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1 Introduction

 Let S3 be the unit 3-dimensional sphere in R4 and I be an interval. For

 a 3-dimensional spherical unit speed curve r : I ---> S3 and a given point

 P E S3 - {cMn(s) + fib(s) ls E I, ct2 + 62 = 1} where n(s), b(s) are the

 principal normal vector and the binormal vector of r(s) respectively, we can

 define two kinds of pedal curves naturally. One is the curve obtained by

 mapping s E I to the nearest point from P in the tange'nt great circle to ,r at

 r(s) and another is the curve obtained by mapping,s E I to the nearest point

 from P in the osculating great sphere to r at r(s) . We call the former (resp.

 Iatter) the tangent pedaZ eurve (resp. osculating pedal curve) relative to the

 pedal point P for a 3-dimensional spherieal unit speed curve r and denote it

 Pe,,p (resp. Pe.,t,p)･

    In this paper, we characterize and classify singularities of tangent pedal

 curves in S3 completely. Before stating our results, we introduce seve,ral

 notations. A 3-dimensional spherical unit speed curve is a Coo map r:I - S3

 such that ･'                                                 '

            dr d2r x           11ziT,(S)ll=1, d,,(s)+r(s)i7!!O (foranysGI).

 The above two conditions for a 3-dimensional spherical unit speed curve r'

 is not an essential restriction, since by using Thom transversality theorem

 (for instance, see [4]), for any eOO immersion r:I - S3 we can obtain a

 sufficiently near COO map i in COO(I,S3) with Whitney Coo topology such

 that ' ･      gs2itF(s),[:tl(s) and il(s) dre iineariy independent (for any s E i);'
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and the so-called are length parameter gives us a Coo diffeomorphism h:I -->

I such that

  "d(ilz,h-i)(,)ll=1, d2(ildO,,h-i)(s)+EFoh-i(s)"s'o (foranysEI)･

                                   '
For a 3-dimensional spherical unit speed curve r, we put .

                t(s)-=[l÷/(s)･ "(s)=iit[/ii#.[i]lr.:iii

'I"hese are called the tangent vectoT and the principqg normag vector respec-

tively. We see easily that the vector t(s) is･perpendicular to r(s) and the

vector n(s) is perpendicular to both of r(s), t(s) (see g2). Let b(s) be the

unique unit vector which is perpendicular to all of r(s), t(s) n(s) and such

that det(r(s)t(s),n(s),b(s)) : 1. The vector b(s) is called the binormal

veetor. The map b:I --> S3, which is called the duag of r, seems to be

relatively well understood (for instance, see [1], [3], [7]). Furthermore, the

singularsurface ' ,                {ctn(s) + ,6b(s) Is E I, ct2 + ,(32 == 1},

which is ealled the duag su7:face of r, seems to be started to study recently

([6]). We let et(,),.(,) be the great circle (1-dimensionalLsphere) of S3 whose

elements are perpendicular to both oft(s) and n(s).

   The main result of this paper is the following.

Theorem 1 Let r:I --> S3 be a 3-dimensional sphertcal unit speed curve.

Let P be a point of S3 - {orn(s) +fib(s) ls E I, a2+62 == 1}. Then the

fbllowing hold.

  1. .lf P E S3 --- ()lt(.,),.(.,) ---- {ctn(s) + i(3b(s) 1 s E I, at2 + ,(32 = 1}, then

     the map-germ Pe.,p : (I,so) --> S3 is Coo right-gefZ equivagent to the

     m(mp-germ given by s H (s,O,O).

  2･ 1[f P E Ct(s,),n(s,) - {±b(so)}, then the map-germ Pe,,p:(I,so) - S3
     is Cco right-lofZ equivalent to the map-germ given by s H (s2, s3, O).

Here, two map-germs f,g:(R,O) - (R3,O) are said to be COO rtght-lofZ

equivalent if there exist germs of Coo diffeomorphisms hi : (R,O) ---> (R,O)

and h2: (R3, O) --> (R3, O) such that the identity g == h2 o f o hii satisfies.

   By theorem 1, we see that singularities of the tangent pedal curve fbr

a 3-dimensional spherical unit speed curve r are strongly restricted and no
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infiuences of the geodesic torsion of r occur (for the definition of the geodesic

torsion, see g2).

   The Serret-Frenet type formula for a 3-dimensional spherical unit speed

curve, an explicit formula for Pe.,p and a lemma for the proof of theorem 3

are given in g2. In S3, theorem 1 will be proved.

   The author wishes to thank S. Izumiya for sending [5] and Itoh's master

thesis (see [6]). .   Plans of this paper have been elaborated while the author was staying at

Ren'nes in 2005. He would Iike to show his sincere gratitude to K. Bekka and

department of mathematics at Rennes for their hospitality.

2 Serret-Frenettypeformulaandanapplica-
    tion of it

For two 4-dimensional vectors x = (xi,x2,x3,x4) and y == (yi,y2,y3,y4), let

x･y be the standard scalar product.

                 X'Y = XIYI + X2Y2 + X3Y3 + X4Y4･

For any Coo map f:I. R", f':I - Rn means the first derivative of f.

   Since r(s)'･r(s) = 1, we seethat r(s)･t(s) == O. Thus,t(s) is perpendicular

to r(s). Since r(s)･t(s) == O, we $ee'that r(s)･t'(s)+1 = O. Thus, n(s),which

is the normalized vector oft'(s) +r(s), is perpendicular to r(s). Furthermore,

sincet(s)･t(s) = 1, we have thatt(s)･t'(s) == O. Thus,t(s)･(t'(s)+r(s)) = O,

which implJ'es that n(s) is perpendicular to t(s).

   By the above argument, we see that {r(s), t(s), n(s), b(s)} is an or-

thogonal moving frame, which is called Saban frame of r.

   Next, we put

             rcg(s) = 11tt(s)+r(s)l17

             7"b(S) = K,(ls)2det(r(s),r'(6),r"(s),r'"(s)).

These are called geodesic eurvature, geodesic torsion of r at s respectively.

Then, we have the following Serret-Frenet type formula .

Lemma 2.1

         r'(s) O-1 O O r(s)
         t'(s) m -1 O,rcg(s) O t(s)
         n'(s) O-Kg(s) O 7b(s) n(s) '
         b'(s) o O -fo(s) O b(s)
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                                                    '                                     '                '
By lemma 2.1 we see that the dual b is non-singular at s if and only if

7(s) l O.

Proofoflemma2.1 Weput ' ,.
        '   ･ n'(s) = air(s) + bit(s) +ein(s) + dib(s).

and we shgw that ai =O, bi =-Kg(s), ci == O, di =7g(S)･ '
   Since r(s)･n(s) == O, we have that r(s)･n'(s) == O. Thus, ai = O.
Since n(s)･n(s) F 1, we have that n(s)･n'(s) = O. Thus, ci = O. Since
t(s)･n(s) == O, we have that t'(s)･n(s) -Ft(s)･n'(s) == O. Thus, K,(s) +bi == O.

Finally,

                                  '                                                        '                                             '                                   ' 7'b(S) = rcg(ls)2det(r(s),rt(s),rtt(s),rttt(s)) ,. . ,

      = Kg(ls)2 det(r(s),t(s),ttg(s)n(s) -r(s),itg(s)n(s) + ttgnt(s) -t(s))

      ==. .,(1,), det(r(s),tgs),tc,(s)n(s),K,(6)n'(s))

      = det(r(s),t(s),n(s),dib(s)) , ,
      ,= dl･
              '                 '
   Next, we put '
              b'(s) - a2r(s) + b2t(s) + c2n(s) + d2b(s).

andweshowthata2=O,b2=:O,c2==-7g(s),d2==O･ ,
   Since r(s)･b(s) =: O, we have that r(s)･b'(s) = O. Thus, a2.='O.
tS(i2)Ce. bb((,S)).L}}(,S&,,=hg",Wteh.htaVe that b(s)'n'(s) = O･ Thus, d2 = o. since

                                   '
                ･ O - t'(s)･b(s)+t(s)･b'(s)

                     = t(s)･b'(s) == b2.

Finally, since n(s) ･b(s) = O, we have that

         ･ O = n'(s)･b(s)+n(s)･b'(s)
                     == 7g(S)+C2. ,

          , q.e.d                                                         c

Lemma 2.2' ,
    Per,p(S) = (p.i(,))i+(p.t(,)),((P･r(s))r(s)+(P･t(s))t(s))
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Proof of gemma 2.2 For any s E I, by subtracting (P･n(s))n(s) + (P･
b(s))b(s) from P we obtain the vector

   P - (P･n(s))n(s) - (P･b(s))b(s) - (P･r(s))r(s) + (P･t(s))t(s)

in R4 which is positive scalar multiple of Pe.,p(s). Normalizing this vector

gives the right hand side of the formula in lemma 2.2, which must be the

vector Pe.,p(s). q.e.d
By this formula, we can characterize singularities ofthe tangent pedal curve

relative to P as follows.

Lemma 2.3
                 Pei,p(s) =O <==S>PECXt(s),n(s)･

Proof of Zemma 2.3 By using lemma 2.1, we have

         ((P ･r(s))2 + (P ･t(s))2)' - 2rc,(s)(P ･t(s))(P･n(s))

and'

             '((l)･r(s))r(s) + (P･t(s))t(s))' = K,(s)(P･n(s))t(s) + tc,(s)(P･t(s))n(s).

                              '
Thus, simple calculations show

Peie(S) = ((p .(,))2rcl(i)p t(,)),)i (6r(s)r(s) + Ct(s)t(s) + c.(s)n(s)),

where C,(s) =-(P･r(s))(P･t(s))(P･n(s)), 6t(s) == (P･r(s))2(P･n(s)) and

6.(s) - ((P･r(s))2+(P･t(s))2)(P･t(s)). Since P E S3-{cMn(s)+6b(s) 1s E

I, a2+ 62 == 1}, we see that (P･r(s))2+ (P･t(s))2 71 O. Thus, by the above

calculationsweseethatPel,p(s)==OifandonlyifPECt(,),.(.). q.e.d

   Let so be an element of I. We put

                 g(s) = (P･t(s + so),P･n(s + so)),

for any sEIsuch that s+ so G I. Let 6ri, 82 be the set of all Cco function-

germs (R,so) - R, (R2,g(so)) --> R respectively. We furthermore let m2

be the subset of 82 consisting of all function-germs with zero cbn$tant terms.

Then, g'nz2Si is an 8i-submodule of Ei and we would like to consider the

following quotient 8i module: '

                              Sl .

                            9'M2Sl
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Lemma 2.4 FbrPe,,p(s+ so), the following hold.

                                ''

  1. Pekp(s+so)･r(s+so) =e.

      '                         '
  2. Pekp(s + so) ･t(s + so) G g*m28i･

  3. Pei,p(is + so)･n(s + so) E g'nz2Si

  4. Pe'. p(s + so)･b(s + so) E 9'M2Si

       ) /.                    '         '
  5･ PeiLp(s + so) ･r(s + so) E g'm28i

                                                 '         '
  6･ Pe',',p(s + so)'t(s + so) + g*m2Si = fo(s + so)(P･r(s + so))2(P･b(s +

    So))+9*M2Sl ･ ' .
                                              '              '
  7 PeiLp(s + so)･n(s + so) + g'm28i = -P･r(s + so)3 + g*m2Si

                 '      '

  8. PeiLp(s + so)･b(s + so) E g*7n2Ei

                                       '
  9. PeKp(s + so) ･t(s + so) + g*m2Si =: rc,(s + so)(P･r(s + so))3 + g'm2Si

                                                  '                                      '          '                       '
Proof of gemma 2.4 Since {r,t,n,b} is an orthogonal moving frame, we

see that the proof of lemma 2.3 shows that 1-4 of Iemma 2.4 hold. Further

calculationsbyusinglemma2.1showthat5-9oflemma2.4hold. q.e.d

                        '
  '

3Proofoftheoreml ･ . ''
                                              '         '
[Proof of 1]            By lemma 2.3, Pei,p(so) 4 O in this case. Thus, the map-
germ Pe,,p(so) is non-singular and by the rank theorem ([2]) the result holds.

                                    '[Proofof2] ByasuitablerotationofS3wemayassumethatr(so)=
(1,O,O,O), t(so) == (O,1,O,O), n(so) == (O,O,1,O) and b(so) = (O,O,O,1).
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Then, by lemma 2.4 we may put

                                 a + a3(s)
    pe.,p(s+so).. g"Zg(S+So)a2bt22iE,S,K¥(2igt(,s)o)a3s3+cu4(s)

                                   or3(S)

where a = (P･r(so)), b = (P･b(so)) and ori, 6i, tyi : (R,O) -->

eertain eOO function--germs which satisfy ddfe.li(O) == kk.{i(O) = {i.ce-, (o)

k Si- 1. Note that a f O in the case of 2 of theorem 1.

'

(R,O) are

  == O for

   Let £i be the set of all COO function germs with one variable (R, O) . R,
mi be its subset consisting of all function-germs with zero constant' .terms.

Then, nz?8i is a finitely generated 8i-module. We put f(s) == s2 and apply

the Malgrange preparation theorem (for instance, see [2], [4], [8]) to m?Si and

f. Then we see that for any function-germ g E m?Ei there exists a certain

Coo function-germ th such that

                        g(s) = V(s2,s3).

                                  Li
Thus, for the map-germ Pe.,p : (l,so) - S3 there exists a germ of COO

diffeomorphism ht : (S3, Pe.,p(so)) - (R3, O) such that

                  ht o Pe.,p(s + so) == (s2, s3, o).

q.e.d
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