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Abstract

First, the three dimensional precise simulation method

for biped robot has been proposed, which is the exten-
sion of the open link manipulator simulation method
and the contact simulation method of rigid body me-
chanics. The proposed simulation model can be said to
be mathematically exact, thus this approach enables the
essential investigation for control algorithms of biped
locomotion. This approach has advantages in the less
cost compared with the experimental demonstration.

Second, the autonomous walking control with hier-
archical structure has been proposed in which three di-
mensional inverted pendulum model is considered as
the motion of gravity center, and the tip position of
non-support leg are controlled autonomously. Both of
references can be simultaneously transformed to the joint
space reference, then they are accurately realized by the
robust-servo controller.

Third, the proposed walking control is investigated
by the proposed simulation method, and the stable walk-
ing motion is confirmed.

1 Introduction

The biped locomotion is necessary for future hu-
man type robots when robots work in the human-life
space. Besides the practical aspects, the nonlinearlity
and unstability are also interesting from the viewpoint
of control theory.

A large number of control schemes of biped walk-
ing have been proposed and have been experimentally
demonstrated®I”], There are, however, unknown dis-
turbances in the experiments, which makes it difficult
to inspect these algorithm’s effectiveness. Such a com-
plex control algorithm should be firstly inspected by
a precise simulation with an ideal environment. Af-
ter that, the control method should be extended to
real robots. This approach takes the less cost than
experimental trial-and-error and it enables a control
algorithm to be furtherly refined.

In some previous works, simple simulation models
have been considered!"?]. They are, however, planar
link models and the constraints to the ground are under
the assumptions of no slipping and no impact reaction.
These simplifications cause substantial loss of stability
phenomena of the practical biped locomotion, which
results in a wide gap between simulation results and
experimental results.

On the other hand, very complex simulation method
including joint compliance have proposedm. That model,
however, seems too complex to investigate the funda-
mental of walking control.

In this paper, we propose a novel precise digital
simulation method based on a combination of a gen-
eral manipulator simulation®? and a contact simu-
lation of rigid body mechanics**. In this method,
3-dimensional contact to the ground is expressed as
impact reaction, the constrained motion of which be-
comes more real than the simple model and more ideal
than the complex model. Using this precise simula-
tion model, we have proposed a new walking control
algorithm including on-line type autonomous motion
design and robust-servo based motion control.

2 Simulation Scheme

2.1 Dynamics of Free-falling Manipula-
tor

A biped robot is considered as a free-fall manipu-
lator which does not have fixed-point but has interac-
tion to the ground. A dynamics simulation scheme of a
free-fall manipulator can be easily obtained from an ex-
pansion of general manipulator simulation schemel?l.

In order to express states of posture (3DOF of posi-
tion and 3DOF of rotation), virtual links with no-mass
and no-length are added on the base link of manipula-
tor as shown in Fig.1. Using the joint angles (3DOF)
and the base position (3DOF) of the virtual links, we
can deal with total 6DOF states of the posture of the
robot. This expression of 6DOF states is simpler than
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the another approach, for example, using position of
center of gravity.

The global motion dynamics can be expressed as
follows,

H(xz)t+b u+ K(x)f gxr (1)
b = C(z,2)x +G(x)

Here, z7 = [pl,q"],u” = [fOT,TT], and another pa-
rameters are,

Do : 3x1 vector specifying position of
virtual base link
q : (IN+3) x 1 vector specifying angular

of joints including virtual ones

H(x) (N +6) x (N + 6) inertia matrix
fo : 3x1 force vector generated in virtual
base link
T : (IV+43) x 1 torque vector generated by
actuator
C(x,x) (N +6) x (N +6) matrix specifying
centrifugal and Coriolis effects
G(x) : (N+6) x 1 vector specifying gravity
effect
K(x) (N+46) x 2M transformer matrix from

external forces to state forces
Ffexr © 2M x 1 vector of external forces;

a contact point produces two kind of
forces, vertical and horizontal to the
ground.

N number of real joints

M : number of contact point;
time-dependent

In order to simulate above dynamics, we integrate
(1) about & numerically, after solving (1) for the accel-
erations given x, &, and the input u? = [ 07 77 ].
H (x) and b can be obtained by inverse dynamics cal-
culation using Newton-Euler formulation[lgl, that is,
given , « and & solve for u.

In fact, H(x) can be calculated by solving inverse
dynamics with setting = to the current state, & = e;,
and ignoring centrifugal and Coriolis forces, gravity ef-
fects, external forces!™., Here, e; means an unit vector
with its jth element equal to 1 and others are 0. The
solution about u corresponds to the jth column of H.
The biasing vector b can be also computed by setting
x=0.

The inverse dynamics can be calculated by follow-
ing recursive equations!*®). The angular velocity and
acceleration of virtual base link wg, wq are equal to 0
because they are constantly parallel with the ground,
then the angular velocity w;, the angular acceleration
w;, the acceleration of the origin p,, the acceleration of

Figure 1: Virtual links.

the center of mass #;, the total force F';, and the total
moment IN; of the ith link can be recurrently obtained
as follows, when Py, i, ¢; and g; are given.

wp = wp=0 (2)
w; = wi-1+2i-1¢; (3)
w; = wi1+t2i1§+wi1 X2z 1¢; (4)
Py = wixp;twix(w;xp;)+h_; (5)
i = wi X8 +w; X (w;Xs)+P; (6)
F, = m;r; (7)
N;, = Jw+wx (Jw;) (8)

Here, p; denotes p; — p;_;, z; denotes the direction
of the joint 7 + 1, and s; denotes the center of mass
with respect to the origin of link ¢ coordinates. The
gravity effect can be considered by adding a gravity
acceleration on P, the acceleration of the virtual base
link.

Then, f; and n;, the force and moment exerted on
link ¢ by link ¢ — 1, and the torque on ith joint 7; can
be calculated as follows,

fi = Fitfin+ Y wifexy; (9)
JEM;

n; = N;+n;+ (p,-_l - 7‘@) x fi (10)
+(@; — 7)) X iy

i = zi-1-n;— Dig; (11)

Here, fext; is the jth external force, u; is its direc-
tion as shown in Fig.2, M; is a set of index number
of external forces which are imposed on link i, and D;
is the viscous damping coefficient of joint i. As a re-
sult, we can obtain the virtual force f, and the joint
torque 7T given x, &, and &. Above equations can be
efficiently calculated by denoting the parameter of link
1 with respect to link ¢ + 1 coordinates?!.
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Figure 2: Directions of external forces.

2.2 Calculation of Constrained Force

In order to support the biped robot on the ground,
the appropriate reaction forces from the ground should
be determined at each time step in the simulation. In
this paper, only impact forces between the foot and the
ground are considered as the interaction forces. In gen-
eral, springs and dampers model at the contact points
are introduced as such a collision interaction. That
simulation model, however, requires more shorter time
step than the mechanical system itself does. Therefore
we introduce a plastic collision modelm], which is the
kinetic energy minimization satisfying some constrains
and inequalities. In the motion equation (1), the ex-
ternal forces fpyxr play the role of Lagrange multipli-
ers. Thus, the main purpose is to solve f gy fulfill-
ing appropriate conditions. In addition, a motion with
the continuous plastic collision behaves an exact ideal
constrained motion, then the biped robot can be sup-
ported by considering only plastic collision forces as
the reaction forces.

When the external impulsive force Af are imposed
in the system (1), the following equation is realized.

H(a)(&s — @) = K@) Af + Af,  (12)

Here, ©; and x_ denote the velocity after the col-
lision and before the collision, respectively. Af, de-
notes the uncontrollable impulse force, that is, Af, ~
(u — b(x,x_))At. Thus, the kinetic energy after the
collision can be calculated as follows,

1 1 1
§¢£H¢+ = §¢TH9';, + 5AfTKTH*KAf

+(@- + H'Af)TKAf + SAff H'Af, (13)
The plastic collision is defined as the energy minimiza-
tion with given conditions. Therefore, impact force

Af can be obtained by solving the following quadratic
programming (QP) problem.

minimize

%AfTKTHflKAf

+@_ + H 'Af)"KAf (14)
Afn; >0 (15)
—pAfni < Afpi < pAfn; - (16)

Here, Afn; and Afp; denote the vertical force and the
friction force on the ith contact point, respectively. In
advance, K can be obtained by solving inverse dynam-
ics with setting @ and & to its current state, fpxr =
ej, £ = 0, and ignoring gravity effects and centrifu-
gal and Coriolis effects. The direction of contact force
u; in (9) is determined to the vertical, if it is vertical
force, or the projection of velocity of contact point onto
the ground plane, if it is friction force. The assump-
tion that the direction of friction force corresponds to
the projection of velocity onto the ground is usually
adequate if the time step is enough short. Thus, we
can deal with a 3-dimensional Coulomb friction prob-
lem (usually it becomes quadratic condition, Af7,. +
Afy, < B*AfR;) as linear condition (16), that is suit-
able for mathematical programming problems. The
condition (15) indicates that the vertical force is phys-
ically nonnegative.

Using the complementary pivot methods'™* to solve
this QP problem each time step, we can simulate the
biped robot motion (1) with its solution of constrained
force Af.

subject to

(15]

Characteristics of Solution The solution of QP
problem (14) with conditions (15) and (16) satisfy the
following necessary and sufficient conditions (Kuhn-
Tucker conditions).

Afyg =2 0 (17)

kyi &y > 0 (18)

Afji kg & = 0 (19)

wAfn: > |Afgl o (20)

Afp; kp; &y <0 (21)

(1 AfNi — |AfE4l) k’;z zp = 0 (22)

Here, Af* denotes the optimal solution. AfX, and
Af s, denote ith solutions of vertical force and friction
force, respectively.

The conditions (17)—(19) are related to vertical force.
(17) corresponds to a non-negative condition of verti-
cal force, and (18) is equal to a non-negative condi-
tion of vertical velocity at the contact point (kx; &4
expresses the vertical velocity due to the principle of
virtual work). (19) means that the vertical velocity at
the contact point becomes zero if the vertical force is
not zero.

The conditions (20)—(22) are related to friction force.
(20) corresponds to a friction condition, and (21) shows
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that the friction force turns to opposite direction to the
horizontal velocity at the contact point. (22) means
that the friction condition becomes active (JAff,;| =
w Afx;) if the contact point slips. If the friction con-
dition is not active (|Afp;| < p Afx;), the horizontal
velocity at the contact point becomes zero.

From these conditions, it is confirmed that the plas-
tic collision force realizes the ideal constrained motion.

3 Control System for Autonomous

Walking

In order to control a non-linear system such as a
biped walking robot, we need to know its dynamical be-
havior and to calculate the interference torque among
the joints. In the field of robot manipulator control, the
on-line control scheme called computed torque method
has been proposed[w], in which the interference torque
among other joints can be estimated using the inverse
dynamics calculation. It takes, however, much calcu-
lation cost and is not suitable for on-line control.

On the other hand, robust-servo based manipulator
control scheme has been proposed[ﬁ], which can com-
pensate the interference torque as a local disturbance
using disturbance observer. As the results, only the
kinematics is taken into account in the motion con-
troller and it takes the less calculation cost than com-
puted torque method. Moreover, it has good perfor-
mance against payload changes.

In this paper, such a robust-servo control is applied
to each joint of a biped walking robot. The joint-space
reference is transformed from work-space reference us-
ing resolved motion rate method®.. Then, the global
system is autonomously stabilized by work-space refer-
ence generator. The proposed control method has the
hierarchical structure.

3.1 Bottom Level : Robust-servo

We have proposed a robust-servo control method
based on a combination of two-degree-of-freedom con-
trol and sliding mode control'® which has an ad-
vantage in the robustness against a disturbance, com-
pared with conventional sliding mode control” or dis-
turbance observer based robust controll®l.

The configuration of this servo-system is shown in
Fig.3. Here, u, r, y, and d are the controller’s output,
the command input, the plant’s output, and the distur-
bance, respectively. P(s) and P,(s) denote the plant
and its nominal system. S(s) denotes free-parameter
which corresponds to the sensitivity function of the
disturbance.

Plant State

lr

Sliding Mode

r =

Controller

Figure 3: Configuration of 2DOF control system with
sliding mode.

In a case of DC servo motor control, the plant sys-
tem can be regarded as a following 2nd order system.

K
Y= m(u —d) (23)

The global system controlled by the proposed method
follows the next 1st order dynamics[w].

c _ K,

P TGt 0 T,S(s)d' (24)

y:

Here, T denotes the switching time of the VSS, and
d' is defined as the total disturbance including fluctu-
ations of plant parameters. When the free-parameter
S(s) is set to a low gain in the low-frequency domain
and the switching time T is taken enough short, the
system (24) becomes very insensitive against the dis-
turbance and the command input response precisely
corresponds to the designed trajectory.

Moreover, this sliding controlled system can be re-
duced the order of the system, that is, 2nd order mo-
tion of joint becomes 1st order one, thus it is suitable
for an inverse kinematics transformation using a re-
solved motion ratel’l. It takes the less calculation cost
than the resolved-acceleration method[).

3.2 Middle Level : Inverse Kinematics

When the robust-servo systems are applied to each
joint of biped robot and the position references are set
to the current states, it becomes velocity controller.
Thus its joint references can be transformed from work-
space references by using the resolved motion rate. In
this paper, the resolved motion rate method® is gen-
eralized to control both of the rate of the center of
gravity and the rate of the tip of non-support leg at
the same time.

When the center of gravity x. and the tip position
of non-support leg x; can be expressed as following
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function of joint angle g with respect to the origin of
the support foot,

z = flg) (25)
where ' =]zl = =z,] (26)
x. : center of gravity
x; : tip position of non-support leg
zg : gradient of body

the derivatives become,
T = Jacoq (27)

Here, J,., is jacobian matrix about the center of grav-
ity, the tip position of non-support leg, and the gradi-
ent of body. This jacobian matrix is algebraically very
complex but they can be easily obtained by using a
mathematics software package[m.

Considering (27) as restrictions, we can calculate
the joint space references ¢/ from work space refer-
ences @/ by solving a following QP problem.

1
minimize §i1ref chref - cgi]’"ef (28)

subject to  Jyeoq"® = &%/ (29)
Where C and ¢y can be defined at designer’s will, but
usually C' is set to an identity matrix and ¢ is set to
Z€ro.

In order to control the position, the velocity refer-

ence "%/ is generated by following equation.

ire‘f _ Kp($cmd _ w) + icmd (30)

Here, diagonal matrix K, is proportional gain.
All of mechanical characteristics are expressed only
in this transformation.

3.3 Top Level : Motion Design for Au-
tonomous Stamping

The most important issue in the biped walking
control is the motion design, that is, the trajectory
design of the center of gravity and the tip position
of non-support leg. Those trajectories should be au-
tonomously generated from the sensor informations.

The motion of center of gravity should essentially
obey the dynamics of inverted pendulum because the
biped robot has its mode. If the reference command is
generated ignoring the dynamics of inverted pendulum,
it causes the flotage of the support foot and then the
system becomes uncontrollable. Some control methods

have been proposed from this viewpoint[lo][n].

The reference of the center of gravity should satisfy
the following dynamics of an inverted pendulum mode
with linear approximation.

T = wzmcl + Uy (31)

Tea = W2$02 + Uy (32)

Here, z.; and z.o denote the center of gravity in sagit-
tal plane and lateral plane with respect to the origin of
the support foot, respectively. u, denotes a virtual in-
put which has a limit to prevent flotage of the foot. w
corresponds to \/g_/l, [ is the length of the pendulum,
and g is the gravity constant.

First, we consider the stabilization in the lateral
plane, that is, the stable stamping with an arbitrary
frequency. The frequency control of center of gravity
in the lateral plane is very important because another
principal references can be generated using the states
of its vibration. In order to control the stamping fre-
quency, we introduce a kind of energy of the system
(32) as follows,

By = Jity — sl (33)
If the above energy is constant and there are no losses
at the time of leg support change, the stamping fre-
quency has some constant value. Let x.2(0) be the
offset of center of gravity with respect to the origin of
the support foot at the time of leg support change (see
Fig.4), the solution of (32) without input u,2 becomes,

W

j’d(o)) ewt} (34)

Tep(t) = %{(mcz(0)+

W

+ <$c2(0) -

And then, the stamping period T is defined as following
equation.

22(T)2) = 2(0) = Wy/2 (35)
Fea(T)2) = —ie(0) (36)

Here, W5 denotes the width of both legs (constant).

From (33)—(36), we can obtain the relationship be-
tween the energy E, and the stamping period T as
follows,

AL (37)

Therefore, we may control the energy FE- in place for
controlling the stamping period T'.

Next, we describe how to determine the virtual in-
put uyo to control the energy E>. The derivative of the
energy Fs can be calculated as follows,

Ey = Zaler — B Tep = Tealhy (38)
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Figure 4: Simplified model of inverted pendulum and
8-axis biped robot.

The derivative of the energy E- and the virtual input
Uy has a kind of the linear relationship. Then we
determine the virtual input u,» as follows,

ke

Uy = —(E — ) (39)
T2
ref
22—
E;’ef _ _% (40)
214+ e 2 )2

Under this control, the dynamics of energy FEs be-

comes, )
Ey = —kgEy + kg B! (41)

The energy E, can become equal to its reference E5¢/
if the value of kg is chosen so that the characteristic
roots of (41) has negative real part.

Then, the walking velocity in sagittal plane can be
also controlled by similar method. Using the same en-
ergy control method, the arbitrary step width W,/
can be realized by following equation.

2 T7‘ef
re wi
W2”1 ! e 2
wrref |,

B =0
2(1—e*>)?

(42)

Then, the reference of tip position of non-support
leg can be generated from the motion of gravity center.
The height position reference of non-support leg z<’
can be generated as the following function of gravity

center in lateral plane.
w57 = ful|we| — W2/2) (43)

Here, the function f3(+) is shown in Fig.5. The position
in sagittal plane can be also generated as the function
of the gravity center in sagittal plane.

Aout

T3

0 |
0 Ain
lx02| = I/V'Z/z

Figure 5: Nonlinear projection from gravity center to
foot height reference.

4 Simulation Results

A simulation result of stabilization of a walking 8-
axis biped robot is shown in Fig.6. The configurations
of the biped model are also shown in Fig.4 and Table 1.
In this simulation, the stamping time and the walking
velocity is set to 0.6 [sec] and 0.2[m/s]. The trajectory
of gravity center is shown in Fig.7 and about 2 [m)]
walking can be observed. In this case, it is difficult to
stabilize the motion in sagittal plane because the mo-
tion of non-support leg makes bad influence on the in-
verted pendulum mode of gravity center. In the future
work, we need to modify the approximation (31) to
improve the walking motion in sagittal plane. The po-
sition of center of gravity in the lateral plane is shown
in Fig.8, and Fig.9 shows its phase plane trajectory.
This stamping motion has a stable limit cycle in the
lateral plane.

link size (d x w x h) [m] weight [kg]
#0,#8 02x0.1x0.05 1.0
#1,47 0.1 x 0.1 x 0.05 0.5
#2 3 #5 #£6 0.1 x0.1x0.2 2.0
#4 0.1x0.1x0.3 3.0
total 0.3x0.2x0.8 14.0

Table 1: Size of the robot.

5 Conclusion

First, the three dimensional precise digital simu-
lation method is proposed, which is the extension of
open link manipulator simulation method and contact
simulation method of rigid body mechanics. This sim-
ulation model can be said to be mathematically exact,
thus the essential investigation of biped control algo-
rithms is available. This approach takes the less cost
than the experimental demonstration.



Proceedings of the 1995 IEEE International Conference on Robotics and Automation 2883

Figure 6: Pictures of stamping biped robot.
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Second, the autonomous walking control with hier-
archical structure has been proposed and inspected by
the simulation. The references of arbitrary frequency
walking motion are autonomously generated from the
vibration motion of the center of gravity in lateral
plane. Both of references, the center of gravity and
the tip position of non-support leg, can be simultane-
ously transformed to the joint space reference, and the
robust-servo controllers are applied.

Third, the existence of the limit cycle of the dy-
namical stable stamping motion has been confirmed in
the simulations.

Authors believe that the proposed autonomous walk-
ing control scheme and the proposed simulation method
will open a new field of biped robot researches.
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