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Abstract

Introducing the notions called the panel structures and paneled triangulations,
we shall establish a theory to analyze the re-embeddings of a given triangulation on
a closed surface and conclude that there are only finitely many panel structures, up
to equivalence, for each closed surface F2, which implies the existence of a constant
upper bound for the number of re-embeddings of triangulations on FZ.

1. Introduction

Let G be a graph. We denote the vertex set and edge set of G by V(G) and E(G),
respectively. If G is already embedded on a closed surface F%, we call each component of
F?—@ a face of G and denote the set of faces of G by F(G). However, a graph may admit
many embeddings on a fixed closed surface and hence F(G) depends on the embedding
in general.

When we deal with two or more embeddings of a graph, we often use amap f : G — F?
to identify an embedding of a graph G into F?, regarding G as a topological space. That is,
an embedding f : G — F? is an injective continuous map which induces a homeomorphism
between G and f(G).

Let f, f' : G — F? be two embeddings of a graph G into a closed surface F2. They
are said to be equivalent to each other, written by f = f’, if there is a homeomorphism
h: F? — F? with hf = f'. They are congruent to each other, written by f ~ f', if
there is a homeomorphism h : F2 — F? with h(f(G)) = f/(G) which induces a graph
isomorphism. Two congruent embeddings look like the same shape, but their labelings
may not coincide through the homeomorphism in general. It is obvious that:

fRf = e~
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It is well-known that any 3-connected planar graph is uniquely embeddable in the
sphere, up to equivalence, which has been proved by Whitney [27], as the uniqueness of
duals. Furthermore, all embeddings of a planar graph into the sphere can be generated
by two kinds of local deformations, related to the 2-isomorphism over their duals [28].

The first author was motivated by Whitney’s work and wrote a series of papers [12] to
[20], focusing on the uniqueness of embeddings. In particular, he has classified the struc-
tures of projective-planar graphs which generate their re-embeddings on the projective
plane. However, such structures are so.complicated that we cannot describe them briefly.
So we need some restriction on graphs to make theorems in simple style.

For example, it follows from his theorem that if a 5-connected nonplanar graph G,
except K, admits two or more embeddings on the projective plane, there is an essential
simple closed curve on it which meets G in two points. Kitakubo proved in his thesis
[6] that any 5-connected graph has at most 12 inequivalent embeddings, using this fact.
This upper bound is attained by only Kg and it will be only 1 if we count embeddings
up to congruence since any two embeddings of K on the projective plane are congruent.
Furthermore, he has classified the re-embedding structures of 5-connected projective-
planar graphs and concluded that they admits precisely 1, 2, 3, 4, 6, 9 or 12 inequivalent
embeddings. So many pages in his thesis is devoted to proving these results, but he has
shown a simple proof for the existence of a finite bound for the number of embeddings of
5-connected projective-planar graphs in [5].

A graph G embedded on a closed surface F? is said to be n-representative if any
essential simple closed curve on F? meets G in at least n points. In [25] and [26], Vitray
has classified the 3-representative graphs on the projective plane that are critical with
respect to contraction and deletion of edges, and identified how the re-embeddings of
those graphs can be generated. His classification implies that any 3-representative 3-
connected graph on the projective plane has precisely 1, 2, 3, 4, 6 or 12 embeddings, up
to equivalence. This is similar to Kitakubo’s result, but there is no 3-representative 5-
connected projective-planar graph which has precisely 9 embeddings. (It has been known
that any n-representative graph on F? is uniquely embeddable in F? for a sufficiently
large n > 0, in general. See [23].)

A simple graph G is called a triangulation on a closed surface F? if it is embedded on
F? 50 that each face is bounded by a 3-cycle and that any two faces share at most one
edge. (We call a cycle of length n an n-cycle.) The second condition necessarily holds
under the first one unless G is isomorphic to K3. It is easy to see that any triangulation
on a closed surface is 3-representative. Lawrencenko [8] has discussed the re-embeddings
of triangulations on the projective plane and proved the same fact on the number of
embeddings of triangulations as Vitray showed.

For the present, we do not have a general theory enough to analyze the re-embeddings
of graphs on closed surfaces. So we shall confine ourself to discussing triangulations
on closed surfaces in this paper. Our purpose is to establish a theory to classify the
re-embedding structures of triangulations. The fundamental notions in our theory are
the panel structure and a paneled triangulation. The former describes the flexibility and
partial rigidity of triangulations while the latter is a formal object to control the panel
structures.

In Section 2, we shall show general observations about triangulations on closed sur-
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faces, some of which are well-know, but a basis for our theory developed later. We shall
define and discuss the panel structures of triangulations with related notions in Section
3 and paneled triangulations in Section 4. The irreducibility of paneled triangulations
defined in Section 5 is the most important notion in our theory, which suggests a method
to classify the equivalence classes of panel structures. As its application, we shall prove
Lawrencenko’s result as mentioned above. In Section 6, we shall prove the finiteness of
panel structures in number, which implies that there is a constant N = N(F?) for any
closed surface F2 such that every triangulation on F? has at most N embeddings, up to
equivalence.

2. General observations

Let G be a triangulation on a closed surface F2 and C3(@G) the set of 3-cycles in G.
Since the boundary cycle 0A of a face A € F(QG) is a 3-cycle, it is convenient to identify a
face A € F(G) with its boundary cycle A and to denote it by uwvw with its three corners
u, v, w € V(G). So we shall regard F(G) as a subset of C3(G).

Let N(v) denote the set of neighbors of a vertex v € V(G), called the neighborhood
of v-while N(v) = N(v) U {v} is called the closed neighborhood of v. (The neighborhood
of a subset X in V(G) will be denoted by N(X) = Uyex N(v).) The neighbors of any
vertex v € V(G) lie around v and form a cycle. This cycle around v is called the link of
v and is denoted by lk(v). The subgraph obtained as lk(v) U {v} with edges incident to v
is often called the wheel neighborhood of v and is denoted by W (v) here. Note that lk(v)
and W (v) depend on the embedding of G.

The link of v is one of hamilton cycles of the subgraph (N(v)) in G induced by N(v).
If (N(v)) has two or more hamilton cycles, the vertex v is said to be skew. We can find
a theory on skew vertices in [12] which is closely related to the uniqueness of embeddings
of triangulations. For, if v is not skew, then it will have a unique rotation over its
neighborhood, up to reversion, which the unique hamilton cycle induces.

LEMMA 1. The closed neighborhood N(v) of a skew vertex v induces a nonplanar sub-
graph.

Proof.  Let C be a hamilton cycle of (N(v)) other than lk(v) and choose an edge
zy € E(C) — E(Ik(v)). Then the two segments along lk(v) bounded by {z,y} has length
at least 2 and there is another edge st € E(C) — E(lk(v)) joining these segments. It is
clear that W(v) + {zy, st} contains a subdivision of K5 and is nonplanar. This implies
that (N (v)) is nonplanar. m

Let G be a triangulation on a closed surface F? and e an edge of G. The contraction
of e or contracting e is to shrink e and to replace each of the resulting multiple edges with
one edge. (The inverse operation is called a vertex splitting.) Let G/e denote the graph
obtained from G by contracting e and [e] the vertex into which e shrinks. If G/e also is a
triangulation on F?, then e is said to be contractible. Thus, an edge e in a triangulation
G, except Ky, is contractible if and only if G/e is simple. This criterion can be rephrased
into:
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LEMMA 2. Let G be a triangulation of a closed surface, except Ky on the sphere. An
edge e € E(G) is not contractible if and only if e lies on at least three 3-cycles. m

Since this lemma presents a combinatorial property, the contractibility of an edges
does not depend on the embedding of a triangulation. Thus, if e is contractible in G, then
so is f(e) in f(G) for any embedding f : G — F? and f(G)/f(e) is isomorphic to G/e as
graphs.

LEMMA 3. Let v be a vertez of a triangulation G on a closed surface F' 2, except Ky on
the sphere. If no contractible edge is incident to v, then (N(v)) is nonplanar.

Proof. Let lk(v) = vg - - - vp—1 be the link around v. By Lemma 2, for any vertex v;, there
is an edge v;v; with § # ¢+ 1 (modn). Choose v; to minimize |¢—j| > 2 and suppose that
i < j. Then there is an edge viv, with ¢ <k < j < h and W (v) + {v;v;,vxvs} contains a
subdivision of Ks. This implies that (N(v)) is nonplanar. m

Let Emb(G, F?%) denote the set of all embeddings of G into F2. It is clear that both
Emb(G, F?%)/ ~ and Emb(G, F?)/ ~ are finite sets and that

|Emb(G, F?)/ ~ | < |Emb(G, F?)/ =~ |

in general. In particular, there is a good relationship between |[Emb(G, F?)/ =~ | and edge
contraction, as follows.

LEMMA 4. Let G be a triangulation on a closed surface F 2 and e a contractible edge
in G. Then we have:

|[Emb(G, F?)/ =~ | < |[Emb(G/e, F?)/ ~ |

Proof. Let f : G — F? be any embedding of G into F? and contract the edge f(e) in f(G)
on F2. By Lemma 2, f(G)/f(e) is isomorphic to G/e via the natural isomorphism f’ :
G/e — f(@)/f(e) induced by f and this isomorphism can be regarded as an embedding
map f': G/e — F?. So we define a correspondence @ : Emb(G, F?) — Emb(G/e, F?) by
®([f]) = [f'], where [f] stands for the equivalence class including f. It is clear that @ is
well-defined.

‘Let g : G — F? be another embedding of G into F? and suppose that g’ is equivalent
to f’, that is, there is a homeomorphism &' : F? — F? with &'’ = ¢’. Then G/e contains
a cycle C such that f'(C) is the link around f([e]) and necessarily ¢'(C) = h'f'(C) also
is the link around g([e]). This cycle C can be regarded as one in G and f(C) and g(C)
bound 2-cells including f(e) and g(e) inside. Deforming h' suitably within these 2-cells,
we can obtain a homeomorphism h : F? — F? with hf = ¢g. Thus, f and ¢ are equivalent
to each other. This implies that ® is injective and the lemma follows. m

Note that the same statement as above does not hold for the congruence in general.
For example, Figure 1 presents such a counter example. The labels over vertices indicate
a graph isomorphism between the two triangulations on the torus, and hence they are
two embeddings of one graph, say G. It is easy to see that there is no other isomorphism
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Figure 1: Two incongruent embeddings of a triangulation on the torus

between them and the unique isomorphism does not extend to any homeomorphism over
the torus. Thus, these triangulations are not congruent, but contracting an edge e yields
two congruent embeddings of G/e if e is incident to the unique vertex of degree 3.

A triangulation G is said to be contractible to another triangulation T if T can be
obtained from G by a sequence of contraction of edges, and is irreducible if G has no
contractible edges. Thus, any triangulation is contractible to one of irreducible trian-
gulations. The tetrahedron Kj is a unique irreducible triangulation of the sphere [24]
while there are precisely two irreducible triangulations of the projective plane, which are
isomorphic to Kg and K, + K3 as graphs [1]. Those for the torus and for the Klein bottle
have been classified in [7] and [9]. , ‘

There are only finitely many irreducible triangulations of a closed surface in general,
which has been shown in [2] to [4] and [11]. In particular, Nakamoto and Ota [11] have
given a linear upper bound for the number of their vertices with respect to the genus of
closed surfaces. (See Section 6 for more details.) The finiteness of irreducible triangula-
tions in number plays an important role in many contexts as well as in our proof of the
following theorem.

THEOREM 5. Given a closed surface F?2, there is a natural number N = N(F?) such
that any triangulation G on F? has at most N embeddings into F?, up to equivalence.

Proof. Define N as the maximum value of [Emb(T', F2)/ = | taken over all irreducible
triangulations T of F2, which actually exists by the finiteness of irreducible triangulations.

Since any triangulation G is contractible to one of irreducible triangulations, say 7', we
have |Emb(G, F?)/ ~ | < |Emb(T, F?)/ ~ | < N by Lemma 4. m

The value of N = N(F?) can be determined by estimating the number of embeddings
of irreducible triangulations of F2. For example,

N(S*) =1, N(P?)=12, N(T?)=120 and N(K?) =36

for the sphere S?, the projective plane P2, the torus 72 and the Klein bottle K2. The
first three are attained by the complete graphs K, Kg and K7 on these surfaces in order
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while the last one is attained by the triangulation obtained from two copies of Ks on the
projective plane by joining them along one pair of faces.

3. Panel structures

As is shown in the previous section, we can decide the exact upper bound for the
number of inequivalent embeddings of triangulations on a closed surface F? if the complete
list of irreducible triangulations of 2 is given. However, we need more accurate arguments
to the set of those natural numbers that can be realized as |[Emb(G, F?)|/ ~ | for a
triangulation G on F2. In this section, we shall define and discuss some notions to do it.

Let G be a triangulation on a closed surface F? and regard F(G) as a subset in C3(G).
A 3-cycle C of G is called a panel of G if f(C) bounds a face of f(G) for any embedding
f:G— F% A face also is called a panel of G if it is bounded by such a cycle. However,
a panel will be a face, rather than an abstract 3-cycle, in the below and will be indicated
as a shaded region in figures. A face is called a hole of G if it is not a panel.

We shall denote the set of panels of G by p(G). That is,

p(G) = (WF(/(G)) : f € Emb(G, F)}.

The composite structure (G, p(G)) is called the panel structure of G. This notion is
closely related to embeddings, but (G, p(G)) is uniquely determined, not depending on
the embedding of G.

LEMMA 6. A face incident to a contractible edge is a panel.

Proof. Let e be a contractible edge in a triangulation G. By Lemma 2, e lies on precisely
two 3-cycles in G and they must bound faces incident to e in any embedding of G. Thus,
the lemma follows. m

A vertex v of G is said to be flat if every face incident to v is a panel of G, while v
is twistable otherwise. It is clear that a unique cycle in (N(v)) becomes the link of a flat
vertex v, not depending on the embedding, although v might be skew.

LEMMA 7. A twistable vertex is skew.

Proof. Let G be a triangulation on a closed surface F? and v a twistable vertex. Then
there is another embedding f : G — F? of G, not equivalent to the original, in which
some of facial cycles incident to v does not bound a face, and hence a cycle in (N(v))
other than lk(v) becomes the link of f(v) in f(G). Thus, (N(v)) contains at least two
hamilton cycles and v must be skew. m

LEMMA 8. Any vertez of degree 3 is flat. Two adjacent vertices are flat if both of them
have degree at most 4. -

Proof. It is easy to see that those vertices are not skew, and hence they are flat by
Lemma 7. m
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Let G be a triangulation on a closed surface F?. The graph obtained from G by
removing all the flat vertices is called the frame of G and is denoted by Fr(G). On the
other hand, the 2-complex induced by the panels p(G) is called the panel complex of G
and is denoted by P(G). That is, each edge in P(G) is incident to a panel.

The frame Fr(G) is embedded on F? as a subembedding of G, but is not a triangulation
in general. The faces of Fr(G) can be classified into two classes; the first kind is triangular
and comes from a face of G, which is a hole of G. The other faces, called plates, contain
only panels of G and their union is homeomorphic to the panel complex P(G). It is clear
that G = Fr(G) U (P(G) N G) and that the restriction f|p(g)nc extends to an embedding
of P(G) for any embedding f : G — F2.

Let (G1, p(G1)) and (G, p(G2)) be the panel structures of two triangulations G; and
G5 on a closed surface F2. They are said to be equivalent to each other if there is an graph
isomorphism ¢ : Fr(G;) — Fr(G,) which induces a homeomorphism ¢ : P(G;) — P(Ga).

THEOREM 9. If two triangulations on a closed surface F? have equivalent panel
structures, then they admit the same number of embeddings, up to equivalence.

Proof. Let G; and G, be two triangulations with equivalent panel structures. Given
an embedding f, : Go — F?, we define an embedding f; : G; — F?, as follows. First
set filrey) = fo9. Let ¢ : P(G2) — F? be the extension of falp(g)ng,, which is an
embedding of P(Gy) into F? and set filpgyng, = $2@lp(Gi)ne:. This correspondence
fi <> f2 induces the bijection between Emb(G;)/ ~ and Emb(G,)/ ~. m

Let G be a triangulation on a closed surface F2. Another triangulation G’ is called
a refinement of G if G’ contains a subdivision of G as its subembedding. Furthermore,
the panel structure (G, p(G")) is a refinement of (G, p(G)) if G’ can be embedded or
re-embedded on F? as a refinement of G where only panels of G are subdivided.

THEOREM 10. Two panel structures are equivalent to each other if and only if they
have a common refinement. :

Proof. Embed P(G1) on F? together with P(G:) by & given in the definition. Then, we

can make their common refinement, adding edges and vertices to ¢(P(G1)) UP(Gs). m

4. Paneled triangulations

The panel structure (G, p(G)) exists a priori and can be said to generate the varieties
of embeddings of a triangulation. In this section, we shall define and analyze an artificial
object, called a paneled triangulation, which will be used to classify the panel structures
in the next section.

Let G be a triangulation on a closed surface F? and let p be a subset of F(G). We
call the pair (G, p) a paneled triangulation over G with panel p and denote it by G,. A
face belonging to p is called a panel or is said to be paneled. A flat vertex, a twistable
vertex, a hole, the frame Fr(G,) and the panel complex P(G,) of G are defined in the
same way as in the previous section.
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An embedding f : G, — F? is an embedding f : G — F? such that f(0A) bounds a
face in f(G) for each face A € p. The equivalence and the congruence over embeddings
of paneled triangulations are defined in the same fashion as for ordinary triangulations.
Two paneled triangulations G, and G’ are said to be isomorphic to each other if there
is a homeomorphism A : F? — F? with h(G) = G’ which induces a bijection between g
and '

A paneled triangulation G, is said to be saturated if there is at least one embedding
f: G, — F2, for each face A ¢ p, such that f(8A) does not bound a face in f(G). For
example, the full-paneled triangulation Gr(g) is saturated and it has a unique embedding,
up to equivalence. If p = p(G), then G,, is saturated and Emb(G,,, F?) = Emb(G, F?).
The empty-paneled triangulation Gy with no panels is saturated if and only if the panel
structures of the triangulation G itself has no panels.

Now let G be a triangulation of a closed surface F?, not paneled. For a subset S
in Emb(G, F?), define ps as the set of faces whose boundary cycles bound faces in any
embedding belonging to S. Then § is said to be saturated if there is a face A € pg, for
any embedding f ¢ S, such that f(8A) does not bound a face in f(G). It is clear that if
f €S and f = f, then f' € S, provided that S is saturated.

LEMMA 11. Let G be a triangulation on a closed surface F2. Theﬁ,' there is a bijec-
tion between the saturated subsets of embeddings of G into F? and the saturated paneled
triangulations over G. ' '

Proof. Define ®(G,) = Emb(G,, F?) C Emb(G, F?) for a saturated paneled triangula-
tion G,. It is easy to see that ®(G,,) is saturated and @ is injective. Conversely, let S be
a saturated subset in Emb(G, F?). It is obvious that G, is saturated and ®(G,;) = S.
Thus, ® is surjective. m

Let G, be a saturated paneled triangulation over G and G’ a triangulation obtained
from G by subdividing each face A € p with vertices added inside. Then we say that
Gy, presents the panel structure (G, p(G’)). The following lemma makes this definition
meaningful.

LEMMA 12. Let G,, be a saturated paneled triangulation over a triangulation G on a
closed surface F2. Then the panel structures of triangulations presented by G,, are all
equivalent.

Proof. Let G’ be a refinement of G with only panels subdivided. Then &’ includes G as
its subgraph. Let f: G’ — F? be any embedding of G’ into F2 and A a face in p. Since
A contains some vertices of G, f(8A) bounds a triangular region A’ on F? where those
vertices are mapped. By the uniqueness of embeddings of 3-connected planar graphs,
flane extends to a homeomorphism f' : A — A’. This implies that each face contained in
A is a panel of G’ and hence the panel complex P(G') occupies the same region as P(G)
does. Since Fr(G’') = Fr(G), the panel structures (G, p(G")) are all equivalent. m

Note that a panel of G, might not be a panel of G, even if G, is saturated, since the
former is artificially assigned. However, there are certain conditions for a face to be a
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panel of G,,. It is easy to prove the following lemma. Consider which cycle becomes the
link around a vertex v.

LEMMA 13. Let G be a saturated paneled triangulation on a closed surface F? and v a
vertez with k(v) = vy« - - vy.

(i) Ifv is not skew, then all of vvvi11’s and vuyvy are paneled, that is, v is flat.
(1) If vusyy is paneled for i =2,...n — 1, then vuivy and vu,v; are paneled.

(iii) If vv;uiyq is paneled for i =3,...n — 1, then vuvs is paneled. m

5. Panel-irreducibility

Now we shall consider the “irreducibility” of paneled triangulations, mimicking the
irreducible triangulations of a closed surface. However, we need a slight modification on
its definition, as follows, to adapt for what we expect.

Let G, be a paneled triangulation with panel p. An edge uv in Gy, is said to be panel-
contractible if it is contractible in the usual sense and if either u or v is flat. Contraction
of a panel-contractible edge shrinks it and remove the panels incident to it, if any, from
 to obtain another paneled triangulation G,/uv. If G, has no panel-contractible edge,
then G, is said to be panel-irreducible. ,

The following two lemmas show the reason why we define the panel-irreducibility and
the panel-contractibility as above.

LEMMA 14. Let G, be a saturated paneled triangulation and uv a panel-contractible
edge of G,. Then Gy/uv is saturated and the panel structures which G,/uv presents is
equivalent to those that G, does.

Proof. Since uv is panel-contractible, one of them, say u, is a flat vertex in G,. Then, we
may assume that contraction of uv moves v into u, fixing the position of 4 on F?. Then
the panel complex P(G,/uv) occupies the same region as P(G,,) does and Fr(G,/uv) =
Fr(Gy). This implies the panel structures obtained from G, and G,/uv by subdividing
their panels are equivalent. m

LEMMA 15. Let G, be a saturated paneled triangulation and wv an edge of Gy. If uv is
contractible, but is not panel-contractible, then G, and G,/uv present incongruent panel
structures ,

Proof. If uv is contractible, but is not panel-contractible, then both « and v are not
flat and belong to Fr(G,). However, uv belongs to P(G,) since it is contractible and
incident to two panels by Lemma 6. Thus, contracting e destroys the homeomorphism
type of P(G,). That is, P(G,) and P(G,/uv) are not homeomorphic and hence the lemma
follows. m ‘

The following two theorems show the connection between the paneled triangulations
and the panel structures of ordinary triangulations. They are immediate consequences of
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the above lemmas. For the sake of convenience, we call a panel-irreducible saturated pan-
eled triangulation a panel-irreducible triangulation simply, omitting the phrase “saturated
paneled”.

THEOREM 16.  Every panel structure of a triangulation on a closed surface F? is
equivalent to those which a panel-irreducible triangulation of F? presents. m

THEOREM 17. The panel structures presented by two panel-irreducible triangulations
on a closed surface F? are equivalent to each other if and only if one of the paneled
triangulations is an embedding of the other, equivalent or inequivalent.

Note that the equivalence over panel structures is defined independently of embeddings
of triangulations while the paneled triangulation has a fixed embedding on a closed surface.

Here we shall try to classify the panel structures of triangulations on the projective
plane, applying our theory. The following lemma makes it easy to do it, but does not
hold for other surfaces, as the proof suggests below.

LEMMA 18. If G, is a panel-irreducible triangulation on the projective plane, then G
1s 1rreducible.

Proof. It suffices to show that any contractible edge of a paneled triangulation G, on
the projective plane is panel-contractible. Let uv be a contractible edge and let lk(u) =
vy - - -y and 1k(v) = uv; - - - v, be the link of v and v in G, with u; = v, and v; = .

Since wv is contractible, there is no edge of the form wwv; or vu; by Lemma 2. On the
other hand, if wv is not panel-contractible, then both v and v are not flat and must be
skew by Lemma 13. In this case, (N (u)) and (N(v)) and nonplanar and there are edges
uiuj, urup for some ¢ < k < j < h and v, vsv; for some a < s < b < t by Lemma
1. However, the partial structure W (u) U W (v) + {wiu;, ugtn, Vats, vsv¢} of G, cannot be
embedded in the projective plane, a contradiction. m

Since there are only two irreducible triangulations of the projective plane as mentioned
in Section 2, it is just a routine to classify the panel-irreducible triangulations of the
projective plane. Lemma 13 is useful to do it.

THEOREM 19. There exist precisely 15 panel-irreducible triangulations of the projective
plane, up to isomorphism, as given in Figure 2. m

In Figure 2, we should identify each antipodal pair of vertices along the boundary of
each hexagon to obtain the actual paneled triangulations of the projective plane. Each
shaded face is paneled and the integer inside parentheses indicates the number of congru-
ent embeddings of the panel-irreduicble triangulation, up to equivalence. In particular,
P7 and P8 are incongruent embeddings of the same panel-irreducible triangulations and
present the same panel structure, which generates three inequivalent embeddings. Simi-
larly, P9 and P10 do so.

Lawrencenko’s result mentioned in the introduction follows immediately from this
classification of panel structures for the projective plane.
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P4 (2) P5 (2)

P9 (2) P10 (1)

S

P11 (4) P12 (4) P13 (6) P14 (6) P15 (12)

Figure 2: Panel-irreducible triangulations of the projective plane

COROLLARY 20. (Lawrencenko [8]) Every triangulation on the projective plane admits
precisely 1, 2, 3, 4, 6 and 12 embeddings, up to equivalence.

6. Finiteness of panel structures

In this section, we shall show the finiteness of panel-irreducible triangulations and that
of panel structures in number. First, we begin with some technical lemmas.

Let x(F?) denote the Euler characteristic of a closed surface F2. The Fuler genus of
a graph G is defined as the minimum value of 2 — x(F2) taken over all closed surfaces
F? where G is embeddable, and is denoted by ¥(G). It is easy to see that if G is a
triangulation on F2, then §(G) = 2 — x(F?). Miller [10] has shown the semi-additivity of
this Euler genus, as follows.

LEMMA 21. (Miller [10]) If two graphs Gy and G have at most two common vertices,
then ¥(G1 U G2) 2 7(G1) +7(G2). =
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LEMMA 22. Let G be a triangulation on a closed surface F? with minimum degree at
least 4. Then there exists an independent set X in G such that

X1 2 7£(V(6) + X(F?).

Proof. Let V; be the set of vertices of degree i. Take three disjoint independent sets Xy,
X5 and X so that they are maximal in Vj, Vs — N(X4) and Vg — N(X4) — N(X5) in order.
Then it is clear that X = X4 U X5 U Xj is independent.

Put 4; = V;N N(X,) for i = 5 and 6, and Bs = Vs N N(X;). Since N(z) C V, U
As U Ag and N(x) = 5 for each vertex = € Xy, if 5|Xy| < |Vi| + |4s| + |As|, then
(ViU A5 U 4g) — (N(Xy) U Xy) = V3 — (N(X4) U Xy) would not be empty and contain a
vertex =’ € Vy — (N(X4) U Xy) so that X U {z'} is independent in V;. This is contrary to
the maximality of X,. Thus, we have

1 :
| X4l = g(|V4| + |As| + | Asl)-
Similarly, we can obtain the following inequalities.
1 ‘ 1
|Xs| > g(|Vsl —|4s| +|Bsl), [Xs| > ;(|V6| — 46| — | Bs|)-
Therefore,

1 1 1 1 2 1
X| = X, U Xs UXg| > 2IVal + 21Vl + 21Vl + =4 B
>——+——-+__.>___ V ‘} ‘I’ .

On the other hand, we have the following well-known formula, which is easily derived
from Euler’s formula on F?2:

o6~ i)|Vil = —|V(@)]| + 37— i)ns = 6x(F?)

>4 >4

Thus,

3|Val + 2[V5| + [Vs| 2 [V(G)] + 6x(F?).
Substituting this to the previous inequality, we obtain the lower bound for |X| as in the
‘lemma. =

LEMMA 23. Let G be a triangulation on a closed surface F? with x(F?) =2 —r. If the
closed neighborhood of each vertex in G induces a nonplanar graph, then

V(G)| < 171r — 72.

Proof. Let X be a maximum independent set in G and put ¥ = N(X) — X. By
Lemma 22, | X| > (|[V(G)| + x(F?))/15 = (JV(G)| — 6r + 12)/15 since G has no vertex
of degree 3, whose closed neighborhood induces K. We construct a maximal subset
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S = {v1,vs,...,v,} in X, adding v; for j = 1,2,3,... with the following condition as far
as possible:
Ne)n U Nw)
1<i<j
Let H; be the subgraph in G induced by U;<;<; N(v;).
First suppose that |S| > (|[V(G)| + 72)/171. By the assumption in the theorem,
¥((N(v;))) > 1. Since H; and (N(v;;1)) share at most two vertices, we have

[V(G)| + 72
171

<2

S(H) =7 (U <N(vi>>) > i:lf—y«mw») > 18] 2

by Lemma 21. Since H, is a subgraph of G and is embedded in F?, r = 5(G) > ¥(H,).
Thus, we obtain that [V(G)| < 171r — 72.

Now suppose that |S| < ([V(G)| + 72)/171. Put T = N(S)NY and let M be the
subgraph in G with V(M) = X UT and E(M) = {zy € E(G)|z € X,y € T}. Since M
is embedded in F2, we have '

V(M) — |E(M)| + |F(M)]| 2 2.
Since M is bipartite, 4| F(M)| < 2|E(M)| and hence we have

V) - 5 B(M)| 2 2

By the maximality of S, each vertex v € X — S has at least three neighbors in T and there
are at least |T'| edges between S and T'. Hence |E(M)| > 3(|X|—|S|) + |T]. Substituting
this inequality to the above, we obtain

X +17) ~ 30X~ S)+[T) 227, or —|X|+|T|+3]s|>4~2r

Since | X| > ([V(G)| —6r+12)/15, |T'| < 6|5] and |S| < (|V(G)| +72)/171, then we have

[V(G)| + 72

1
—=(IV(G)| = 6r+12) +9- 2

>4 —2r

This implies that [V(G)| < 171r — 72. m

These three lemmas are based on Nakamoto and Ota’s arguments in [11] to show the
finiteness of irreducible triangulations of a closed surface. In fact, they have proved that
an irreducible triangulation G on a closed surface F2 has at most 171r — 72 vertices with
r = 2 — x(F?). This is an immediate consequence of the above lemma since the closed
neighborhood of each vertex in an irreducible triangulation induces a nonplanar subgraph
by Lemma 3.

THEOREM 24. There exist only finitely many panel-irreducible triangulations of a closed
surface, up to isomorphism.

Proof. Let G, be a panel-irreducible triangulation of a closed surface F? and let v be
a vertex of G,. If v is flat, then each edge incident to v is not contractible and (N(v))
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is nonplanar by Lemma 3. If v is not flat, then it is skew by Lemma 13 and (N (v))
is nonplanar by Lemma 1. Thus, G, satisfies the condition in Lemma 23 and hence
|V(G,)| is bounded by a constant, which depends on only F2. This implies the finiteness
of panel-irreducible triangulations of F2. m ‘

By this theorem and Lemma 16, we can conclude the following two immediately.

COROLLARY 25. There exist only finitely many panel structures of triangulations on
a closed surface, up to equivalence.

COROLLARY 26. There is a constant T = 7(F?), for each closed surface F?, such that
any triangulation on F? has at most T twistable vertices.

Although a twistable vertices is skew, there might be a skew vertex which is flat. Is
there a constant bound for the number of skew vertices?
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