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1 Introduction

Let S® be the unit 3-dimensional sphere in R* and I be an interval. For -
a 3-dimensional spherical unit speed curve r : I — 53 and a given point
P e 83— {an(s)+ Bb(s) | s € I, a® + 32 = 1} where n(s), b(s) are the
principal normal vector and the binormal vector of r(s) respectively, we can
define two kinds of pedal curves naturally. One is the curve obtained by
mapping s € I to the nearest point from P in the tangent great circle to r at
r(s) and another is the curve obtained by mapping s € 1 to the nearest point
from P in the osculating great sphere to r at r(s) . We call the former (resp.

latter) the tangent pedal curve (resp. osculating pedal curve) relative to the
pedal point P for a 3-dimensional spherical unit speed curve r and denote it
Pe, p (resp. Pecy p).

In this paper, we characterize and classify singularities of tangent pedal
curves in S® completely. Before stating our results, we introduce several
notations. A 3-dimensional spherical unit speed curveis a C™ mapr : I— 83
such that

|| (s)H —1 gzg(s) +r(s) #0 \ (for any s'€ I).

The above two conditions for a 3-dimensional spherical unit speed curve r

~ is not an essential restriction, since by using Thom transversality theorem
~ (for instance, see [4]), for any C*° immersion r : I — S% we can obtain a
sufficiently near C'* map T in C°°(I S%) with Whitney C* topology such
that

- |
gs—g(s), j—i(s) and T(s) are linearly independent (for any s € );
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and the so-called arc length parameter gives us a C* diffeomorphism A : [ —
I such that

d(Toh™! &2(F o b1 R
H——“—“‘_( To )(3)”:1, _(d,92 )(8)+roh '(s) #0 (for any s € I).

For a 3-dimensional spherical unit speed curve r, we put

_ % +rx(s)
N EAORSO1N

These are called the tangent vector and the principal normal vector respec-
tively. We see easily that the vector t(s) is perpendicular to r(s) and the
vector n(s) is perpendicular to both of r(s), t(s) (see §2). Let b(s) be the
unique unit vector which is perpendicular to all of r(s), t(s) n(s) and such
that det(r(s) t(s),n(s),b(s)) = 1.. The vector b(s) is called the binormal
‘vector. The map b : I — S3, which is called the dual of r, seems to be
relatively well understood (for instance, see [1], [3], [7]). Furthermore, the
singular surface ' ’

o(s) = 2=(s), (s

{an(s) + Bb(s) | s € I, o + 3 =1},

which is called the dual surface of r, seems to be started to study recently
([6]). We let Cy(syn(s) be the great circle (1-dimensional sphere) of S* whose
elements are perpendicular to both of t(s) and n(s).

The main result of this paper is the following.

Theorem 1 Letr : I — S3 be a 3-dimensional spherical unit speed ’burve.
Let P be a point of S® — {an(s) + Bb(s) | s € I, a® + B2 = 1}. Then the
following hold.

1. IfP e 53 Ce(so).n(so) — {om(s) + Bb(s) | s € I, a* + % = 1}, then
the map-germ Pe.p : (I,50) — S is C® right-left equivalent to the
map-germ given by s — (s,0,0).

2. If P € Cyso)n(so) — 1Eb(s0)}, then the map-germ Peyp : (I,s0) — S°
is O right-left equivalent to the map-germ given by s — (2, 5%,0).

Here, two map-germs f,g : (R,0) — (R3,0) are said to be C*® right-left
equivalent if there exist germs of C* diffeomorphisms k; : (R,0) — (R,0)
and hy : (R%,0) — (R?,0) such that the identity g = hyo f o h]' satisfies.

" By theorem 1, we see that singularities of the tangent pedal curve for
a 3—dimensiona1 spherical unit speed curve r are strongly restricted and no
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influences of the geodesic torsion of r occur (for the definition of the geodesic
torsion, see §2).

The Serret-Frenet type formula for a 3-dimensional spherical unit speed
~curve, an explicit formula for Pe, p and a lemma for the proof of theorem 3
are given in §2. In §3, theorem 1 will be proved.

The author wishes to thank S. Izumiya for sending [5] and Itoh’s master
thesis (see [6]). o

Plans of this paper have been elaborated while the author was staying at
Rennes in 2005. He would like to show his sincere gratitude to K. Bekka and
department of mathematics at Rennes for their hospitality.

2 Serret-Frenet type formula and an applica-
tion of it | |

For two 4-dimensional vectors x = (21, Z2, %3, Z4) and y = (¥1,Y2,¥3,%4), let
X -y be the standard scalar product.

XY = Z1Y1 + Toy2 + T3Ys + TaYs-

For any C*® map f: I — R", f': I — R™ means the first derivative of f.

Since r(s)-r(s) = 1, we see that r(s)-t(s) = 0. Thus, t(s) is perpendicular
to r(s). Since r(s)-t(s) = 0, we see that r(s)-t/(s)+1 = 0. Thus, n(s), which
is the normalized vector of t'(s)+r(s), is perpendicular to r(s). Furthermore,
since t(s)-t(s) = 1, we have that t(s)-t'(s) = 0. Thus, t(s)-(t'(s)+r(s)) =0,
which implies that n(s) is perpendicular to t(s). . E

By the above argument, we see that {r(s), t(s), n(s), b(s)} is an or-
thogonal moving frame, which is called Saban frame of r.

Next, we put ,
rg(s) = [[t(s) +r(s)],
r(s) = ﬁdet(r(s),r'(s),r”(s),r”’(s)).

These are called geodesic curvature, geodesic torsion of T at s respectively.
Then, we have the following Serret-Frenet type formula .

Lemma 2.1

(s) \ 0 1 0 0 r(s)
t(s) | | =1 0  gs) O t(s)
n'(s) | | 0 —ke(s) 0 7ys) n(s)

b’(s) | ‘0 0 —T4(8) O b(s)
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By lemma 2.1 we see that the dual b is non-smgular at s if and only if
7(s) # 0.
Proof of lemma 2.1 We put

n'(s) = air(s) + bit(s) + cin(s) + dib(s).

and we show that a1 =0, by = —k,4(s), c1 =0, di = 7,(s).

Since r(s) - n(s) = 0, we have that r(s) - n'(s) = 0. Thus, a; = 0.
Since n(s) - n(s) = 1, we have that n(s) - n’(s) = 0. Thus, ¢; = 0. Since
t(s) -n(s) = 0, we have that t'(s)-n(s)+1t(s)-n'(s) = 0. Thus, x4(s)+b; = 0.
Finally,

(s) = GeA(r(), (6, (), (6)
= o (9, (8), Ry (9)n(s) = £(s), Ky (5)n(s) + on'(s) —4(5))
e CORCRFOLONAOLION
= det(r(s),t(s),n(s),dib(s))
= dl-

Next, we put
b'(s) = asr(s) + bat(s) + con(s) + dsb(s).
and we show that a; — 0, by =0, cg = ¥Tg(8), dy=0.

Since r(s) - b(s) = 0, we have that r(s) - b’(s) = 0. Thus, a; = 0.
Since b(s) - b(s) = 1, we have that b(s) -n’(s) = 0. Thus, d; = 0. Since
t(s) - b(s) = 0, we have that '

0 = t'(s)-b(s) +t(s) - b'(s)
= t(s)-b'(s) = ba.
Finally, since n(s) - b(s) = 0, we have that
0 = n'(s)-b(s)+n(s)-b'(s)
= T4(8) + ca.
q.e.d
Lemma 2.2

1
Pe,.,p (S) =

N EROEI T O)

(P x(s))r(s) + (P -4(s))t(s))



Singularities of tangent pedal curves in S? 47

Proof of lemma 2.2 For any s € I, by subtracting_ (P -n(s))n(s) + (P -
b(s))b(s) from P we obtain the vector |

P — (P -n(s))n(s) — (P - b(s))b(s) = (P f(S))r(S) (P t()t(s)

in R4 which is positive scalar multiple of Pe, p(s). Normalizing this vector
gives the right hand side of the formula in lemma 2.2, which must be the
vector Pe, p(s). o q.e.d

By this formula, we can characterize singularities of the tangent pedal curve
- relative to P as follows.

Lerhma 2.3 :
' Pe;)p(s) =0 <<= Pc Ot(s),n(s)-

Proof of lemma 2.3 By using lemma 2.1, we ‘hvave
((P-x(s))* + (P~ t(S))?)’ = 264(s)(P - t(s))(P - n(s))
and | | |
(P r(9)r(s) + (P -t(s)t(s)) = rg(8)(P - 1(s))t(s) + rg(s) (P - t(s))n(s).

Thus, simple calculations show -

/ fig(8) | | N
Pe_ p(s) = ' = | &(s)r(s +(8)t(s a(s)n(s)},
() @+ (P (&()x(s) + &ls)t(s) + Enls)n(s))
where &(s) = —(P-x(s))(P-4())(P-n(s)), &(s) = (P-x(s))*(P -n(s)) and
£q(8) = ((P-x(8))%2+(P-t(s))?)(P-t(s)). Since P € 83— {an(s)+6b(s) | s €
I, a®+ %2 =1}, we see that (P -1(s))2 + (P -t(s))? # 0. Thus, by the above
calculations we see that Pe| p(s) = 0 if and only if P € Cy(g) n(s)- q.e.d

Le’t So be an element of 1. We put
(P(S) - (P : t(s + 50)’P ' H(S'f}— 30)):

for any s € 1 such that s+ sg € 1. Let &, & be the set of all C*° function-
germs (R, s0) — R, (R?,¢(s0)) — R respectively. We furthermore let my
~ be the subset of & consisting of all function-germs with zero constant terms.
Then, ¢*me&; is an &-submodule of & and we would like to consider the
following quotient & module:

&
p*may
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Lemma 2.4 For Pe, p(s+ sp), the following hold.

1. Pe, p(s+80) -r(s+ s0) =0.

2. Pe, p(s+50) -t(s+ 50) € p*maé&;.
3. Pe, p(s+s0) -n(s + So) € ©*ma€y
4. Pel p(s+50) -b(s+ 50) E Y*maéy
5. Pelp(s+50) -x(s+50) € p*ma&s

6. Pe! n(s+50)-t(s+s0) + ¢ mgé'l = Tg(s + 50)(P-1(s+ 80))*(P-b(s +
So)) to "ma&y

7. Pe] p(s + s0) - n(s + o) + @*maE = —P (s + 50)3 + ¢*ma&
8. Peg p(s+50) -b(s+ s0) € p*ma&y
9. Pelp(s+ s0) - t(s+ s0) + ¢ ma€y = Kg(s + 50) (P - r(s+50))° + ¢*may

Proof of lemma 2.4 8Since {r,t,n,b} is an orthogonal moving frame, we
see that the proof of lemma 2.3 shows that 1-4 of lemma 2.4 hold. Further
calculations by using lemma 2.1 show that 5-9 of lemma 2.4 hold. q.e.d

3 Proof of theorem 1

[Proof of 1] By lemma 2.3, Pe] p(so) # 0 in this case. Thus, the map-
germ Pe, p(8¢) is non-singular and by the rank theorem ([2]) the result holds.
q.e.d : '

[Proof of 2] By a suitable rotation of S® we may assume that r(sy) =
(1,0,0,0), t(so) = (0,1,0,0), n(sp) = (0 0,1,0) and b(sp) = (0 0,0,1).
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Then, by lemma 2.4 we may put

a + az(s)
274(s + s0)a’bs? + il Lka(s + 80)a®s® + ay(s)
—1a®s +,83(s) ’
Ya(8)

where a = (P - r(sp)), b = (P - b(so)) and a;, G, % | (R,0) — (R,0) are
certain C'*° function-germs which satisfy £ a % (0) = ‘ﬁls% (0) = ﬁ(0) = 0 for
k <% —1. Note that a # 0 in the case of 2 of theorem 1.

Let & be the set of all C*° function germs with one variable (R, 0) — R,
'y be its subset consisting of all function-germs with zero constantlterms.
Then, m3&, is a finitely generated £-module. We put f(s) = s and apply
the Malgrange preparation theorem (for instance, see (2], [4], [8]) to m3&; and
f. Then we see that for any function-germ g € m3&; there exists a certain
C* function-germ 1) such that

9(s) =¥(s%,8%).
j
Thus, for the map-germ Pe,p : (I,8)) — S there exists a germ of C*®

diffeomorphism A : (S°, Per p(s0)) — (R?,0) such that

Per,P(s + SO) -

hi o Pey p(s+ 89) = (s%,5°,0).

q.e.d
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