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Introduction.

This paper contains mainly two conoepts. One concerns the construction of

a $2n$-dinensional real analytic manifold which on one hand is to be the real repre-
sentation of an n-dimensional Kaehlerian space and on the other hand is to be a
submanifold of a $(2n+2)$-dimensional real analytic manifoled $H^{2n+2}$ , which whereas

is the representation of an $(n+1)$-dimensional flat Hermitian space. While the other

concerns the inquiry of the conditions to be imposed on the curvature tensor

so that a $2n$-dimensional real manifold $K^{2n}$ representing an arbitrary n-dimensional
Kaehlerian space can be imbedded in $H^{2n+2}$ isometrically.

In preliminary \S 1 we construct such $H^{2n+2}$ by the aid of $B$. Eckmann and
$A$ . Fr\"olichers’ theorem (4) which serves to endow an almost complex manifold
with a complex structure. In $H^{2\hslash+2}$ we set up a $2n$-dimensional almost analytic
submanifold $M^{2n}$, whose notion was previously introduced by J. A. Schouten and

K. Yano in the course of study on their so-called invariant submanifolds (19].

We can show that such $M^{2n}$ is always the real representation of an n-dimensional
sub-Kaehlerian space. Further for the completion of being a submanifold in geo-
metrical sense we define a couple of unit normals on $M^{2n}$ by the use of the charac-
teristic property owned by the tensor giving an almost complex structure to $M^{2n}$.

In \S 2 we define the usual tensors accompanied with a submanifold $M^{2n}$ to-

gether the fundamental equations followed by. The condition of integrability of

the latter is derived and adding to this a remark is given on the influence of the

tensor giving the complex structure upon these conditional equations.
\S 3 is the proof of the classical theorem of Bonnet following the prototype

which we have and see in the arguments of imbedding a Riemanian space in a

Euclidean space, $e$ . $g,$ ( $6$], $[20]$ .
\S 4 is devoted to find the conditions that arc to be fulfilled by the curva-

ture tensor so that an arbitrary $K^{2n}$ can bc imbedded in $H^{2n+2}$ isometrically. Our
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main theornm obtained is that its curvature tensor $R_{ijkl}$ should satisfy
$R_{iJk\ell}R^{ijkl}=R^{2},$ $R<0$ ,

for which. As its direct consequence we prove that there exists no $K^{2n},$ $n\geqq 2$, of
non-vanishing constant holomorphic curvature that can be imbedded in $H^{2n+2}$ iso-
metrically.

\S 5 is a geometrical interpretation of non-existence theorem of a $K^{zn}$ that is
one for which the Ricci equations contained in the condition of integrability vanish
identically.

A remark is given on the uniqueness of the second fundamental ten- sors in
accordance with the rank of the matrix composed of the right hand side of the
Ricci equations.

\S 1. Sub-Kaehlerian manifold $K^{2n}$ in a flat Hermitian manifold $H^{2n+2}$

We adopt the following conventions for indices:
$A,$ $B,$ $C,$ $D=1,$ 2, $n+1;\overline{1},$ $\hat{2},\cdots\cdots\cdots\cdots,$ $\overline{n+1,}$

$\Theta,$ $\Lambda,$ $\Pi,$ $\Gamma=1,2,\cdots\cdots\cdots,$ $n+1$ ,

$\overline{\Theta},\overline{\Lambda}\Pi^{-}\overline{\Theta}=\overline{1},$ $\overline{2},$ $\overline{n+1,}$

$a,$ $b,$ $c,$ $d,$ $e.f,$ $g,$
$h,$ $i,j,$ $k,$ $1=1,2,\cdots\cdots,$ $n;\overline{1},\overline{2},\cdots\cdots\cdots,\overline{n}$,

$\alpha,$
$\beta,$

$\gamma,$
$\delta,$

$\nu,$ $\rho,$
$\lambda,$

$\mu,$ $v,$ $\omega=1,2,\cdots\cdots,$ $n$

$\overline{\alpha},\overline{\beta},\overline{\gamma},\overline{\nu},$
$\beta,\overline{\mu},’-,\overline{\omega}=\overline{1},\overline{2},\cdots\cdots,\overline{n}$

$P,$ $Q,$ $R,$ $S=I$ ,I

and consider an $(n+1)$-dimensional flat Hermitian space, covered by the complex
cordinate system $(Z^{1}, Z^{2} \cdots, Z^{n+t})$ where $z^{\theta}=\xi^{\theta}+i\xi^{\theta},$ $i^{2}=-1$ , and on it we presume
that its element of length takes the form

(1. 1) $ds^{2}=dz^{I}dZ^{I}+\cdots\cdots\cdots+d^{n\star 1}d\overline{z}^{n+1}$ ,
where

$\overline{z}^{\Theta}=z^{\overline{\theta}}=\overline{\xi^{\theta}+i\xi^{\overline{\theta}}}=\xi^{\Theta}-i\xi^{\overline{v}}$

Since we are dcalng with a complex space, we can define a tensor having
the numerical components

(1. 2) $\phi_{B^{A}}=\Vert$ $i\dot{o}_{A^{6}}0$ $-i\delta_{A^{\theta}}0$

in our cordinate system. The tensor $\phi_{B^{A}}$ satisfies the tensorial equation
(1.3) $\phi_{B^{\Lambda}}\phi_{C^{B}}=-\delta_{C^{A}}$ ,

and has the numerical components
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$\Vert$

$-\delta_{A^{\theta}}0$
$\delta_{A^{\theta}}0$

in the real coordinate system ( $\xi^{A}$ ]. We have then

(1.4) $N_{BC}^{A}=0$,

where $N_{B\dot{C}^{A}}$ is the Nijenhuis tensor (16];

(1.5) $N_{B\dot{C}}^{A}=2\phi_{(B^{D}}(\partial_{D}\phi_{C_{I}^{A}}-\partial_{C)}\phi_{D^{A)}}$,

and $\partial=\frac{\partial}{\partial\xi A}$ .

The metric defined above is a Riemannian, and if we express it by $\epsilon_{AB}$, it

has the components

(1.6) $\epsilon_{AB}=|||$ $\delta_{\Theta\overline{A}}0$

$\delta_{\overline{\theta}l}0$ $\Vert,$
$(\delta_{\theta\overline{A}}=\overline{\tilde{O}\theta 4}=01for\Theta\neq\Lambda for\Theta=\Lambda]$ ,

in the complex coordinate system, and it is equivalent to the tensorial expression

(1.7) $\text{\’{e}}_{AB}\phi_{C^{A}}\phi_{D^{B}}=\epsilon_{CD}$ .
As the space is a flat one, we have

(1.8) $R_{BCD}^{A}=0$,

whero $R_{BCD}^{A}$ is the Riemann-Christoffel curvature tensor formed with $\epsilon_{AB}$ .

Converscly, if in a ($2n+2l$-dimensional manifold $X^{2n+2}$ of class $C^{t}$ covered by
a system of coordinates $(\xi^{A})$ there is given a tensor $\phi_{B^{A}}$ of class $ c\infty$ satisfying

(1.9) $6_{B^{A}}\phi_{C^{B}}=-\delta_{C^{A}},$ $N_{B\dot{C}^{A}}=0$,

and also a Riemannian metric $G_{AB}$ satisfying

(1. 10) $G_{AB}\phi_{C^{A}}\phi_{D^{B}}=G_{CD},\tilde{R}^{A_{BCD}}=0$,

whcrc $\overline{R}_{BCD}$ is thc Ricmann-Christoffel curvature tcnsor formed with $G_{AB}$ . $\iota\$\cdot c$ can
show that an $(\eta+1)$-dimensional flat Hermitian spacc $1\iota avitl_{\backslash }g$ the clement of dis-

tancc (1.1) can bc dcrived from $X^{2n+2}$ .
For thc proof wc {irst notc that an cvcn dimcnsional rcal $\backslash [11C$ ( of $c1.1^{Q\backslash ^{\backslash }}c\infty$



28 TANJIRO OKUBO

is called an almost complex manifold, if it admits a tensor $\phi_{BA}$ of class $ c\infty$ satis-
fying $\phi_{B^{A}}\phi_{C^{B}}=-\delta_{C^{A}}$ . If there exists a coordinate system in which $\phi_{B^{A}}$ has the
components (1.2), we say that the almost complex structure $\phi_{B^{A}}$ of class $C$ gives a
complex structure to the manifold. As the concept connecting these structural
situations the following theorem is now well-known [2], [4], [5], (8], (12];

In $or\ovalbox{\tt\small REJECT}$ that the almost complex stmcture $\phi_{B^{A}}$ of class $C$ in a manfold of class $C$

give a complex structure, it is necessay and sufficient that the Nijenhis tensor vanishes.
It is now easy to prove our assertion. Because of $(1.9)_{1}$ , our $X^{2n+2}$ of class

$C^{\omega}$ is an almost complex manifold and the condition $(1.9)_{2}$ assures that $\phi_{B^{A}}$ gives a
complex structure to $X^{2n+2}$ by the theorem stated above. And by $(1.10)_{1}$ , the given
Riemanian metric $G_{AB}$ has the components

$ G_{AB}=\Vert$ $G_{\theta\overline{A}}0$
$G_{\overline{\theta}A}0$

in the complex coodinate system. But as we have ( $1.10]_{2}$ we can take a coordi-
nate system in which $G_{AB}=const.$ , and the element of length takes the form

$ds^{2}=2G_{\theta z}d^{\prime}z^{\theta}d^{\prime}z^{i}$ .
Then by a suitable unitary transformation of the coordinates, we can reduce this
to (1.1), which proves our statement. On this reason we call a $2n$-dimensional real
analytic manihold $X^{2n+2}(\xi)$ satisfying the conditions $(1.9)$ and (1.10) to be the real re-
presentation of an $(n+1)$-dimensional flat Hermitian space. Then we may call such
$X^{2n+2}(\xi)$ a flat Hermitian mani old substantially. We shall denote it by $H^{2n+2}(\xi)$ here-
after.

We now consider a $2n$-dimensional submanifold $ M^{2n}(\xi$] of class $C$ in $H^{2n+2}(\xi)$ ;

(1.11) $\xi^{A}=\xi A(\eta^{i})$.
If the transform by $\phi_{B^{\mathcal{A}}}$ of any vector tangent to $M^{2n}$ ( $\eta]$ is still tangent to $ M^{2n(}\backslash \eta$ ),

we call $M^{2n}(\eta)$ an almost analytic submanifold [19], (24]. A necessary and suf-
ficient condition for $M^{2n}(\eta)$ to be so is

$’\backslash 1.12)$ $\phi_{B^{A}}B;^{B}=\phi_{i^{j}}B_{j^{A}}$ ,
where $\phi_{J^{i}}$ is a certain tensor of class $C^{\omega}$ in $M^{2n}(\xi)$ and $B_{i}^{A}$ is the function defined by

(1.13) $B_{\dot{l}}^{A}=\partial_{i}\xi A$
$\partial_{i}=\frac{\partial}{\partial\eta^{i}}$ .

For a moment we assume that $B_{i}^{A}$ is of class $ c\infty$ .
If we multiplv (1.12) by $\phi_{A^{C}}$ we have
(1.14) $\phi_{J^{i}}\phi_{k^{j^{\backslash }}k^{i}}=-’$)

and this shows that $M^{2n}(\eta)$ is an almost complex manifold. By a straightforward
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computation we have

(1.15) $B_{i^{B}}B_{j^{C}}N_{BC^{A}}=B_{a^{A}}N_{ij}a$

where $N_{ij}^{a}$ is the Nijenhuis tensor:

(1.16) $N_{ij}^{a}=2\phi^{h_{i}}((\partial_{h}\phi_{j)^{a}}-\partial_{j_{1}}\phi_{h^{a)}}$ .

Since we have had $(1.9)_{2}$ it holds from (1.15) that

$N_{i}j^{a}=0$,

and hence the function $\phi_{J^{i}}$ gives a complex structure to $M^{\underline{\prime}n}(\eta)$ by virtue of the
theorem stated before. $\phi j^{i}$ has the components

(1.17) $\phi_{J^{i}}=\Vert$

$\dot{\grave{w}}_{\mu}^{\lambda}0$

$-i\overline{0}_{\beta}^{\lambda}0$

in the complex coordinate system (y) induced from $\emptyset J^{i}$ , whcre

$y^{\lambda}=\eta^{\lambda}+i^{\gamma/},$ $y=\eta^{\lambda}-ir_{J^{X}}$ .

Theh if we take $\Theta$ for $A$ and $\lambda$ for $i$ in (1.12), we have $B_{\lambda^{\theta}}<0$ by virtuc of (1.17)

and also of (1.2). Similarly if we take $\overline{\Theta}$ for $A$ and $\lambda$ for $i$, we have $B_{\lambda}=0$ . Thus
$B_{i}^{A}$ has the components

(1. 18) $ B_{i}^{A}=\Vert$ $B_{\lambda^{\theta}}0$
$B_{i^{\overline{\theta}}}0$

in the complex coordinate system. While wc have assumcd that $B_{i}^{A}$ is of class $C^{\infty}$ .
Hence by the elementary theorem of function theory wc scc that $B_{i}^{\Lambda}$ is of class $C^{w}$ .

The induced metric of $M^{2n}(\eta)$ is defind by
(1.19) $ g_{j}\dot{l}=B_{i}^{A}B_{j^{B}\cdot AB}\wedge$ ,

and is obviously analytic and self-adjoint in the cornplex coordinatc sy.stem. By
the words ceself-adjoint quantity” is meant a quantity which is equal to its adjoint.
A self-adjoint quantity represents always a rcal quantity in the rcal coordinatc
system and vice versa, for which examplc we havc sccn ill $\phi_{B^{\prime 1}}l|)_{L}^{\wedge}\lceil_{()I}\cdot c$ . $M^{\angle\prime\prime}(\eta)11$ ; $\iota\backslash $

the element of length
$ds^{\angle}=g_{ij}d\eta^{i}d\eta J$ .

Our intention is now to verify that this metric sublnanifold $M^{l\prime l}(//)$ is the real
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representation of an n-dimensional Kaehlerian space.
Substitution of (1.7) into (1.19) yields

$g_{iJ}=(\phi_{A^{C}}B_{\dot{\iota}^{A}})(\phi_{B^{D}}B_{j^{B}})\epsilon_{CD}$

and as we have (1.12) and (1.19), this can be reformed to

(1.10) $g_{iJ}=g_{ab}\phi_{i^{a}}\phi j^{b}$

Such ametric is called to be Hermitian (27] and is hybrid in $i$ andj, $i$. $e$ . $g_{\lambda\mu}=g_{l\overline{\mu}}=0$

and $g_{\lambda\beta}=g_{2^{\mu}}$ , where $g_{\lambda\beta}$ satisfies
$g_{\lambda\beta}=B_{\lambda^{\Theta}}B_{\beta^{J}}\epsilon_{\theta\prime}$ ; conj.,

as we have (1.6), (1.8) and (1.19). Differentiating $g_{\lambda\beta}$ by $y^{\prime}$ and taking account of the
facts that $\epsilon_{A_{l}B}=const$ . and $B_{i^{A}}$ has the numerical components (1.18), we have

$-\partial fl-=B_{\lambda^{\theta}}\frac{\partial^{2}}{\partial y^{\beta}}z_{\partial}\frac{l}{y^{\rho}}\epsilon_{\theta\Lambda}\partial g_{\lambda\beta}$

from which we find that

(1.21) $\frac{\partial g_{\lambda\beta}}{\partial y^{\rho}}=\frac{\partial g_{i\beta}}{\partial y^{\beta}}$ ; conj.,

which insures the existense of an analytic function $\Psi$ such that

(1.22) $g_{\lambda\beta}=\frac{\partial\Psi}{\partial y^{\lambda}\partial y^{\beta}}$ ,

and this shows that our n-dimensional complex manifold constitutes a Kaehlerian
space (IO], whose element of length is

$ds^{2}=g_{ij}dy^{i}dy^{j}$

$=2g_{\lambda\beta}dy^{\lambda}dy^{\beta}$

$=2\epsilon_{\theta z}B_{\lambda^{\theta}}B_{\beta^{J}}dy^{\lambda}dy^{\overline{\mu}}$ .
Hence we have the

Theorem 1. An almost analytic submani old $M^{2n}(\eta)$ in a $(2n+2)$-dimensional real
analytic manifold $H^{2n+2}(\xi)$ representing an $(n+1)$ -dimjnfional .flat $Herm’\prime tian$ space is always
the real representattO $n$ ofan n-dimensional sub-Kaehlerian space.

We will denote a $2n$-dimensional real analytic manifold representing an n-
dimensional Kaehlerian space by $K^{2n}(\eta)$ hereafter regardless whether it is a submani-
fold or not, and will call $K^{zn}(\eta)$ a Kaehlerian $man|fold$.

put
$\epsilon_{AC}\phi_{B^{C}}=\phi_{AB}$ ,
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and we have for (1.7)

$\phi_{CA}\phi_{B^{C}}=\epsilon_{AB}$ .
Multiplying (1.3) by $\epsilon_{AD}$ , we have

$\phi_{AC}\phi_{B^{C}}=-\epsilon_{AB}$ ,
from which we have

$\phi_{(AB)}=0$ .
Similarly if we put

(1.22) $g_{iJ}\phi_{a^{i}}=\phi_{ja}$ ,

we have for (1.20)

(1.23) $\phi ja\phi_{b^{j}}=gab$ ,

and in the simlar way as above we get
(1.24) $\phi_{(iJ)}=0$ .

Put
(1.25) $\phi^{ij}=g^{aj}\phi_{J^{i}}$ ,

and we have
(1.26) $\phi^{(ij)}=0$ ,
(1.27) $\phi^{ij}\phi_{ik}=\delta_{k}J$ .
Let $\prime v^{i}$ be the transform by $\phi j^{i}$ of an arbitrary contravariant vector $v^{i}$ . Then

we find that
$g_{ij}v^{i^{\prime}}v^{j}=g_{iJ}\phi_{h^{j}}v^{h}v^{i}=0$,
$g_{iJ^{\prime}}v^{i^{\prime}b}v^{j}=g_{ab}v^{a}v$ ,

by virtue of (1.20) (1.22) and (1.24). These show that the transformed vector $\prime v^{i}$ is
orthogonal to the original one and its length is unchanged by this $tran_{3}\neg form$ . Us-
ing these relations we now define the two unit normals to our $2n$-dimensional sub-
manifold.

Let $B_{I^{A}}$ be aunit vector orthogonal to all of the vector tangent to $M^{zn}(\eta),$ $i$. $e$ .
(1.28) $\epsilon ABBi^{A}B$ I $B_{=0}$ $\epsilon ABB$ I

$A$ $B$ I $B_{=}1$ .
We transform $B_{I^{A}}$ by $\phi_{A^{B}}$ and denote it by $B$ II

$B$ that is,
(1.29) $B_{I^{A}}=\phi_{B^{A}}B_{I}^{B}$ .

Then $B_{\mathbb{I}^{A}}$ is aunit vector orthogonal to $B_{I}^{A}$ . Further
$\epsilon_{AB}B_{II^{A}}B_{i}^{B}=\epsilon_{AB}\phi_{C^{A}}B_{I^{C}}B_{i^{B}}$

$=\phi_{BC}B_{1}^{C}B_{i}^{B}$

$=-(\epsilon_{DC}\phi_{B^{D}})B_{I^{C}}B_{i^{B}}$

$=-\phi_{i^{j}}(\epsilon_{\mathbb{C}D}B_{1}^{C}B_{j^{D)}}$

$=0$ ,
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because of the definition of $\phi_{BC}$ and of (1.12) and (1.28), which shows that the vector
$B_{E^{t1}}$ is orthogonal to $B_{i}^{\mathcal{A}}$ too. Therefore we can adopt these two vectors $B_{P^{A}}$ ,
$(P=I, I)$, as a couple of unit normals to $M^{2n}(\eta)$ .

We have had
(1.30) $\epsilon_{AB}B_{i^{A}}B_{P^{B}}=0,$ $\epsilon ABB_{P^{A}}BQ^{B}=\delta QP$ ,

and together with the introduction of the notations
(1.31) $B_{PA}=\text{\’{e}}_{AB}B_{P^{B}}$ , $B_{iA}=\text{\’{e}}_{ABg^{ij}j^{B}}B$ ,

where $ g^{ij}g=\delta$ , we have
(1.32) $B^{i_{A}}Bj^{A}=\delta J^{i},$ $BQAB_{P^{A}QP}=\delta,$ $B^{i_{A}}B_{P^{A}}=0,$ $B_{PA}B_{*}^{A}=0$,
(1.33) $B_{i}^{A}B^{i_{B}}+B_{P^{A}}B_{PB}=\delta_{B^{A}}$ .
Multiplication of (1.12) by $B^{k_{A}}$ yields
(1.34) $\phi_{J^{i}}=B^{i_{A}}B_{j^{B}}\phi_{B^{A}}$ .

\S 2. The second and third fundamental tensors. Associated equa $-$

tions.

If we construct the Christoffel symbol by $g_{ab}$ :

(2. 1) $\{_{b^{c}}^{a}\}=\frac{1}{2}g^{ad}(\frac{\partial g_{bd}}{\partial y^{c}}+\frac{\partial g_{dc}}{\partial y^{b}}-\underline{\partial}\partial g\frac{bc}{f}]$ ,

it contains such components

(2.2) $\{_{\rho^{\nu}\lambda}\}=0$ ; conj.

(2.3) $\{_{\frac{}{\mu}\lambda}\}=_{2}g^{\nu\overline{\rho}}(_{\partial y^{\frac{\prime\ell\rho}{\lambda}\frac{\partial}{\partial}}y^{\rho}}^{\partial g_{-g_{t}’ i}}]=0$ ; conj.

because of (1.20) and (1.21).

Then for

$\psi:=^{\partial\psi}- a^{i_{k}}$

we have

$\phi_{\ell k}^{\nu}=0;$ ’
$\phi_{\beta}^{\nu^{-}}=0:^{k}$

’

by $\iota 1.17$ ), and also

(2.4)
$\phi_{l_{\backslash }^{i}\lambda}^{\nu}=-2i1_{\beta\lambda}^{\nu}$ } $=0_{\backslash }$ $C()11.|.$ ,

(2.5) $\phi_{\mu^{\nu}l}=-2i\{\nu\}=0;;\mu\lambda$ conj.,
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by (2.2) and (2.3). Hence we have

$\phi_{j}^{\dot{*}};k=0$,

and consequently
(2.6) $\phi_{jj};_{k}=0$,

as we have
(2.7) $g_{tJ;k}=0$.
Conversely, if in a $2n$-dimensional real analytic manifold of complex structure

we are given the conditions (1.20) and $\phi_{iJ};_{k}=0$, we can have (2.2) in the complex co-
ordinate system by virtue of the hybridity of $g_{ij}$ being assured by (1.20), and can
also have (2.3) by (2.4) and (2.5) which are the results of the tensorial condition
$\phi_{ij};_{k}=0$. Then from (2.3) we derive (1.21). Hence Kaehlerian manifold is defined
as one for which $\phi_{ij};_{k}=0[27]$ .

For later use we shall derivc some fomulas that concern the curvature tensor

(1], (25], (27];

$R^{i_{jkl}}=\partial_{l\{J^{i_{k}\}-\partial_{k}\{i\}+\{h\}\{\}-\{h\}f_{h^{i}k}\}}}j\iota Jkh^{i}\iota Jl$ ,

It satisfies
$R^{*}j_{(kl)}=0,$ $R_{ijk\ell}=R_{k\ell tJ}$, where $R_{ijkl}=g_{ih}R^{h_{jk\ell}}$

$R_{(jk\ell)}^{i}=0,$ (Bianchi iden tity of the first kind)

$R^{i}j(k\ell;h)=0$, (Bianchi identity of the second kind).

From the Ricci identity

(2.8) $\phi_{jk\ell}^{i}-\phi_{j\ell k}^{\dot{l}}=;;;;\phi_{J^{a}}R^{i_{ak^{l}}}-\phi_{a^{i}}R_{jkl}^{a}$ ,

and (2.6) we have

$\phi_{a^{i}}R_{jk}^{a}\ell=\phi_{J^{a}}R^{i_{akl}}$ ,

Contracting by $g_{ih}$ we have

(2.9) $\phi_{t*}^{a}\cdot R_{|a|j)k\ell}=0$,

or, what amounts to the same
(2.10) $R_{ijkl}-\phi_{i^{a}}\phi_{J^{b}}R_{abkl}=0$

Contracting (2.8) by $g^{jk}$ and using the relation (1.25) we havc

(2. 11) $\phi_{ia}R_{l}^{a}=-\frac{1}{2}\phi^{ab}R_{ilab}$,
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from which we have

(2. 12) $\phi_{(ia|}|R_{1l)}^{a}=0$ ,

or, what amount to the same
(2.13) $R_{l}^{a}+\phi_{i^{a}}\phi_{l^{b}}R^{i_{b}}=0$ .

If we differentiate (2.1) covariantly with respect to $\eta^{k}$ and sum up those three
equations obtained by the cyclic interchange of the indices i, jand k, we have

(2. 14) $\phi_{(i|a|}R_{|j}^{a};_{k)}=0$,

in consequence of the Bianchi identity of the second kind and of (2.6).

These formulas are, of course, valid for any $2n$-dimensional real analytic
manifold as long as it is the real representation of an n-dimensional Kaehlerian
space.

Differentiating $B_{j^{A}}$ covariantly, we have the equations of Gauss

(2. 15) $B_{i;k=}^{A_{dcf}}H_{jk}^{A}$

$=\partial_{k}B_{j^{A}}-\{J^{i}k\}B_{i^{A}}$ .
$H_{j\dot{k}}^{A}$ is.symmetric inj and $k$ and is a vector orthogonal to $B_{i}^{A}$ .

$H_{jk^{A}}=H_{jkP}B_{P^{A}}$ .
$H_{jkP}$ is called the second fundamental tensor of the submanifold. If we differentiate
(1.29) and (2.15), we have

(2. 16) $H_{jkI}=\phi_{j^{a}}H_{ak\mathbb{I}}$ , $H_{jkI}=-\phi_{J^{a}}H_{ak1}$ ,

or, what amounts to the same
(2. 17) $H_{\dot{\iota}JP}+\phi_{i}^{a}\phi_{J^{b}}H_{abP}=0$,

$whichshowsthatH_{ijp}$ isa pure tensor. $Hencebythehybridityofg_{ij}$ we have
(2. 18) $g^{ij}H_{\dot{\iota}JP}=0$ .

If we put

(2.19) $L_{PQk}=\epsilon_{AB}B_{P^{A}k,;}BQ^{B}$ ,

we find that $L_{PQk}$ is anti-symetric in $P$ and Q.$\cdot$ It is called the third fundamental
tensor and by the use of which we have the equations of Weingarten

(2.20) $B_{P^{A}k,;}=-B_{i}^{A}H_{kP}^{i}+L_{P}B$ ,
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where $H_{kP}^{i}=g^{ih}H_{hkP}$ But if we take, for example, $I$ for $P$ in (2.20) and transform

them by $\phi_{A^{B}}$ , we have the equations for $P=II$, as we have (1.29), (2.16) and $L_{(PQ)k}=0$ .
Therefore the equations of Weingarten to either $I$ or II for $P$ will suffice for all.

As for the condition of integrability for (2.15) and (2.16) we have (18]

(2.21) $R_{ijkl}=2H_{j(k|P|}H_{1i|\ell)}P$, (Gauss equations),

(2.22) $H_{a(kP|;h)}|=L_{P}{}_{(h}H_{|ak)}$ , (Coddazzi eq uations),

(2.23) $L_{PQ(k;h)}=g^{ab}H_{(a_{1}Q_{1}}H_{|b\lambda P)}$ . (Ricci equations).

If we transform $H_{\dot{\iota}JP}’ s$ contained in (2.21) by $\phi_{a^{i}}$ , we obtain

$\phi_{a^{i}}\phi_{b^{j}}R_{ijk\ell}=2\phi_{b^{j}}H_{j(k|P|}\phi_{|a|}^{i}H_{|i|\ell)P}$ .

But as we have (2.11) and (2.17), these transformed equations reduce to the original

epuations (2.21) themselves, and thus $\phi_{J^{i}}$ does not change the Gauss equations. Also

the Codacci equations are only transferred within the indices $I$ and $\Pi$ by this

transform. As for the Ricci equations we have but the secondary ones wich are
trivial, and thus the condition of integrability is given by the above three kinds of

equations solely.

\S 3 Existence theorem.

We now consider the inverse problem. Given three kinds of functions of

class $C^{\omega}$

$g_{ij^{(}}=g_{Ji}I,$ $H_{jkP}(=H_{kJP})$, $L_{PQk}(=-L_{QPk}I$,

satisfying
(3.1) $g_{ij}=g_{i^{a}}\phi_{J^{b}}g_{ab}$ ,

(3.2) $H_{ijP}=-\phi_{i}^{a}\phi_{J^{b}}H_{abP}$ ,

if it is posible to determine a $2n$-dimensional Kaehlerian manifold which is a sub-

manifold of $H^{2n+n}(\xi)$ and has precisely these three kinds of functions as its funda-

mental tensors. For which we should solve two systems of the following partial

differential equations for $B_{i}^{A},$ $B_{P^{A}}$ and $\xi A=\xi^{A}(\eta^{i}I$ simultaneously:

$|$

$\phi_{B^{A}}B_{i}^{B}=\phi_{i^{j}}B_{j^{A}}\epsilon_{AB}B_{i}^{A}B_{j^{B}}=g_{ij}$

,
(3.3)

$|$

$\epsilon_{AB}B_{i}^{A}B_{1^{B}}=0$ ,

$\vee\wedge B_{1^{A}}B_{I}^{B}=1$ .
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(3.4)
$\left\{\begin{array}{ll}\partial_{i}\xi A & =B_{i^{A}},\\\partial_{k}B_{j^{A}} & =B_{\dot{\iota}^{A}}\{J^{i_{k}}\}+H_{jkP}B_{P^{A}},\\\partial_{k}B_{I^{A}} & =-B_{\dot{\iota}^{A}}H_{kP}^{i}+L_{IIk}B_{\mathbb{I}^{A}},\end{array}\right.$

where

$Bn^{A}=\phi_{B^{A}}B_{I^{B}}$

by definition.

Diflerentiating the equations (3.3) partially with respect to $\eta h$ by turn and
using whole of (3.1), (3.2), (3.3) and (3.4) we have

$\partial_{h}AJ^{i}h$ ,

$\partial_{h}(\epsilon_{AB}B_{j^{A}}B_{k})=2(\epsilon_{AB}B_{\dot{\iota}^{A}}B_{(J^{B}}-g_{(j_{|i_{I})}})^{\dot{*}\}}$

$+2H_{(j_{|hII}}\epsilon_{|AB|}B_{|I|^{A}}B_{k)}B$

$-2\phi_{J^{a}}H_{|h^{1},k)1}\epsilon_{AB}B_{a^{A}}B_{I^{B}}$,

$\partial_{h}(\epsilon_{AB}B_{j^{A}}B_{1}B]=\epsilon_{AB}B_{\dot{*}}^{A}B_{1}^{B}\{J^{i_{h}}\}$

$-(\text{\’{e}}_{AB}B_{*}^{A}B_{j}^{B}-g_{iJ)}H_{h1}^{\dot{l}}$

$+(\epsilon_{AB}B_{I^{A}}B_{1^{B}}-1)H_{jh1}$

$+\text{\’{e}}_{AB}B_{i^{A}}B_{1^{B}}\phi_{j^{i}}L_{I1h}$,

$\partial_{h}(\epsilon_{AB}B_{I^{A}}B_{1^{B}}-1)=-2\epsilon_{AB}B_{i}^{A}B_{1}^{B}H_{hI}^{i}$ ,

in this order. Now, when the functions $g_{ij}$ , $H_{\dot{J}kP}andL_{PQ_{k}a}re$ given so that they
may satisfy the Gauss, Codazzi and Ricci equations, we can solve $(3.4)_{3}$ for $B_{i^{A}}$ and
$B_{I^{A}}$ , and consequently $B_{\mathbb{I}^{A}}$ too. Then, as has been seen above, the conditions
(3.3) to be a $submanifol\grave{d}$ are fulfilled by these solutions throughout the manifold
if we give a set of equations (3.3) at a point $(\xi A)$ under the consideration as the initial
condition, and thus is obtainable our required Kaehlerian submanifold by an
integration of $(3.4)_{1}$ . Hence we have the

Theorem. 2. If the functions $g_{ij},$ $H_{ikP}$ and $L_{PQk}$ satisfying (3.1) and (3.2) are
gzven so that they satisf7 the Gauss, Codazzi, and Ricci equations, then it is alwaysp0ssible to
detemine a $2n$-dimensional Kaehlerian submanifold $K^{2n}(\eta)$ in a given $(2n+2)$-dimensional flat
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Hermitian man.ifold $H^{2n+2}(\xi)$ in such a way that it has those given functions as the fundamental
tensors.

On comparison of the number of the unknown quantities with that of the
arbitrary constants appearing at the integration of those differential equations (3.4),

we can simply say that the Kaehlerian submanifold whose existence is insured by
the above theorem is one that can be determined to within a translation and uni-
tary transformation.

\S 4. Curvatura conditions for isometric imbedding.

The problem we have set up in the preceding paragraph is identical to the
inquiry that given an arbitrary $K^{2n}(\eta 1$ if it is possible to imbed a manifold in $H^{2n+2}(\xi)$

isometrically, and for which it is necessary and sufficiant that $H_{jkP}$ and $L_{POk}$ be
chosen intrinsically in such a way that the Gauss, Codazzi and Ricci equations hold
good together with (3.2).

If we contract the Gauss equations (2.21);

(4.1) $R_{ijkl}=2H_{j(k|P|}H_{|i|l)P}$,

by $g^{jk}$ and take account of (2.13), we have

(4.2) $R_{il}=-g^{a_{b}}H_{aiP}H_{blP}$ ,

Take $2n$-orthogonal ennuple $\lambda^{i}a$ and we have

$g^{i}\ell=\Sigma^{2n}\lambda^{i}\lambda^{\ell}a^{\underline{-}1aa}$

If we multiply the left and right members of (4.2) by the respective members of the

last equality, we have

(4.3) $R=-\sum_{a_{\overline{-}1}}^{2^{\hslash}}b(H\lambda^{i}$] $(H_{bjP}\lambda^{j)}$ ,

from which we find that $R\leqq 0$ because of the positive definiteness of $g^{a_{b}}X_{a}X_{b}$ .
But when $R=0$, we should have

$H_{aiP}\lambda*=0a$

and as $a\lambda^{i}$ are $2n$ independent vectors, we have then

$H_{jkP}=0$,

from which we deduce

$R_{ijk\ell}=0$,
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by the Gauss equations (4.1) Thus we have first of all the
Theorem 3. In order that a non-flat Kaehlenrian manifold $K^{2n}(\eta I$ may be imbedded

isometrically in a flat Hermitian manifold $H^{2n+n}(\xi)$, its scalar curvature $R$ should be negative.
Put (14]

(44) $ L_{ahbk}=2\{H_{a}(h|I|H_{1b^{l}k)I}-H_{a}(h|I|H|b|k)I\}\cdot$

The $nL_{ahbk}$ is symmetric in $a$ and $b,$ $and\cdot anti$-symmetric in $h$ and $k$ . Construct the
quantity

$K_{hk}=-\frac{1}{2}g^{a_{b}}L_{ahbk}$ ,

and we have
(4.5) $K_{\dot{\iota}j}=2g^{ab}H_{a(i|I|}H_{|b_{l}^{I}J)1}$ ,

which shows that $K_{ij}$ is an anti-symmetric tensor and coincides with the right member
of Ricci equations (2.23). By the use of the Codazzi equations (2.22) we can derive

(4.6) $K_{(iJ;k)}=0$,

an $d$ hence it is a necessary condition for $K^{2n}(\eta)$ to be isometrically imbedded in $H^{n+2}(\xi)$.
If we write $K_{hk}$ as
(4.7) $K_{PQhk}=2g^{ab}H_{a(h|P|}H_{|b|k)Q}$ ,

it holds
$K_{(PQ)hk}=0$, $K_{PQ(hk)}=0$ .

Multiplying (4.7) by $H_{diQ}$ and summing up for $Q$ , and summing those three equa-
tions obtained by the cyclic interchange of the letters $i,j$ and $k$, we have

(4.8) $H_{dti|Q|}K_{|PQ|Jk)}=H_{a(i|P1}R_{1d^{1^{a}}\cdot jk)}$ ,

in consequence of the Gauss equations (4.1)

Again multiplying (4.8) by $H_{biP}$ and summing up for $P$, and subtracting from
it the equations obtained by the interchange of the letter $i$ and $j$, we get

(4.9) $L_{aib(j}K_{kl)}=-R_{cbij}(R_{a|.kl)}^{c}$ .

On the other hand (4.8) can be written as
$(Hb_{iI}H_{c(j_{1}I|}-Hb_{i}{}_{1c(j|I|)K_{IIkl)}}H|$

$=H_{biP}H_{a(j|P|}R_{|c|^{a}k\ell)}$ .

Contracting by $g^{b^{c}}$ and summing up those two epuations obtained by the inter-
change of the lettersi andj, we get



ON LOCAL IMBEDDING OF KAEHLERIAN MANIFOLDS ETC. 39

(4. 10) $K_{i^{j}}(L_{|ak|b|l)}=-R_{a.i}^{c}(JR_{|cb|kl)}$ .

Adding (4.10) to (4.9) and multiplying the resulting equations by $-\frac{1}{2}g^{ab}$ we have

(4. 11) $K_{i^{j}}(K_{kl},$ $=\frac{1}{2}R_{b^{a}i(j}R_{|a|.kl)}^{b}$ .

Thus, in order that a $K^{2n}(\eta)$ may be imbedded isometrically in $ H^{2n+2}f\xi$), it is necessary that

there exists an anti-symmetric tensor $K_{iJ}$ satisfying (4.11) (14].

If we multiply the Gauss equations (4.1) by $\phi_{a^{i}}$ and take account of (3.2), or
equivalently, of (2.16), we have

$\phi_{a^{i}}R_{ijkl}=2(H_{j(k|I|}H_{|a|l|I}-H_{j(k|I|}H_{|a|l)I})$ ,

or contrbcting by $g^{Ja}$

$g^{ja}\phi_{a^{i}}R_{ijkl}=2K_{kl}$ .
But as we have $g^{ja}\phi_{a^{j}}=\phi^{ij}$ and also obtain

$\phi^{ij}R_{ijkl}=-2g_{hk}\phi_{a^{h}}R_{\ell}^{a}$

by virtue of (2.11), the above equation becomes
(4.12) $K_{hl}=\phi_{ak}R_{l}^{a}$

Subst tution of this relation into the conditional equations (4.11) gives

(4.13) $R_{b^{a}iJ}(R_{|a|}^{b_{kl)}}=2\phi_{ir}R_{(j}^{f}\phi_{k|s|}R_{l)}^{s}$ .

For the simplification we multiply this by $\phi^{ij}\phi^{kl}$ and using the relations (1.14), (1.22),

(1.23), (1.27) and (2.12), we finally have
$R_{ijk\ell}R^{ijkl}=R^{2}$ ,

as one of the necessary conditions.
As for the condition (4.6) the substitution of (4.12) in (4.6) gives the formula

coinciding with (2.14), which we have obtained for a $2n$-dimensional real analytic
manifold representing an n-dimensional Kaehlerian space. Therefore the condition
(4.6) is already fulfilled from the beginning when we deal with a Kaehlerian mani-
fold. Summarizing the results hitherto we have obtained, we have the

Theorem 4. In order that $a^{\iota}\cdot 2n$-dimensional real analytic manifold $K^{2n}(\eta)$ which is
the real representati0n of an n-dimensional non-flat Kaehlerian space can be imbedded isometri-
ca. $ly$ in a $(2n+2)- d\iota mensional$ real analytical manifold $H^{2n+2}(\xi)$ which is the representati0n of
an $(n+I)$-dimensional ffat Hermitian space, its curvature tensor $R^{\dot{l}}.jkl$ should satisfy

(4.14) $R_{ijkl}R^{ijkl}=R^{2}$ , $R<0$ .
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A Kaehlerian manifold $K^{2n}(\eta I$ is called a manifoId of constant holomorphic
curvature, if the sectional curvature spanned by two vectors $v^{i}$ and $\phi_{j}^{\dot{l}}v^{j}$ is every-
where constant (1], (23], (25], (26], (27]. Its curvature tensor is given by

(4.15) $R_{jk\ell}^{*}=\frac{k}{2}(\delta i_{(\ell}$

where $k$ is an absolute constant. We have then

(4.16) $R_{ij}=\frac{n+1}{2}kg_{ij},$ $R=kn(n+1$ ]

If we substitute (4.15) into (4.14) and make use of $(4.16)$ we get

$R(n-1](n+2)=0$ .
Hence $R$ should vanish for $n\geqq 2$, and $k$ should do so. Thus we have the

Theorm 5. These exists no Kaehlerian manifold $pn(\eta I,$ $n\geqq 2_{\iota}$ of non-vamshing
constant holomorphic curvature which can be imbedded isometrically in a $(2n+2)$-dimensional
flat Hermitian manifold $ H^{2n+2}(\xi$].

It is interesting to compare this fact with the problem to imbed a Riemannian
space of constant curvature in a Euclidean space as its hypersurface. It is well-
known as the theorem of H. Levy (11], L. P. Eisenhart (6] or of the present author
(17] $t$ hat there exists no Riemannian space $V^{n},$ $n>2$, of negativ $e$ constant curvature
which can be regarded as a hypersurface of a Euclidean space, that is, of class one
in the sense of T. Y. Thomas (20], [21].

\S 5. Non-ezistance of parallel submanifolds.

Let us consider the case that $K_{iJ}$ vanishes. Then by (4.12) we should have
$\phi_{ai}R_{J}^{a}=0$, or equivalently

$\phi_{i^{a}}R_{aj}=0$,

and as $|\phi_{i^{a}}|\neq 0$, we have
$R_{aj}=0$,

and consequently $R=0$ . Then by the argument made in the proof of theorm 3, the
space is flat. Thus we have the

Theorem 6. These emsts no Kaehlerian mantfold $ K^{zn}(\eta$] other than ffat one $\theta\ell at$ can
be imbedded isometrically in a flat Hermitian manifold $H^{2n+n}(\xi)$ in such a way that the $fm\prime^{-}$’

tions $K_{*j}$ vanish identically, or in an equivalent sence, both of the members of the Ricci equa-
tious (2.23) vanish.

We shall interpret this fact geometrically. Given a submanifold $M^{2n}(\eta)$ re-
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presenting a given Kaehlerian space, if these exists an another $\prime M^{2n}(\eta)$ having its two

normals in common with $M^{2n}(\eta)$, we say that $\prime M^{2n}(\eta)$ is a parallel submanifold (15].

If we denote by $’\xi A$ th $e$ position vector of the point on $M^{2n}(\eta)$ which corresponds
to a point on $M^{2n}(\eta)$ with the position vector $\xi A’\xi A$ has the form

(5.1) $’\xi A_{=}\xi A+C^{P}B_{P^{A}}$ ,

Then on using the equations of Weingarten the vectors tangent to $M^{zn}(\eta I$ can be
written as

(5.2) $\prime B_{*}^{A}=\partial_{i^{\prime}}\xi A=(\delta_{i^{j}}-C^{P}H_{*P}^{j}$] $B_{j^{A}}$

$+(\partial_{i}C^{P}+C^{Q}L_{QPi})B_{P^{A}}$ .
Sinc $eB_{P^{A}}$ is common to both $M^{2n}(\eta)$ and $\prime M^{2n}(\eta),$ $\prime B_{i}^{A}$ should be orthogonal to $B_{P^{A}}$ ,

and accordingly the second term in the right member of (5.2) vanishes and we have

(5.3) $\prime B_{i^{A}}=(\delta_{i^{j}}-C^{P}H_{iP}^{j}$] $B_{j^{A}}$ ,

(5.4) $\partial_{j}C^{P}+C^{Q}L_{Q_{P}j}=0$.
The condition of integrability for $C^{P},$ $i$ . $e$ .

$\partial_{(i}\partial_{j)}C^{P}=0$

gives

$C^{Q}(\partial_{(i}L_{PO1j)}+L_{RR1(i}L_{|PR^{1}j)})=0$.
or

$C^{Q}L_{QP(i;j)}=0$.
Since $C^{Q}$, ($Q=I$ , II), are independent, we have

(5.5) $L_{PQ(i;j)}=0$,

from which we find that
$K_{ij}=0$.

For (5.5) is nothing but th $e$ left member of th $e$ Ricci equations (2.28) Hence a
necessary and sufficeant condition that a submanifold $ M^{2n}(\eta$] be accompanied by a
parallel submanihold is that $K_{ij}$ vanishes. But as we have proved the theorem 6, we
can state the

Theorem 7. These exists no Kaehlerian manifold $K^{2\hslash}(\eta)$ other than flat one that can
be imbedded isometrically in $H^{2n+2}(\xi)$ in such a way that it is always accompanied by a parallel

submanifold.

To the last, as we have dealt with our local imbedding problcm on manifolds
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of real representation, whose metrics are actually Riemannian. If then so, the ex-
istence of the second fundamental tensor appearing in the theory of submanifolds
can be studied quite in the similar way as is done in the case to imbed a Riemannian
space $V^{n}$ in a Euclidean space $E^{n+2}$, that is, in the case of class two. The latter
problem was studied in detail by M. Matsumoto (14] as the direct generalization of
the computations made by T. Y. Thomas for class one [21]. Then we can repeat
the arguments analogously and have the

Theorem 8. If the rank of the matrix $\Vert K_{\dot{l}}j\Vert$, whose elements satisfy the condition
(4.12), is equal or greater than 4, the second fundameutal tensors $H_{jkP}$ are unique to whithin a
unitary transformation.
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