n+1,

éaﬂ)ﬁsG):l, 2, """ ,n+1,
a,byc,dye, f,g bty by 1 =1,20 0y 1,3 7,
a,ﬁsrﬁa,v,p,l,#,u,(é=l’2, ...... ,n

A BTy 0y 0, 0y 4, B, 5, @=1,2,-00,

P,Q,R,S=1,I
and consider an (n+ 1)-dimensional flat Hermitian space, covered by the complex
cordinate system (2!, 2%+ , ") where 26=£9+i§9, i?=—1, and on it we presume
that its element of length takes the form

(. 1) dst=dz\dz' + oo +dnt) gznt),
where

36 =26 =£64(£6 =£6—j£¥
Since we are dealng with a complex space, we can define a tensor having

the numerical components
|

l

in our cordinate system. The tensor ¢gA satisfies the tensorial equation
(1.3 pBAPE= —dcA,

0 48 0

(1.2 opa =| 1
i 0 ""1.5,18

and has the numerical components
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1' 0 0 4% !

;‘ —50 0 |

in the real coordinate system (§4). We have then
(1.4 Ny =0,

where Nji4 is the Nijenhuis tensor (16]:

A
(1.5) Ngé =29 8P @ppc A—9c $ph),

0

and a=5§A_.

The metric defined above is a Riemannian, and if we express it by eap, it
has the components
1 for 6=A
0 for 6% A> ’

0 05,

8.
LY 0

A

S

(1.6) EAB =;i R
E ]

.[’<5"2=

in the complex coordinate system, and it is equivalent to the tensorial expression

As the space is a flat one, we have

A =
(1.8 RAgcp =0,
whero R4, is the Riemann-Christoffel curvature tensor formed with ¢4p.

Conversely, if in a (2z+2)-dimensional manifold X**? of class C* covered by
a system of coordinates (£4) there is given a tensor ¢4 of class C%° satisfying

(1.9 OpAPcB=—icA, Npcid=0,

and also a Riemannian metric G satisfying
(1.10) GappcA ¢pB= Gcp, RApcp=0,

where R-BCD is the Riemann-Christoffel curvature tensor formed with Gap, we can
show that an (n+ 1)-dimensional flat Hermitian space having the clement of dis-
tance (1.1) can be derived from X?7#2,

For the proof we first note that an even dimensional real space of class €
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is called an almost complex manifold, if it admits a tensor ¢ga of class C® satis-
fying ¢pA¢cB=—0dcA. If there exists a coordinate system in which ¢pA has the
components {(1.2), we say that the almost complex structure ¢4 of class C* gives a
complex structure to the manifold. As the concept connecting these structural
situations the following theorem is now well-known [2], [4], [5), (8), (12);

In order that the almost complex structure ¢pA of class C* in a manifold of class C*
give a complex structure, it is necessay and sufficient that the Nijenhuis tensor vanishes.

It is now easy to prove our assertion. Because of (1.9),, our X?**2 of class
C* is an almost complex manifold and the condition (1.9), assures that ¢4 gives a
complex structure to X*#*2 by the theorem stated above. And by (1.10),, the given

l

in the complex coodinate system. But as we have (1.10), we can take a coordi-

Riemanian metric G4p has the components

Gas =”
Goi 0

nate system in which Gap=const., and the element of length takes the form
ds’=2Ge,d'z8d'2".

Then by a suitable unitary transformation of the coordinates, we can reduce this

to (1.1), which proves our statement. On this reason we call a 2rn-dimensional real

analytic manihold X*#*2(§) satisfying the conditions(1.9) and (1.10) to be the real re-

presentation of an (n+1)-dimensional flat Hermitian space. Then we may call such

X*2(§) a flat Hermitian manifold substantially. We shall denote it by H+2(£) here-

after.

We now consider a 2n-dimensional submanifold M?#¢) of class C* in H?**%(¢):
(1.1D £A = A (i),
If the transform by ¢g4 of any vector tangent to M?*(y) is still tangent to M?(y),
we call M?"() an almost analytic submanifold [19], (24). A necessary and suf-
ficient condition for M*(y) to be so is

1.12) $BA B;B=¢;i BjA,
where ¢;i is a certain tensor of class C® in M*%(¢) and B;A is the function defined by
(L13) BA=34,  9=0_.
7}!

For a moment we assume that B;A is of class C°,

If we multiply (1.12) by ¢$4€ we have
.14) Dt ppI = — Oy,
and this shows that M?(y) is an almost complex manifold. By a straightforward
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computation we have

(1.15 BiBB;C NpcA=BsA N, ;*
where N;:* is the Nijenhuis tensor:

(1.16) N;*= 2¢k; (Onpjra— 0j,9n).

Since we have had (1.9),, it holds from that
Niia = 0,

tJ

and hence the function ¢;i gives a complex structure to M*(y) by virtue of the
theorem stated before. ¢;i has the components )

)o@ o }1
il

in the complex coordinate system (y) induced from ¢;¢, where

yi=nitagd, yi=yi—inh

Theh if we take 6 for A and I for i in (1.12), we have B;#=0 by virtue of (1.17)

and also of (1.2). Similarly if we take & for 4 and 2 for i, we have B; =0. Thus
B;A has the components
| B¢ 0 |
(1.18) B:A =\ ) ”
0 st i
in the complex coordinate system. While we have assumed that B;A is of class C .
Hence by the elementary theorem of function theory we sce that B4 is of class C“.
The induced metric of M*¥(y) is defind by
(1.19) gii=B;ABjBeyp,

and is obviously analytic and self-adjoint in the complex coordinatc system. By
the words “self-adjoint quantity” is meant a quantity which is equal to its adjoint.
A self-adjoint quantity represents always a real quantity in the rcal coordinate
system and vice versa, for which example we have seen in ¢pA before. M) has
the element of length

ds*=g;jdnidyi.

Our intention is now to verify that this metric submanifold M) is the real
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representation of an n-dimensional Kaehlerian space.
Substitution of (1.7) into (1.19) yields

g, =($4C B;A)(¢gP BjB}ecp
and as we have (1.12) and (1.19), this can be reformed to
(1.10) gii=gap$i® P jb
Such a metric is called to be Hermitian (27) and is hybrid in ¢ and j, i. e. Qun=gn=
and g,p=gu, where g, satisfies :
gin=DB;%Ba’eg,;; conj.,
as we have (1.6), (1.8) and (1.19). Differentiating g, by »* and taking account of the
facts that eqg=const. and B;A has the numerical components (1.18), we have

0 0221
aﬁ;e—Bl aypa-yp €045

from which we find that

0 .
(1.21) aﬁj" —%f, conj.,

which insures the existense of an analytic function ¥ such that

or

(1.22) &aa =Wg

and this shows that our n-dimensional complex manifold constitutes a Kaehlerian
space (10), whose element of length is
ds’=g;jdy* dy’
=2g:0dy* dy*
=2¢g; B;° Bs* dy* dy*.
Hence we have the
Theorem 1. An almost analytic submanifold M%) in a (2n+ 2)-dimensional real
analytic manifold H***§) representing an (n+ 1)-dim:nsional flat Hermitian space is always
the real representation of an n-dimensional sub-Kaehlerian space.
We will denote a 2zn-dimensional real analytic manifold representing an n-
dimensional Kaehlerian space by K**(») hereafter regardless whether it is a submani-
fold or not, and will call K**(y) a Kaehlerian manifold.

put

cacPBC =9 B,
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and we have for
dca 9BC= caB.
Multiplying (1.3) by eap, we have

dac9BC= —¢aB,
from which we have

$cap> = 0.

Similarly if we put

(1.22) 8ij Pai = Pja,
we have for (1.20)

(1.23) PjaPe’ = gab,
and in the simlar way as above we get

(1.24) baij> =0.
Put

(1.25) Pii= gai i,
and we have

(1.26) $Cin =0,

(1.27) Gis iy =047,

Let 'v¢ be the transform by ¢;7 of an arbitrary contravariant vector ¢, Then
we find that
gijvit'vi = gijdpivhvi=0,
gij'vi'vi= gapvavd,
by virtue of (1.20) (1.22) and (1.24). These show that the transformed vector "v¢ is
orthogonal to the original one and its length is unchanged by this transform. Us-
ing these relations we now define the two unit normals to our 2z-dimensional sub-
manifold.
Let B14 be a unit vector orthogonal to all of the vector tangent to M**z), i. e.

(1.28) 5ABB,'ABIB=O, EABBIABIB= 1.
We transform B4 by ¢4B and denote it by Bp3B, that is,
(1.29) BpA=¢pAB|B.

Then BgA4 is a unit vector orthogonal to By4. Further
eaB BuAB;B=cap¢cA B B;B
=¢pcB1C B;B
= —(epc$BP) B1C B;B
= —¢ii(eep B1C B;D)
=O’
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because of the definition of ¢pc and of (1.12) and (1.28), which shows that the vector
Bp4 is orthogonal to B4 too. Therefore we can adopt these two vectors Bp4,
(P=1, 1), as a couple of unit normals to M*(z).

We have had

(1.30) eaB BiA BpB=0, ¢4 BpA BoB=dgp,
and together with the introduction of the notations

(1.31) Bpa=capBpB,  Bia=capgiiB;B,
where gij gjp=0;¢, we have

(1.32) BigBjA=ii, BogsBpA=0Qp, BigBpA=0, BpaB;A=0,

(1.33) B;ABigp+ BpA Bpp=3pA.
Multiplication of (1.12) by B#,4 yields
(1.34) Pji=DBis BiBgpA.

§ 2. The second and third fundamental tensors. Associated equa-

tions.

If we construct the Christoffel symbol by gas:

a =1 ad (Z)g,,d agdc_agbc‘
2.1 {bc} —2—g a—yc + a_yb a]d ) ’

it contains such components

2.2 { oz} =05 conj.
Viy 1 vo agw_ag,.; 0. .
2.3 {ﬂi} =58 6 (,__aylje 7?y"> =0; conj.
because of (1.20) and (1.21).
Then for
L s%’ﬁi—‘ﬂbj“ laik} —dat Ui},
we have

by «1.17), and also
2.4 O ==-2i{51 =01 conj,

2.5 oo =—2i{;}=0; conj,
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by (2.2) and (2.3). Hence we have

¢in =0,
and consequently
(2.6) $ijn =0,
as we have
2.7 giin=0.

Conversely, if in a 2z-dimensional real analytic manifold of complex structure
we are given the conditions (1.20) and ¢;j;=0, we can have (2.2) in the complex co-
ordinate system by virtue of the hybridity of g;; being assured by (1.20), and can
also have (2.3) by (2.4) and (2.5) which are the results of the tensorial condition
#ijw=0. Then from (2.3) we derive (1.21). Hence Kaehlerian manifold is defined
as one for which ¢;j;=0 (27).

For later use we shall derive some fomulas that concern the curvature tensor

(1), (25), (273;
Rijpr=0, ik} —0r i + Uk laisd — Uikgd (),
It satisfies
Rija> =0, Rijui=Ruuij, where Rijii=ginR"jr;
Rf jap =0, (Bianchi iden tity of the first kind),

Rijunm=0, (Bianchi identity of the second kind).

From the Ricci identity

2.9 Bipa = F1a= 652 Rlak! — $i R jas
and (2.6) we have

¢a’ R% jri = ¢ Rlas,

Contracting by g;» we have

(2.9 ? GRahr1= 0,
or, what amounts to the same

(2.10) Rijri—¢i?$jb Rapr1=0
Contracting (2.8) by g7* and using the relation (1.25) we have

(@.11) $iaR%y= =544 Ritas
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from which we have
(2.12) ba R 1 =0,
or, what amount to the same

(2.13) R‘,zl+¢i“¢lefb=0.

If we differentiate (2.1) covariantly with respect to 7* and sum up those three
equations obtained by the cyclic interchange of the indices ¢, j and %, we have

(2.14) P 1a R sy = 0,

in consequence of the Bianchi identity of the second kind and of (2.6).
These formulas are, of course, valid for any 2r-dimensional real analytic
manifold as long as it is the real representation of an n-dimensional Kaehlerian

space.

Differentiating B;4 covariantly, we have the equations of Gauss
. .A
(2. 15) B;?k def H2p
=0, BjA—{ji;} B/A.
H JT,;A is-symmetric in j and £ and is a vector orthogonal to B;A.
H;;A=ijPBpA .

Hj,p is called the second fundamental tensor of the submanifold. If we differentiate
(1.29) and (2.15), we have

2.16) Hjp1=9¢*Han, Hjzn=—9¢;*Ha1,
or, what amounts to the same
2.17) H;jp+¢i#¢jb Happ= 0,
which shows that H;;p is a pure tensor. Hence by the hybridity of g;; we have
(2.18) giiH;jp=0.
If we put
(2.19 Lpor= F-ABBP‘?k Bg3B,

we find that Lpg; is anti-symetric in P and Q. It is called the third fundamental
tensor and by the use of which we have the equations of Weingarten

(2.20) Bpf;*k = —B;AH';p+ Lpg; BoA,
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where Hi,p=git Hpp But if we take, for example, I for P in (2.20) and transform

them by ¢4B, we have the equations for P=1II, as we have (1.29), (2.16) and LpQ;z=0.
Therefore the equations of Weingarten to either I or II for P will suffice for all.

As for the condition of integrability for (2.15) and (2.16) we have (18]

(2.21 R;jrxi=2Hjwp Hip P, (Gauss equations),
(2.22) Ha(klp\;h] =LPQ [hPI]aAk) Q, (COddaZZi €q uationS),
(2.23) - Lpoasm=g* HaQ Hyrp:- (Ricci equations).

If we transform H;;p’s contained in (2.21) by ¢.¢, we obtain
$a' 59 Rijri= 265 Hj pha Hinr p -

But as we have (2.11) and (2.17), these transformed equations reduce to the original
epuations (2.21) themselves, and thus ¢;¢ does not change the Gauss equations. Also
the Codacci equations are only transferred within the indices I and II by this
transform. As for the Ricci equations we have but the secondary ones wich are
trivial, and thus the condition of integrability is given by the above three kinds of
equations solely.

§ 3 Existence theorem.

We now consider the inverse problem. Given three kinds of functions of
class C*

gii\=gii), Hjxp(=Hyjp), Lpor(=—Lopw),

satisfying
3.1 gii=gi" b gab,
3.2 H;jp=—¢:*¢;®Happ,

if it is posible to determine a 2n-dimensional Kaehlerian manifold which is a sub-
manifold of H**n(¢) and has precisely these three kinds of functions as its funda-
mental tensors. For which we should solve two systems of the following partial
differential equations for B;4, BpA and §4=£A(y?) simultaneously:

¢pA B;B=¢;i BjA,
¢aBBiA BjB = g;j,
J capBiAB B =0,

SABB[AB[B= i.

3.3
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0; 64 = BiAy
(3.4) O BjA =BiA{jiy} + Hjpp BpA,
Oy B1A= — BiAH!p+ L1y ByA,

where
BpyA=¢pA BB
by definition.

Difterentiating the equations (3.3) partially with respect to »% by turn and
using whole of (3.1), (3.2), (3.3) and (3.4) we have

9n(¢pA BjB— ;i B;A)=(ppA BB — gk BiA) iy},

Onleap BiA ByB — gjp)=2eap B/AB ;B — g i1 {a>in)
+2Hn 1,648/ B 1A ByyB
—2¢¢j2H ppyn capBaA B B,

On(caB BjAB|B) = ¢op B;A B B{;i;}
— (caBBAB;B— g; ) Hip ¢
+ (cagB1ABB— DHjpy

+ eapBiAB18¢ji Ly 14,

On(caBB1AB1B—1)= — 2¢45B;ABBHi,,

in this order. Now, when the functions g;j, Hjzp and Lpg, are given so that they
may satisfy the Gauss, Codazzi and Ricci equations, we can solve (3.4), for B;A and
B4, and consequently Bp4 too. Then, as has been seen above, the conditions
(3.3) to be a submanifold are fulfilled by these solutions throughout the manifold
if we give a set of equations (3.3) at a point (£4) under the consideration as the initial
condition, and thus is obtainable our required Kaehlerian submanifold by an
integration of (3.4),. Hence we have the

Theorem. 2. [f the functions g;j, Hip and Lpoy satisfying (3.1) and (3.2) are
given so that they satisfy the Gauss, Codazzi, and Ricci equations, then it is always possible to
determine a 2n-dimensional Kaehlerian submanifold K*(n) in a given (2n+2)-dimensional flat
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Hermitian manfold H**£) in such a way that it has those given functions as the fundamental

tensors.

On comparison of the number of the unknown quantities with that of the
arbitrary constants appearing at the integration of those differential equations (3.4),
we can simply say that the Kaehlerian submanifold whose existence is insured by
the above theorem is one that can be determined to within a translation and uni-

tary transformation.

§ 4. Curvatura conditions for isometric imbedding.

The problem we have set up in the preceding paragraph is identical to the
inquiry that given an arbitrary K?7(3) if it is possible to imbed a manifold in H?***(§)
isometrically, and for which it is necessary and sufficiant that Hj;p and Lpg; be
chosen intrinsically in such a way that the Gauss, Codazzi and Ricci equations hold
good together with (3.2).

If we contract the Gauss equations (2.21):

“.D Rijri=2Hjw p\Hii1np,
by gi* and take account of (2.13), we have

4.2 R;j= — g% Ha;p Hy;p,
Take 2n-orthogonal ennuple ii and we have

gil = 22l

a=l a a

If we multiply the left and right members of (4.2) by the respective members of the
last equality, we have

4.9 R= — 3 g% (Haip 2)(Hyjp A9,
a=|\ a a

from which we find that R <0 because of the positive definiteness of g% Xa Xj.
But when R =0, we should have

Hgipii =0,

a
and as 2¢ are 2n independent vectors, we have then
a
Hjip =0,

from which we deduce

Rijr1 =0,
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by the Gauss equations (4.1) Thus we have first of all the
Theorem 3. Inorder that a non-flat Kaehlenrian manifold K*»(y) may be imbedded
isometrically in a flat Hermitian manifold H*(¢), its scalar curvature R should be negative.

Put (14)
4.4) Lopir=2{Ho1Hprs 1 — HamHpiry 1} -

Then Lapg is symmetric in a and b, and-anti-symmetric in 2 and £&. Construct the
quantity

Kpp = — -;— %% Lapsg,
and we have
4.5) K;;=2ga6 Hy;ymiHpj 1,

which shows that K;; is an anti-symmetric tensor and coincides with the right member
of Ricci equations (2.23). By the use of the Codazzi equations (2.22) we can derive

4.6) Kiijspy =0,

and hence it is a necessary condition for K(y) to be isometrically imbedded in H"*(¢).
If we write Kp; as

4.7) Kponk=2g%% HanipiHpp 0
it holds
K po>m=90, Kpounry=0.

Multiplying (4.7) by Hz;o and summing up for Q, and summing those three equa-
tions obtained by the cyclic interchange of the letters 7, j and £, we have

4.8) Hy 10 Kip0iiny = HaupiRa? jpys

in consequence of the Gauss equations (4.1) ‘
Again multiplying (4.8) by Hp;p and summing up for P, and subtracting from
it the equations obtained by the interchange of the letter 7 and j, we get

4.9) Lois i Kppy = —Repii Raf%n -
On the other hand (4.8) can be written as
(Hb;n He jy1)— Hbi 1 He gim) K 1o
= Hpip Ha(jip R\ c| kir-

Contracting by g#° and summing up those two epuations obtained by the inter-
change of the letters ¢ and j, we get
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4.10) K;iLappy = —RaS i Ricsrn -

Adding (4.10) to (4.9) and multiplying the resulting equations by —%gab we have

“4.11) K; ;i Ky =—;’Rb?i(iRla\l.’kl) .

Thus, in order that a K*(n) may be imbedded isometrically in H™X¢), it is necessary that
there exists an anti-symmetric tensor K;j satisfying (4.11) (14).

If we multiply the Gauss equations (4.1) by ¢, and take account of (3.2), or
equivalently, of (2.16), we have

$a’ Rijp1=2(Hj pimHan1 — Hj @ 1an ),
or contrbcting by gie
872 Pa* Rijp1 = 2Ky
But as we have giag,i=¢%j and also obtain
¢4 R;jr1= — 2gnp $a® R7)

by virtue of (2.11), the above equation becomes

“4.12) Kni=¢ar R%;
Subst tution of this relation into the conditional equations (4.11) gives

4.13) Rb?i(ilel.’kll =2¢£er (i¢klisfll .

For the simplification we multiply this by ¢i/¢¥! and using the relations (1.14), (1.22),
(1.23), (1.27) and (2.12), we finally have

Rijy Rijk =R,
as one of the necessary conditions.

As for the condition (4.6) the substitution of (4.12) in (4.6) gives the formula
coinciding with (2.14), which we have obtained for a 2z-dimensional real analytic
manifold representing an n-dimensional Kaehlerian space. Therefore the condition
(4.6) is already fulfilled from the beginning when we deal with a Kaehlerian mani-
fold. Summarizing the results hitherto we have obtained, we have the

Theorem 4. In order that a 2n-dimensional real analytic manifold K*™n) which is
the real representation of an n-dimensional non-flat Kaehlerian space can be imbedded isometri-

ca.ly in a (2n+ 2)-dimensional real analytical manifold H***%&) which is the representation of
an (n+ I)-dimensional flat Hermitian space, its curvature tensor R*j; should satisfy

“4.14) Riju Ri*=R?, R<O.
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A Kaehlerian manifold K*(y) is called a manifold of constant holomorphic
curvature, if the sectional curvature spanned by two vectors v¢ and ¢’v7 is every-
where constant (1), (23, (25, (26), (27). Its curvature tensor is given by

4.15) Rij = -126—(5 ¢1817m + 0% 4B ik — Pi¥ Prd),

where £ is an absolute constant. We have then
4.16) Rij="tlkgi;, R=kn(n+1)

If we substitute into (4.14) and make use of (4.16) we get
 RG(—-D(r+2=0.

Hence R should vanish for n=2, and & should do so. Thus we have the

Theorm 5. These exists no Kaehlerian manifold K'y), nz 2, of non-vanishing
constant holomorphic curvature which can be imbedded isometrically in a (2n+ 2-dimensional
flat Hermitian manifold H*»*%¢).

It is interesting to compare this fact with the problem to imbed a Riemannian
space of constant curvature in a Euclidean space as its hypersurface. It is well-
known as the theorem of H. Levy (11], L. P. Eisenhart (6] or of the present author
(17) t hat there exists no Riemannian space V*, n>2, of negative constant curvature

which can be regarded as a hypersurface of a Euclidean space, that is, of class one
in the sense of T. Y. Thomas (20), (21].

§ 5. Non-ezistance of parallel submanifolds.

Let us consider the case that K;; vanishes. Then by (4.12) we should have

PaiR? j=0, or equivalently
$i*Raj =0,
and as |¢;2| = 0, we have
Raj =0,

and consequently R=0. Then by the argument made in the proof of theorm 3, the
space is flat. Thus we have the

Theorem 6. These exists no Kaehlerian manifold K™(n) other than flat one that can
be imbedded isometrically in a flat Hermitian manifold H™™¢) in such a way that the foms-
tions K;; vanish identically, or in an equivalent sence, both of the members of the Ricci equa-
tious (2.23) vanish.

We shall interpret this fact geometrically. Given a submanifold M™(z) re-
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presenting a given Kaehlerian space, if these exists an another ’M?**(x) having its two
normals in common with M?1(n), we say that M) is a parallel submanifold (15).
If we denote by ’é4 the position vector of the point on ‘M*(n) which corresponds
to a point on M) with the position vector £4, 64 has the form

6.1 '6A=£A+CP BpA,
Then on using the equations of Weingarten the vectors tangent to 'M*™z) can be
written as

5.2 'B;A=9,;'6A=(3;i — CPH’;p) B;A

+(9; CP +CQ Lop;) BpA.

Since BpA is common to both M?7(p) and 'M?#(y), 'B;A should be orthogonal to BpA,
and accordingly the second term in the right member of (5.2) vanishes and we have

(5.3) 'BiA=(5;— CP HY;p) BjA,
5.4) 0;CP +CR Lgp;=0.
The condition of integrability for CP, i. e.
042, CP =0
gives
CR@; Lpgij+ Lrrii Lprij)=0.
or

CeLgpush=0.
Since CQ, (Q =1, II), are independent, we have
(5.5) Lpgsi =0,
from which we find that
K;ij=0.
For (5.5) is nothing but the left member of the Ricci equations (2.28). Hence a

necessary and sufficeant condition that a submanifold M?*%(7) be accompanied by a
parallel submanihold is that K;; vanishes. But as we have proved the theorem 6, we
can state the \

Theorem 7. These exists no Kaehlerian manifold K* ) other than flat one that can

be imbedded isometrically in H*X¢) in such a way that it is always accompanied by a parallel
submani fold.

To the last, as we have dealt with our local imbedding problem on manifolds




42 TANJIRO OKUBO

of real representation, whose metrics are actually Riemannian. If then so, the ex-
istence of the second fundamental tensor appearing in the theory of submanifolds
can be studied quite in the similar way as is done in the case to imbed a Riemannian
space V* in a Euclidean space E”*?, that is, in the case of class two. The latter
problem was studied in detail by M. Matsumoto (14) as the direct generalization of
the computations made by T. Y. Thomas for class one [21). Then we can repeat
the arguments analogously and have the

Theorem 8. If the rank of the matrix | K;;|, whose elements satisfy the condition
(4.12), is equal or greater than 4, the second fundameutal tensors Hjyp are unique to whithin a

unitary transformation.
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