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Abstract 
With the increasing requirement for the navigation safety and economy, the 

maneuverability in actual sea conditions attract more and more attention nowadays. As 
one of the most complex problems in the research of ship hydrodynamics, the maneuver 
motions in waves involves the performance of ship resistance, propulsion, maneuvering, 
seakeeping, and stability in waves simultaneously. With the improvement of the 
computational resources and algorithm, a solution of the hydrodynamic loads and 
motions of a ship maneuvering in waves based on the computational fluid dynamics 
(CFD) method becomes possible recently. 

The objective of this dissertation is to detect the wave effect on the hydrodynamic 
loads and motions during the ship maneuvering in waves using a CFD method, which 
can be divided into the captive model test simulations in waves and the free-running 
test simulations in waves. Firstly, the wave effect on the maneuvering hydrodynamic 
derivatives in following waves is researched by simulating the Planer Motion 
Mechanism (PMM) tests in the surf-riding condition for the first time. The overset grid 
and Euler overlay method is adopted to achieve the simulations. Good agreement 
between the simulated results and the experimental ones reveals the accuracy and 
effectiveness of the present method. The wave effect on the hydrodynamic derivatives 
is also obtained, and the course stability in waves is calculated based on those 
derivatives to reveal the reason for the occurrence of the broaching-to phenomenon. 

To detect the wave effect on the hydrodynamic derivatives in a general wave 
condition, simulations of the PMM tests in head waves are carried out. The detailed 
change tendencies of the linear and nonlinear hydrodynamic derivatives in waves are 
summarized and calculation methods of all wave-affected hydrodynamic derivatives in 
numerical simulations are proposed.  

Considering the complexity of the utilization of wave-affected hydrodynamic 
derivatives on trajectory predictions, the direct simulations of free-running tests in 
waves are researched. Based on the moving grid, overset mesh technique and the body 
force method for a propeller effect, a zigzag test and a turning test in calm water are 
simulated and validated by the experimental data with acceptable accuracy. Then, 
zigzag tests, turning tests and course-keeping tests in regular and irregular wave are 
simulated combining accuracy and efficiency. The hydrodynamic loads on the hull and 
rudder are analyzed and the flow filed information is provided. 

In summary, the present research provides a useful method to conduct the captive 
model tests in waves which can be utilized for the research on captive model tests in 
waves later. In addition, the free-running test simulations in regular and irregular waves 
are achieved, which can contribute to the evaluation of the hydrodynamic performance 
and navigation safety in the future. 
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Chapter 1 Introduction 

1.1 Background  

Generally, considering the complexity of the hydrodynamic computations for 
vessels navigating in actual seaways, the computations are usually separated into 
several parts, such as the stability, resistance, propulsion, maneuvering, and seakeeping 
performance research based on the focused issues. All these single performance studies 
are developed independently. For instance, the traditional maneuverability research 
mainly focused on the turning ability, initial turning ability, yaw-checking and course-
keeping ability, and stopping ability in calm water conditions (IMO, 2002a, 2002b). 
Several research methods on that, such as the database method, the model test method, 
and the computational method, are proposed and established to assess the 
maneuverability in calm water conditions drawn in Fig 1.1(ITTC, 2008). Similarly, the 
traditional seakeeping performance, which means the performance and motion response 
of the vessel in various seagoing conditions, is researched in a framework that the speed 
and heading angle of the vessel are constant (Reed and Beck, 2018). However, with the 
increasing requirements for navigation safety and operational efficiency, the 
comprehensive research on ship maneuverability in waves attracts more and more 
attention recently. It is because the ship resistance and propulsion performance in waves 
will be different requiring the maneuverability better than that in the calm water 
condition to keep the route or change the trajectory easily. Fig 1.2 shows the statistical 
marine casualties and incidents distributions during 2014-2020 for the ships flying a 
flag of EU Member States or the accidents occur within EU Member States’ territorial 
sea. Obviously, “Loss of control – Loss of propulsion power” takes the largest 
proportion (22%) in all events, which is related with the minimum propulsion power to 
keep the maneuverability in waves. The navigational casualties, containing collision, 
contact, and grounding/stranding, which are related with the maneuverability directly, 
represent 43% of all casualty events over this period. Hence, the maneuverability, 
especially in adverse conditions, should be focused on.  

Different from the single performance studies, the research on maneuverability in 
adverse conditions is a comprehensive topic concerning the added resistance in waves, 
the traditional maneuverability, the seakeeping performance, and the stability in waves 
simultaneously. The wave loads will affect the ship motions and the ship maneuvering 
motions have an influence on the wave field. The hydrodynamic computations for ships 
maneuvering in waves is hard to conduct relying on previous single performance study 
methods. Therefore, even though the hydrodynamic problem for ship maneuvering in 
adverse conditions has been proposed for several decades (Inoue and Murahashi, 1965), 
the development is slow restrained by the insufficient calculation resources and 
unsatisfied theoretical methods for a long time. Nowadays, with the development of the 
theoretical methods and the improvement of the calculation resources, many efficient 
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mathematical models and pure CFD (Computational Fluid Dynamics) algorithms are 
proposed, which makes it possible to solve the problem with accuracy and efficiency. 

In addition to the scientific research value and the increasing requirement of safety, 
the related regulations also make the research on this topic important and urgent. To 
improve the energy efficiency and reduce greenhouse gas (GHG) emissions of ships, 
EEDI (Energy Efficiency Design Index) regulation is implemented by IMO 
(International Maritime Organization). The EEDI provides a specific required value for 
an individual ship design, expressed in grams of CO2 per ship’s capacity mile and is 
calculated by the given formula based on the design parameters for a given ship. Since 
2013, following an initial two-year (2013.01.01~2014.12.31) phase 0, new designed 
ship should meet the reference level which is to be tightened incrementally every five 
years. Some ship designers might prefer to lower the installed power rather than 
develop more efficient propulsion method or reduce the hull resistance to achieve the 
EEDI requirements, which can lead to insufficient propulsion and steering abilities of 
ships to maintain maneuverability in adverse conditions (Papanikolaou et al., 2015). 
Plenty of submissions to IMO (MSC 93/21/5, MSC 93/INF.13, MEPC 67/INF.22, 
MEPC 67/4/16) states the urgency for developing the criterion to ensure the 
maneuverability in adverse wave conditions. The 2013 Interim Guidelines for 
determining minimum propulsion power to maintain the maneuverability in waves (the 
Interim Guidelines) have been adopted by resolution MEPC.232(65) at MEPC 65 (IMO, 
2013). 

International cooperative researches are also widely carried out in this field. In the 
25th, 26th, 27th and 28th ITTC (International Towing Tank Conference) maneuvering 
committee, this issue is discussed in special chapters (ITTC, 2008, 2011, 2014, 2017b). 
A specialist committee of maneuvering in waves was active in the 29th ITTC 
conference (ITTC, 2021). SHOPERA (Energy Efficient Safe SHip OPERAtion), the 
EU-funded project, is organized to conduct the efficient analysis of the performance of 
ships when they are operating in complex environmental and adverse weather 
conditions based on the present hydrodynamic simulation software. JASNAOE (Japan 
Society of Naval Architects and Ocean Engineers) also funded a project to develop the 
mathematical model for ship maneuverability in waves and determine the wave drift 
force.  

In summary, the research on the performance of ship maneuvering in waves is of 
important scientific value, engineering value and economic value, and it should be 
researched and focused. 
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FIGURE 1.1 Overview of maneuvering prediction methods (ITTC, 2008) 

 
FIGURE 1.2 Distribution of casualty events with a ship over the period 2014-2020 

(EMSA, 2021) 

1.2 Present research situations 

The research on the performance of the ship maneuvering in waves focuses on the 
obtain of ship’s hydrodynamic loads and motions during the operations. At present, the 
ways to solve this problem can be classified into the experimental method, the potential 
flow theory method, and the pure CFD method. 
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1.2.1 Experimental methods 

The experimental method can be separated into the free-running test method and 
the captive model test method. For the former one, it is conducted to obtain the 
hydrodynamic loads and motions during the maneuvering motion in waves directly 
with the aim of detecting the wave effect on loads and motions, validating the numerical 
prediction tools, and assessing the maneuverability of a ship in waves. Inoue and 
Murahashi (1965) carried out the turning circle tests of a cargo vessel and a tanker in 
calm water and regular waves. By investigation of the influence of drifting force on the 
course keeping and turning ability of the ship, they concluded that the ship progressing 
in waves tends to turn to the weatherside owing to the drifting forces, and the greater 
its deviation is, the less dynamical stability of the ship. This pioneering work 
emphasizes the importance of the wave drift force in the research of maneuverability in 
waves. Then, Hirano et al. (1980) conducted the turning circle tests of a 5m long Roll-
on/Roll-off ship model in calm water and regular head waves with the constant wave 

height and different wavelengths ( L = 0.35, 0.50, 0.75, 1.00, and 2.40.   and L  

denotes the wavelength and the ship length). They found the deviation of the turning 
trajectory in waves from that in the calm water condition might have the tendency to 
become larger when the wavelength becomes shorter. The effects of the rudder angle 
and the ship speed on the abovementioned deviation are also clarified. They also 
proposed a mathematical model in which the second order wave drift forces are added 
in the maneuvering model directly and compared the predicted trajectory with the 
experimental one. The good agreement shows the rationality of the mathematical model 
and the importance of the wave drift force on trajectory deviation. Next, Ueno et al 
(2003) performed the straight run test, turning circle test, zigzag test, and stopping test 
of a VLCC (Very Large Crude Carrier) in regular waves. Several different initial wave 
directions and wavelength ratios are selected with the wave height unchanged. They 
defined the turning circle drifting distance and drifting direction which are widely 
utilized to describe the drift of the turning circle in waves thereafter. In addition, they 
noticed that the drifting distance is larger in short wave conditions and the drifting 
forces in short wave conditions are larger than those in long wave conditions. The effect 
of the ballast on the trajectory was considered and discussed in their study. Nishimura 
and Hirayama (2003) focused on the roll motion during the ship maneuvering in waves. 
Based on the turning circle test of a fishing boat, they concluded that the maximum roll 
amplitude during a ship turns in head waves is remarkably larger than that in following 
seas. Besides, in most cases when ship runs in head or following seas, the reduction of 
turning time due to the large rudder area makes the rolling amplitude relatively small. 
Yasukawa (2006, 2008) systematically carried out the turning circle tests, zigzag tests, 
and stopping tests of a containership SR108 (also been known as S175) in regular and 
irregular waves. The results in irregular wave conditions show that the differences 
between the results in long-crested irregular and short-crested irregular wave are not 
obvious. He also proposed a mathematical model to predict the horizontal 3 DOF 
(degree of freedom) trajectory by adding the wave drift forces in the traditional calm-
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water maneuvering model. The comparison between the simulation results and 

experimental ones reveals that the model can predict quite well when L  is larger 

than 0.7 but unsatisfactory in short wave condition. Sanada et al (2013) carried out the 
turning tests of an ONR Tumblehome ship model in calm water and regular waves to 
provide validation information for their CFD simulation results. Xu (2015) and Zhu 
(2016) conducted the turning circle tests, zigzag tests and stopping tests in calm water 
and regular waves for a low-speed containership S175 in the Ocean Engineering Model 
Basin of Shanghai Jiao Tong University. The maneuvering criteria parameters in 
different wave conditions are obtained. They also explored the rudder speed effect on 
the motion and trajectories for the maneuvering motion in waves. Hasnan et al (2020) 
performed turning tests of a tanker KVLCC2 and a container ship KCS in short-crested 
irregular waves. They proposed theoretical formulas for drifting distance and drifting 
direction. Yasukawa et al (2021) conducted turning tests of KCS to validate the new 6 
DOF mathematical model based on the two-time-scale method which shows good 
agreement.  

The free-running tests of ship maneuvering in waves are valuable and important 
for exploring the physical phenomenon, validating the numerical simulation codes or 
mathematical models, and evaluating the performance of the full-scale ship. However, 
different components of the hydrodynamic loads. For example, the second- and first-
order wave forces, which are important and indispensable for simulations based on the 
potential flow theory methods, are hard to obtain from the free-running tests. To obtain 
these components of the hydrodynamic loads for establishing and validating the 
mathematical models, the captive model tests should be performed. Xu et al (2007) 
conducted the PMM (Planar Motion Mechanism) tests in regular waves to obtain the 
wave-drift added mass and wave-drift damping coefficients which are considered as the 
components of the wave-drift forces. They only conducted the pure sway tests firstly 
and concluded that the sway wave-drift damping coefficients are close to those in calm 
water. The sway wave-drift added mass is obviously smaller than that in calm water. 
Then, Xu et al (2011) considered the yaw motion based on the previous research. The 
wave effect on the wave-drift added mass and damping coefficients are obtained. 
Yasukawa and Adnan (2008) conducted the oblique moving tests in waves to obtain the 
wave-drift forces of SR108. Shigunov et al (2018) provided the international 
benchmark experimental results of the captive model tests in waves. Though the results 
of added resistance in head waves, the turning circle in calm water, regular wave and 
irregular waves, and the zigzag test, four different numerical methods on wave forces 
are compared with the experimental results to validate and improve the present 
prediction methods. They concluded that the present 3D panel method is good in most 
cases, the strip method performed generally poor for the target ships, the RANS 
(Reynolds averaged Navier Stokes) method demonstrates the ability to provide accurate 
results but frequently delivered erratic results, and empirical method provides 
promising results. Yasukawa et al (2019) performed the straight running tests in 
different wave conditions to obtain the wave-induced steady forces which are utilized 
to evaluate the zero-speed three-dimensional panel method (3DPM) and the strip 
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method based on Kochin-function method (SKFM). They found that the added 
resistance and steady lateral forces in waves calculated from two methods are 
acceptable from a practical perspective, but the accuracy was insufficient for prediction 
of the steady yaw moments. In addition, both methods are feasible for predicting turning 
motions in irregular waves.  

The above-mentioned captive model tests in waves focus on obtaining the 
seakeeping components rather than the maneuvering parts. In fact, waves also have an 
effect on the maneuvering hydrodynamic coefficients. Hamamoto (1971, 1973) and 
later Renilson (1982) applied a slender body theory without a free-surface condition to 
calculate the maneuvering coefficients in following waves. They assumed that the 
maneuvering coefficients in waves can be separated into the potential and viscous flow 
components, and the viscous component will remain unchanged in waves. Therefore, 
they could only calculate the change of the potential flow component using the 
traditional seakeeping method to obtain the maneuvering hydrodynamic derivatives in 
waves. To validate this assumption, the experiments of the PMM (Planar Motion 
Mechanism) tests in the surf-riding condition is carried out in the towing tank and the 
circulating water channel. The surf-riding condition is achieved by using a flat plate 
ahead of the PMM facility. When the PMM facility moving ahead, a wave whose 
relative position with the ship model is fixed will be generated. Later, Fujino et al (1982) 
used a slender-body theory considering the free-surface condition to obtain the 
hydrodynamic derivatives under the surf-riding condition in following waves and 
compared them with the experimental data. The experiments were carried out for a flat 
plane rather than a ship model under the surf-riding condition in following waves. 
Relying on a similar experimental setup, Motora et al (1981) also performed PMM tests 
under the surf-riding condition. The reasons for the occurrence of the broaching-to 
phenomenon were discussed based on the calculated wave-effected hydrodynamic 
derivatives in waves. Son and Nomoto (1982) carried out the similar captive model 
tests in following waves generated by a wave-making board to achieve the surf-riding 
condition. Then, the hydrodynamic derivatives in this condition were obtained. 
Furthermore, the course stability index under the surf-riding condition was calculated 
which reveals that the reduced course stability index might be the reason for the 
unstable phenomenon. Bonci et al (2019) measured the forces and moments on a high-
speed craft in waves employing captive model tests in following and stern quartering 
waves at the Seakeeping & Manoeuvring Basin of MARIN. Araki et al (2011) 
considered the wave effect on the hydrodynamic derivatives to improve the prediction 
accuracy of the broaching-to phenomenon.  

1.2.2 Potential flow theory methods 

Although the experimental method is considered to be the most reliable one, the 
high cost and complexity in local flow measurement hold back its application and the 
free-running tests are always conducted only at the final design stage. The numerical 
simulations can solve that problem. The theoretical method based on the potential flow 
theory can be classified into the two-time-scale method and the unified method. The 
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two-time-scale method considers the problem of maneuverability in waves as the 
superposition of the high-frequency motions and the low-frequency motions, which can 
rely on the traditional maneuvering method and the seakeeping method, respectively. 
The unified method requires a solution of the motion of the ship at the same time 
containing the high-frequency forces and the low-frequency parts. For the unified 
method, Hamamoto and Kim (1993) proposed a new coordinate system named 
“Horizontal body axes” with the aim of describing the maneuvering motions in 
horizontal plane, rolling motion in lateral plane and seakeeping motion in vertical plane 
simultaneously. The Froude-Krylov forces and hydrodynamic forces are evaluated in 
horizontal body coordinates. The time domain simulations for turning and zigzag tests 
in waves are carried out, which reveals the availablility of this method. Nishimura and 
Hirayama (2003) also added the Froude-Krylov forces in the 6 DOF motion equations 
to simulate the motions in waves. Considering the change of the inertia force with the 
change of the incident wave frequency, Baily (1997) and Ayaz et al (2006) added the 
time domain radiation forces based on the impulse response function method (Cummins, 
1962) in addition to the Froude-Krylov forces and the diffraction forces in the equations.  

As for the two-time-scale method, Triantafyllou (1982) proposed a combined 
method to considering the high-frequency motions and low-frequency motions for a 
zero-speed offshore structure. Then, Nonaka (1990) extended the method to the ship 
with a forward velocity. Skejic and Faltinsen (2008) conducted the simulations 
considering the second-order wave drift force obtained by using a variety of different 
strip theories. However, their analysis was based on a quasi-static assumption. Seo and 
Kim (2011) broke through this limitation by using the time-domain three-dimensional 
Rankine source panel method to calculate the wave forces and conducted a coupled 
maneuvering and seakeeping analysis of the ship in regular waves. Yu et al (2021) have 
extended this method to the irregular wave conditions.  

1.2.3 Pure CFD methods 

The potential flow theory methods rely on the mathematical models ignoring the 
viscous effect, which makes it difficult to resolve the complex flow considering the 
large drift angle motion, rotating propellers, and moving rudders. The CFD methods 
provide a flow field which is closer to the real physical phenomenon and can reflect 
more reliable and accurate results of the unsteady local flows. Restrained by complexity 
and cost, there were a limited number of pure CFD simulation research for ship 
maneuvers in waves. Fortunately, the improvement of the new numerical algorithms 
and computational resources nowadays contribute greatly to the development of the 
pure CFD method.  

At the beginning, the simulations of the captive model tests in the calm water 
condition were widely performed to obtain the hydrodynamic derivatives in calm water. 
Ohmori (1998) developed WISDAM-V to simulate the static oblique towing tests, CMT 
(circular motion test) and PMM tests. Hydrodynamic forces and moments showed good 
agreement. Then, Orihara and Miyata (2003) developed WISDAM-X based on the 
previous code and the overset mesh technique, and the motions of SR108 containership 
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were simulated. Tahara et al (2002) simulated the oblique towing tests in different 
Froude numbers and drift angles, and the uncertainty analysis based on five grids with 
various sizes was conducted. Besides, the flow field information was also shown to 
reveal the superiority of the CFD method. Sakamoto et al (2012a) conducted the pure 
CFD simulations and experiments of the straight-ahead tests, static drift tests, pure sway 
and pure yaw tests. Based on the RANS code, the single-phase level set method is 

utilized for capturing the free surface and isotropic blended k k − −  (BKW) method 

is adopted as the turbulence model. The overset grid technique is adopted in their 
simulations. By verification and validation of the forces and hydrodynamic derivatives, 
they concluded that the wide background region is strongly recommended for the static 
drift test for the faster statistical convergence owing to the dissipation of spurious free 
surface waves. The simulated forces and hydrodynamic derivatives are in good 
agreement with the experimental ones. For the flow field information (Sakamoto et al, 
2012b), they also validated the local flow characteristics using the SPIV measurement 
data, which showed satisfying coincidence. Yoon et al (2015a, 2015b) conducted the 
benchmark research on the CFD simulations for the surface combatant 5415 in PMM 
tests. The forces, moments, motions, and flow field information were simulated and 
compared with the experimental data. the detailed verification and validation were 
conducted. They concluded that the linear hydrodynamic derivatives could be accurate 
with the error smaller than 10%, but the nonlinear derivatives were not. 

Later, the simulations for the free-running tests in calm water were performed 
owing to the improvement of the computational methods. Compared with the captive 
model test simulations, the simulations for the free-running tests should consider the 
self-propulsion, moving rudders and rotating propeller. Stern et al (1988) had ever 
simulated the hull-propeller interaction using the body force method based on the 
lifting-surface theory. Similarly, Kawamura et al (1997) simulated the self-propulsion 
case using a simplified propeller model. Phillips et al (2009) presented a method that 
significantly reduces computational cost by coupling a blade element momentum 
theory (BEMT) propeller model with the solution of the Reynolds averaged Navier 
Stokes equations. Then, they (Phillips et al, 2010) compared experimental results with 
numerical simulations using three different body-force propeller models which were 
the uniform thrust distribution without torque, the Hough and Ordway model with 
prescribed radial destitution of thrust and torque, radial and tangential distributions of 
thrust and torque from BEMT. The first one is not suitable due to the poor prediction 
accuracy of rudder resistance behind propeller. The other two methods are much more 
suitable for the research considering the hull-propeller-rudder interaction. Broglia et al 
(2013) simulated several different propeller models to research the effectiveness of the 
prediction methods for the turning motions. The classical Hough and Ordway model 
modified by two various semi-empirical models for the side force and the model based 
on the blade element theory are compared. It has been found that, accurate prediction 
of the turning circle is achieved when using modified Hough and Ordway models. The 
increase in computational resources compared with the traditional one is almost 
negligible. Afterwards, they (Dubbioso et al, 2013) carried out the zigzag test 
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simulations using different propeller models to select the accurate and efficient one. 
Through their simulations with structured blocks and overlap method, they concluded 
that the propeller effect and loads have a negligible effect on the trajectories and 
motions, which might be due to the small drift angle and low speed of their cases. For 
the simulation results, the predicted first overshoot angle is satisfactory, whereas the 
second overshoot angle is overpredicted. Carrica et al (2013) performed the simulations 
of turning tests and zigzag tests using the simple actuator disk approach. The error for 
the predicted maneuvering parameters is smaller than 10% which is much less than the 
error observed during the blind tests at SIMMAN 2008. In that paper, they also 
conducted the full-scale simulations and the simulations in wave conditions 
successfully but without validation by experiments.  

The actual rotating propeller rather than the body force method for the propulsion 
force simulation is also adopted by some scholars. There will be two methods to deal 
with the propeller motion, one is the sliding mesh technique, the other is the overset 
mesh technique. For the former one, there are some typical works, such as Seo et al 
(2010), Queutey et al (2012), and el Moctar et al (2014). For the later one, Mofidi and 
Carrica (2014) simulated the zigzag maneuvers of KCS model with moving rudder and 
rotating propeller. The overset mesh technique was adopted which showed satisfying 
simulation results. Later, Broglia et al (2015) and Dubbioso et al (2016) conducted the 
maneuvering motion simulations to assess the CFD code ability using the overset mesh. 
Compared with the body force method, the actual rotating propeller can capture more 
details on the hull-propeller interaction and the flow filed information is much closer to 
the real condition. However, the time step should be much smaller to make the propeller 
rotates a small angle during one time step which is about one tenth of the time step for 
the body force method. In addition, the grid around and behind the propeller should be 
finer. Hence, the calculation resources and required time are much larger. 

In recent years, the simulations for the free-running tests in waves are also carried 
out. Carrica et al (2015) started to simulate the turning tests in regular and irregular 
waves using the rotating propeller. Through the course mesh, they tried to minimize the 
simulation time and made the time ratio around 200 between the CFD CPU time and 
real physical time. Wang et al (2017) developed a course-keeping control module in the 
in-house RANS code developed on open-source platform OpenFOAM. Overset grid 
method and 6 DOF module were adopted to simulate the course-keeping maneuvers of 
a ONR Tumblehome model 5613 in head, quartering, and beam wave conditions. The 
motions, trajectories, and speeds were validated by the experimental ones, which shows 
the feasibility of the pure CFD methods. Due to the actual rotating propeller, the time 
step was set to 0.0005s corresponding to approximately 1.5degs of propeller rotation 
per time step. Each case required 225 wall clock hours using 40 processors. Later, they 
(Wang and Wan, 2018. Wang et al, 2018) performed the simulations for the turning 
maneuvers and zigzag maneuvers in head, quartering, and beam seas. The predicted 
results show good agreement with the experiment measurement with error up to 10%, 
which is satisfactory. The wall clock hours for turning maneuvers and zigzag maneuvers 
are 347h and 1206h, respectively. Kim et al (2021a) researched the wavelength effect 
on the course-keeping maneuvers and turning maneuvers in bow seas. Later, the course-
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keeping control and turning maneuvers in different wave directions were researched by 
them (Kim et al, 2021b).  

1.3 Scope and objectives 

Based on the above-mentioned current research status and the future requirement 
on the prediction of detailed flow field information, ship performance, and the hull-
propeller-rudder interaction in waves, the author aims to adopt the CFD method to solve 
the problem of maneuverability prediction in waves from two aspects.  

On the one hand, the CFD method on simulating captive model tests in waves are 
established to obtain the wave effect on maneuvering hydrodynamic derivatives. The 
hydrodynamic derivatives are crucial in the mathematical models based on the potential 
flow theory methods. The course-stability can also be assessed relying on these 
parameters. However, the hydrodynamic derivatives in waves are assumed to be the 
same as those in calm water in many mathematical models. Therefore, the CFD 
simulations on captive models test in waves can not only obtain the wave effect on 
hydrodynamic derivatives efficiently but also provide the course-stability index in 
waves to analyze the maneuverability in specific adverse conditions directly. 

On the other hand, considering the problem of unsatisfactory efficiency of the 
present simulations and insufficient research on the prediction of maneuvering motions 
in waves, the free-running test in waves simulations are carried out for the purpose of 
directly analyzing the maneuvering performance under adverse wave conditions and 
revealing the flow field information during the maneuvers in seas. Different from many 
previous simulations, the structured mesh is generated. Even though the unstructured 
grid can be generated more conveniently because of its high degree of automation, the 
structured mesh is chosen in this study for its high degree of quality, better convergence, 
less memory and required time to achieve the simulations combining efficiency and 
accuracy. The short-crested irregular wave condition is also researched in the present 
study. In addition, the time histories of the self-propulsion factors and the 
hydrodynamic forces on the hull are provided. 

According to these two aspects, the main work of present thesis can be listed as 
follows: 

1. Based on the RANS code, the simulation strategy for the planer motion 
mechanism tests under the surf-riding condition in following waves is 
proposed. The mathematical equations to calculate the maneuvering 
hydrodynamic derivatives in this condition are also provided to analyze the 
wave effect on the maneuvering components. Then, the course-stability index 
in waves can be calculated based on the criterion of Routh-Hurwitz and the 
largest real part of characteristic roots for course stability equations is 
calculated.  

2. The simulation strategy for the captive model tests under the head waves are 
provided. The overset mesh technique and Euler overlay method are adopted 
to conduct the simulations. Different from the following wave condition, the 
Fast Fourier transform (FFT) technique is utilized to separate the low-
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frequency and high-frequency components of the monitored hydrodynamic 
forces. Then, the low-frequency component is utilized to calculate the 
hydrodynamic derivatives in waves. 

3. The dynamic overset mesh method with a structured grid, level-set method, 
and body force method for the propulsion force simulation are adopted to 
predict the self-propulsion case, turning maneuver, and zig-zag maneuver in 
the calm water condition. The results are validated by the experimental data. 
The flow field information, vortices structures, and the time histories of the 
forces and motions are obtained. 

4. Based on the wave generation and absorption method as well as the region 
motion control strategy, the course-keeping maneuvers, turning maneuvers, 
and zigzag maneuvers in regular and irregular waves are simulated. The 
comparison between the results in the calm water condition and those in waves 
is also carried out to reveal the wave effect on the maneuverability. The flow 
field information, vortices structures, and the time histories of the forces and 
motions are also drawn. 

1.4 Thesis layout 

The current thesis is organized as follows. Chapter 1 states the general introduction 
of the present methods on the topic of maneuverability in waves and the research scope 
and objectives for the present research. Then, the detailed numerical simulation 
methodologies of the utilized codes, such as the governing equations, the linearization 
of equations, the overset grid meth method, the body force method, the wave generation 
method and so on, are presented in Chapter 2. Chapter 3 lays the simulation strategies 
for simulating captive model tests in following waves. The maneuvering hydrodynamic 
derivatives and the course-stability index in waves can be calculated based on the 
monitored forces, which reveal the wave effect on the maneuverability. Next, the 
simulations for captive model tests in head waves are introduced in Chapter 4. The Fast 
Fourier transform (FFT) technique is utilized to separate the low-frequency component 
to detect the wave-effected hydrodynamic derivatives. Then, Chapter 5 is dedicated to 
the simulation of free-running tests in calm water based on the body force method to 
predict the propeller force. The results are validated by the experimental data and the 
flow field information can be obtained. The simulation method and results of free-
running tests in regular and irregular waves are introduced in Chapter 6. Finally, 
Chapter 7 summarized the conclusions of the current thesis and prospects for future 
research.   
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Chapter 2 Methodology 

Computational Fluid Dynamics, abbreviated as CFD, is leveraged to unveil the 
hydrodynamic phenomenon of the ship maneuvering in waves in the present 
dissertation. The governing equations, discretization schemes, the solution algorithms 
will be introduced in this chapter. It should be noted that there are two codes utilized in 
the present dissertation, one is Star-CCM+ for the captive model tests simulations in 
waves (Chapter 3 and 4), the other is Nagisa (Ohashi et al, 2018) for the free-running 
tests simulations in waves (Chapter 5 and 6). The inherent calculation theories for these 
codes are similar. Therefore, the methodology of the Nagisa is utilized to describe in 
this chapter and the differences between these two codes will be specified in Chapter 3. 

2.1 Incompossible Reynolds-averaged Navier-Stocks Solver 

2.1.1 Governing equations of fluid dynamics 

For the general hydrodynamic problem, the governing equations are the 
incompressible three-dimensional Reynolds-average Navier-Stocks equation which is 
obtained based on the momentum conservation, and the continuity equation based on 
mass conservation. A difficulty for the solution of the governing equations is the 
decoupling of the continuity and momentum equations due to the absence of the 
pressure term in the former. Nagisa utilizes the artificial compressibility approach 
(Chorin, 1967) to solve this problem. For the unsteady computation, the dual time 
steeping method (Jameson, 1991) is applied. Hence, the dimensionless governing 
equations can be listed as: 

( ) ( ) ( )v v v

0
t x y z

  −  −  − 
+ + + + − =

    

e e f f g gq q H  (2.1) 

where  
T0 u v w=q ,  

Tp u v w =q . 

This equation is non-dimentionalized by the reference density (fluid density), 

reference velocity (initial vessel speed) and reference length (ship length). ( ), ,u v w  

denote the velocity in x, y, and z directions, respectively.  

The convective terms , ,e f g , viscous terms , ,v v ve f g , and source term H  in Eq 

(2.1) are expressed as: 

( )

( )

( )

g

g
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u

u u u p

u u v

u u w

 
 

− + 
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 

−  
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( )

( )
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g

g

g

v

v v u

v v v p

v v w

 
 

− 
=  

− + 
 

−  

f , 
( )

( )

( )

g

g

g

w

w w u

w w v

w w w p

 
 

− 
=  

− 
 

− +  
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0
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 
 
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 
 
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H    (2.2) 

where ( ), ,g g gu v w   are moving grid velocities,    is the parameter of the artificial 

compressibility approach and .1 0 =   is adopted in the present simulation. For the 

incompressible Newtown fluid, the viscous stress component ij   is defined as 

ji
ij i j

j i

uu1 u u
Re x x


 

 = + − 
   

, in which Re  represents the Reynolds number Re vl = ,   

is the kinematic viscosity coefficient, and i ju u   denotes the Reynolds stress component 

coming from the Reynolds decomposition. 

The pressure p  in Eq(2.1) is modified in the following equation for free surface 

flow: 

2

zp p
Fn

= +  (2.3) 

where p   is the pressure in a computational domain, Fn   represents the Froude 

number, and z   denotes the vertical coordinate from the static water plane ( z 0=  ). 
Through the modification, the gravity term is included in the pressure. 

The integrational form of Eq(2.1) can be expressed as Eq(2.4) relying on the finite 
volume method and Gauss integral theorem. 

( ) ( ) ( )( )
, , , , , ,

, ,

i j k i j k i j k

i j k

V V V

v v v
x y z

V

dV dV dV
t

n n n dS 0







 
+ −

 

+ − + − + − =

  



q q H

e e f f g g
      (2.4) 

Finally, the discretized form of the governing equation for a structured grid with a 
cell-centered layout can be listed as follows: 

     

, , , , , , , ,
, , , ,

i j k i j k i j k i j k
i j k i j k

i 1 2 j 1 2 k 1 2
v v vi 1 2 j 1 2 k 1 2

V V
V

t
0





+ + +

− − −

 
+ −

 

+ − + − + − =

q q
H

E E F F G G
    (2.5) 

where 1 2  represents contrary directions of each cell face, , ,E F G  are the convective 

fluxes, , ,v v vE F G  are the viscous fluxes whose definition and calculation method will 

be introduced in the next section. 
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2.1.2 Convective flux with the moving grid and Viscous flux 

For the simulations with a moving grid, the convective flux E  can be defined as:  

( )

( )

( )

g x

g y

g z

U

u U U pS

v U U pS

w U U pS

 
 

− + 
=  

− + 
 

− +  

E  (2.6) 

where x y zU uS vS wS= + +  , g g x g y g zU u S v S w S= + +  , ( ), ,x y zS S S   is the face area vector. 

The convective flux i 1 2E +  is evaluated using the upwinding scheme based on the flux 

difference splitting scheme of Roe (1986), 

( ) ( ) ( )L R L R
i 1 2 i 1 2

1 2+
+

 = + − −
 

E E q E q A q q  (2.7) 

where Lq   and Rq   are the left and right interface values of q   at the i 1 2+   face, 

respectively. ( )LE q   and ( )RE q   are calculated by Lq  , Rq   and  i 1 2+   face area 

vector with grid velocity gU .  

The values  Lq  and Rq  on the i 1 2+  face are evaluated based on the MUSCL 

method (Anderson et al, 1986) with the third order upwinding scheme: 
L
i 1 2 i 1 i i 1

2 5 1
6 6 6+ + −= + −q q q q  (2.8) 

R
i 1 2 i i 1 i 2

2 5 1
6 6 6+ + += + −q q q q  (2.9) 

The fluxes of F  and G  are calculated similarly by replacing the suffix i  with 

j  and k , respectively. 

For the viscous flux, vE  can be expressed as follows: 

xx x xy y xz z
v

xy x yy y yz z

xz x yz y zz z

0
S S S
S S S
S S S

  

  

  

 
 

+ +
 =
 + +
 

+ +  

E  (2.10) 

The velocity gradient on a face is calculated using the divergence theorem for the 

control volume constructed around the face i 1 2+ . The cell center values of i  and 

i 1+  located at the face center are utilized. Other variables are obtained by interpolation. 

Second order central scheme is adopted here. The viscous fluxes of vF  and vG  can be 
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calculated similarly by replacing i  with j  and k , respectively. 

2.1.3 Temporal Discretization 

According to the dual time steeping method, the time is discretized into the 
temporal t  and pseudo time  . The three-level backward differencing is utilized for 
the discretization of temporal time step (n), and the first order back ward Euler scheme 
for the pseudo-time step (m). The equations can be listed as follows: 

( ) ( ) ( ) ( ) ( ) ( )
, , , , , , , , , , , ,
n 1 n 1 n n n 1 n 1

i j k i j k i j k i j k i j k i j ki i 3V 4V VV
t 2 t

+ + − −
− +




q q qq  (2.11) 

( ) ( ) ( ) ( ) ( )( )* ***
, , , , , ,, , , ,
n 1 m 1 mn 1 m 1

i j k i j k i j ki j k i j ki i
VVV

  

+ ++ + −
 =



q qqq  (2.12) 

The pseudo-time step process is iterated at each temporal time step to meet the 
divergence free requirement, and the local time stepping approach is adopted for the 
pseudo-time step   to obtain fast convergence according to Eq(2.13). 

( )
, ,

, ,
.

i j k
i j k

gfaces

V
CFL

0 5 U U 2 c
 =

− +
 (2.13) 

2.1.4 Determination of grid velocity 

The grid velocity in x direction g  i 1 2U +  is derived from the volume where the face 

i 1 2+  sweeps. The swept volume at face i 1 2+  and time step n is expressed as n
i 1 2V + , 

and the time step n+1 is n 1
i 1 2V +

+ . Then, the grid velocity g  i 1 2U +  is obtained as follows: 

n 1 n
i 1 2 i 1 2

g  i 1 2

3 V V
U

2 t

+

+ +

+

−
=  (2.14) 

g  j 1 2U +  and g  k 1 2U +  can be calculated by substituting j and k for i, respectively. 

2.1.5 Linearization of equations 

The linearization for the convective and viscous fluxes is based on Eq(2.15). 

( )

( )

( )

( )

( )

( )

*
*

*
*

m
m 1 m 1m

m

m
m 1 m 1m v

v v m

+ +

+ +

 
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


 = + 
 

EE E q
q
E

E E q
q

 (2.15) 

The convective term in this equation is evaluated using the first order upwind 
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scheme. 
Finally, the linearized and implicit forms of Eq(2.5) can be expressed as follows: 

( ) ( )
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 (2.16) 

The symmetric Gauss-Seidel (SGS) method is applied to solve this equation. 

2.2 Overset grid method 

The overset grid method is based on the following steps (Kobayashi and Kodama, 
2016).  

1. Set the priority of the computational grid. The priority of a small grid is higher 
than a larger grid which covers it. The lowest priority grid should be the base 
region grid. For instance, a priority order can be a rudder grid, a rudder overlap 
grid, a hull grid, and a base grid. 

2. Identify the cells of a lower priority grid and those inside a body (named as the 
in-wall cells herein). For example, the cells of the rudder overlap grid inside 
the rudder surface are the in-wall cells.  

3. Define receptor cells for which the flow variables must be interpolated from 
donor cells of other grids. Two layers of the cells on a higher priority grid and 
facing the outer boundary are set as receptor cells to satisfy the third-order 
discretization of the NS solver. Additionally, two cells that neighbor the in-
wall cells, cells of a lower priority grid and cells inside the domain of a higher 
priority grid are also set as the receptor cells.  

4. Calculate the weight values for the overset interpolation by solving the inverse 
problem based on the Ferguson spline interpolation. 

Flow variables of the receptor cell are updated when the boundary condition is set.  
To eliminate the overlapping region on wall surfaces, the forces and moments are 
integrated on the higher priority grid. First, the cell face of the lower priority grid is 
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separated into several small faces. Then, these small faces are projected to the cell face 
of a higher priority grid based on the normal vector of the higher priority face. The 2D 
solid angle is calculated and the small face is determined to be inside or outside the 
higher priority face. The area ratio is zero if the small face is inside the higher priority 
one. Finally, the area ratio is integrated on the higher priority face, and then used to 
integrate the forces and moments on the lower priority face. 

2.3 Free surface model 

The single-phase localized level-set method (Hino, 1999) is applied to capture free 

surfaces. The level-set function  , representing the signed distance from the interface, 

near a solid wall region is calculated by solving the following extrapolation equation: 

x y zC C C 0
x y z

   



   
− − − =

   
 (2.17) 

where ( ), ,x y zC C C  are the vectors of the gradient of the distance from a solid wall. 

The free surface condition can be approximated using the following two 
conditions in the single-phase method. First, the velocity gradients normal to the free 
surface are zero (the kinematic boundary condition). The velocities are extrapolated to 
the air region (𝜙 < 0) by solving Eq(2.18). 

x y zC C C 0
x y z

   
− − − =

   

q q q q  (2.18) 

where ( ), ,x y zC C C   are the tangential vectors near the wall region and the vector of 

gradient   away from the wall. 

Second, the pressure on the free surface is given as atmospheric pressure: 
c
2

Zp
Fn

=  on the free surface 

where atmospheric pressure is assumed to be zero and cZ  is the z-coordinate of the 

interface. As shown in Fig 2.1, the closest point on the water-air interface from the cell 
i  is defined as point A and the closest point from the cell i 1+  is defined as point B. 
The intersection of the interface and the line connecting the cell centers is expressed as 

point C. Therefore, cZ can be calculated by 

i i 1 i 1 i
c

i i 1

Z Z
Z

 

 

+ +

+

+
=

+
 (2.19) 

For the air region, pressure is extrapolated using Eq(2.18). 
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FIGURE 2.1 Pressure condition on a free surface 

2.4 Methods to deal with propeller 

The body force method based on the potential flow theory (Ohashi, 2018) is 
adopted. The propeller effect is accounted for by the body forces that are calculated 
using the following equations: 

( )
( ) ( ) ( )( ),

,
2

D ox o
x

1 2C NC r 1 h r r V Vr V
f r

r 2 r





+
= −  (2.20) 

( )
( ) ( ) ( )( ),

,
2 2

D c ox
t

1 2C N r 1 h r r Vr V
f r

r 2 r





+
= +  (2.21) 

cosy tf f =  sinz tf f =  (2.22) 

where r  and   are the cylindrical coordinates at the propeller plane. The propeller 

circle is divided into fan-shaped segments at ( ),r  . ( ),r   is the vortex strength, and 

( ),r   is determined using the equation based on the boundary condition at the 

segment ( ),r  . xV  and V  are the inflow velocities to the segment, and oxV  and oV   

are the circumferential averaged velocities. DC  is a drag coefficient that is given by 

the empirical formula, N is the blade number of a propeller, ( )C r  is a cord length at 

each radial direction, and ( )h r  is the pitch of a free stream vortex. 

The coupling between the flow field and the propeller model is performed by the 

velocities xV  and V . First, the velocity at the segment center is interpolated from the 

computational grid. Then, the ( ),r    is determined, and the body forces are 

calculated. Finally, the cross-section between the computational grid and the propeller 
segment is searched, and the forces at the cell are derived by multiplying the body forces 
and the cross-sectional area. It should be noted that the coordinate transfer is necessary 
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for motion calculation because of the polar coordinate system utilized here.  

2.5 Body motions calculation 

Body motions are prescribed (e.g., the rudder motions during the turning circle 
tests) or calculated by solving the motion equation (e.g., the hull motion). The motion 
equation in the body-fixed coordinate system is as follows: 

( )

( )
( )

( )
( )

( )

x

y

z

x z y x

y x z y

z y x z

m a b c c q F

m b c p a r F

m c a q b p F

I p I I q r M

I q I I r p M

I r I I p q M













     − + =


    − + =


    − + =


  + − =
   + − =

   + − =


 (2.23) 

where m   is the system mass, , ,x y zI I I   represent the products of the mass and the 

moments of inertia in x, y, and z directions, respectively. , ,a b c     denote the 

nondimensionalized linear velocities, and , ,p q r    are the nondimensionalized angular 

velocities in the body-fixed coordinate system. 
The coordinate transformation can be performed using Euler angles (Carrica el al., 

2007). The transfer matrix for the linear velocities and forces from the earth-fixed 
coordinate to the body-fixed coordinate is presented as follows: 

cos cos sin cos sin
sin cos sin sin cos cos cos sin sin sin sin cos

sin sin cos sin cos cos sin cos sin sin cos cos

    

           

           

− 
 
− + +
 
 + − + 

 (2.24) 

For the angular velocities and moments, the transfer matrix from the earth-fixed 
coordinate to the body-fixed coordinate is defined as follows: 

sin
cos cos sin
sin cos cos

1 0
0
0



  

  

− 
 
 
 − 

 (2.25) 

For example, hydrodynamic forces ( ), ,x y zF F F  on the earth-fixed coordinate are 

transformed to the body-fixed coordinate as Eq(2.26). 

cos cos sin cos sin
sin cos sin sin cos cos cos sin sin sin sin cos

sin sin cos sin cos cos sin cos sin sin cos cos

x x

y y

z z

F F
F F
F F

    

           

           







−     
     

= − + +
     
     + − +     

 (2.26) 

Hydrodynamic moments ( ), ,x y zM M M  on the earth-fixed coordinate are similarly 

transformed. 
In turn, for the linear velocities and forces, the transfer matrix from the body-fixed 
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coordinate to the earth-fixed coordinate can be expressed as follows: 

cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

           

           

    

− + 
 

+ −
 
 − 

(2.27) 

The transfer matrix for the angular velocities and moments is expressed as follows: 

sin tan cos tan
cos sin

sin cos cos cos

1
0
0

   

 

   

 
 

−
 
  

 (2.28) 

The accelerations of the motions can be obtained by solving the motion equation 

for the body-fixed coordinate, and the velocity h   representing all components is 

derived from the following equation: 
n 1 n n 1h h th+ += +  (2.29) 

The velocity h  of the body-fixed coordinate is transformed into the earth-fixed 

coordinate by the previous angular velocities transfer matrices. Then, the displacement 
of a predictor step is calculated using the third-order Adams-Bashforth scheme: 

( )n 1 n n 1 n n 1th h 23h 16h 5h
12

+ + −= + − +  (2.30) 

2.6 Wave generation and absorption method 

The incoming waves are generated in a specified region near the boundaries of the 
calculation domain. As shown in Eq(2.31), the flow variables are calculated by the 

solution solvedq   of the RANS code, the theoretical value waveq   of the potential flow 

theory, and the blending function  . 

( ) solved wave1  = − +q q q  (2.31) 

The level-set function utilized for capturing the free surface is also blended in this 
designated region as follows: 

( ) solved wave1   = − +  (2.32) 

where solve  represents the level-set function calculated from the RANS code and wave  

is obtained from the wave theory.   is the weight function relying on the distance 
from the outer boundary and can be expressed as follows: 

.

sin

m o

x n b
b m

m b

1 0                       x x x

x x
   x x x  

2 x x
 

 


=  −
   − 

 (2.33) 
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.

sin

m o

y n b
b m

m b

1 0                       y y y

y y
   y y y  

2 y y
 

 


=  −
   − 

 (2.34) 

where bx  and by  are the coordinates from where the blending region starts. ox  and 

oy  are the locations of the boundaries. mx  and my  are the arbitrary locations from 

where the constant value (1.0) starts. 
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Chapter 3 Captive model tests in following waves 

Restrained by the required large computational resources and long CPU time, the 
work of the pure CFD simulations on free-running tests in waves are few. Even for the 
calm water condition, simulations are not widely performed by scholars considering the 
complex hull-propeller-rudder interaction and the requirement for huge computational 
resources. The potential flow theory methods, containing the two-time-scale method 
and the unified method, are widely studied and adopted to predict the loads and motions 
when ships maneuvers in waves. The viscous maneuvering forces in these mathematical 
models are calculated by the maneuvering hydrodynamic derivatives obtained from 
experiments, CFD simulations, or empirical formulas. Simonsen et al (2012) utilized 
the simulated static PMM data to predict the standard 10/10 and 20/20 zigzag tests and 
35deg turning circle maneuvers with good agreement. He et al (2016) replaced the 
experimental linear hydrodynamic derivatives with computed ones obtained by Star-
CCM+ in the MMG mathematical model to simulate the turning and zigzag maneuvers 
with high accuracy. Relying on the successful simulations in calm water condition, 
many scholars extended the methods to the wave condition directly. For example, 
Sadat-Hosseini et al. (2011) adopted the simulated linear and nonlinear hydrodynamic 
derivatives in calm water to predict the broaching, surf-riding and periodic motion for 
the ONR Tumblehome model.  

So far, most of the hydrodynamic derivatives obtained under the calm water 
condition are directly utilized in the mathematical model for predicting the 
maneuvering motions in waves without adjustment. Only one modification is 
considered in the surge motion, which is the added resistance in waves. The wave effect 
on the lateral velocity related parameters and yaw angular velocity related parameters 
are ignored. However, the previous experiments (Hamamoto, 1971, Son and Nomoto, 
1982, Bonci et al, 2019) reveal that the wave effect on these hydrodynamic derivatives 
should not be ignored all the time. Furthermore, some scholars (Reed and Beck, 2008) 
attribute the unsatisfied prediction results of the potential theory methods to the 
ignorance of the wave effect on the maneuvering hydrodynamic derivatives. Hence, 
this chapter is devoted to obtaining the hydrodynamic derivatives under waves through 
numerical simulations and comparing them with the experimental values for validation. 
The influence of the wave on hydrodynamic derivatives will be analyzed and discussed. 

The relevant research has been started several decades ago. For the experimental 
research on this topic, the first work might be the research of Hamamoto (1971). To 
obtain the hydrodynamic derivatives in different relative positions between ship and 
wave, a flap plate was fixed at the front of the carriage in the towing tank. Then, the 
wave will be generated behind the plate when the model fixed on the PMM facility is 
towed by the carriage. Relying on this experimental setup, the relative position between 
the model and wave can be fixed during the PMM tests. Hence, the hydrodynamic 
derivatives in waves under the specific relative position between the ship and wave are 
obtained, which reveals the huge differences between the hydrodynamic derivatives in 
calm water and waves. Then, Renilson and Driscoll (1981) conducted the similar PMM 
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tests in following waves in the CWC (Circulating Water Channel). A flap plate is also 
utilized to generate a wave zone with zero encounter wave frequency to obtain the 
hydrodynamic derivatives in various wave positions. Following them, Son and Nomoto 
(1982) conducted PMM tests in waves, and the coupled roll motion was considered for 
the first time. Recently, Araki et al (2011) performed the captive model tests in 
following waves to obtain the hydrodynamic derivatives in waves for the purpose of 
improving the prediction accuracy of the broaching-to phenomenon. However, the 
prediction accuracy did not change significantly considering the wave effect on 
hydrodynamic derivatives even though these coefficients varied greatly with the change 
of relative position between ship and wave. They considered the reason might be the 
insufficient consideration of parameters in the model, such as the roll-related 
hydrodynamic derivatives. Bonci et al (2019) carried out captive model tests in 
following and stern quartering waves to obtain the linear hydrodynamic derivatives. 
Based on comparisons between the experimental and numerical results, a correction 
method is proposed and used to predict the broaching-to phenomenon. 

However, the previous research is limited on the experimental method. There seem 
few CFD simulations on this topic. Considering economy and efficiency, the numerical 
simulations of the captive model tests in following waves are performed in this chapter. 
Furthermore, the flow field information can be obtained through the CFD methods. 
Some contents of this chapter were published in the paper of the author (Ma et al, 2021). 

3.1 Simulation conditions 

The target ship model is the containership S175 (SR108) because it is one of the 
benchmark models for researching the maneuverability in waves according to ITTC 
(ITTC, 2017b) and the experimental data of this model is available. To compare with 
experimental results published by Son and Nomoto (1982), the same ship model scale 
of 1/58.33 is adopted. The principal particulars and geometry of the model-scaled ship 
are shown in Table 3.1 and Fig 3.1, respectively. 

To obtain the hydrodynamic derivatives in waves, PMM tests are carried out under 
the surf-riding condition in regular following waves. The surf-riding condition denotes 
that the ship has the same velocity as the wave celerity in the direction of wave 
propagation, in other words, the relative position between the ship gravity center and 
the wave is stationary. In the present research, mainly four typical relative positions of 
the ship gravity center on the wave are considered, where the gravity center of the ship 
locates on the wave crest, up-slope, down-slope and wave trough. Fig 3.2 illustrates the 

definition of the four relative positions of ship and wave. Obviously, G 0 or 1  =  

represents that the gravity center of the ship locates on the wave trough, .G 0 25  =  

up-slope, .G 0 5  =  crest and .G 0 75  =  down-slope, where   is the wavelength 

and G  represents the longitudinal position of the ship gravity center. To evaluate the 
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wave effect on hydrodynamic derivatives systematically, all four typical relative 
positions are simulated.  

 
FIGURE 3.1 Geometric model of the S175 containership with a rudder 

 
FIGURE 3.2 Relative positions between the ship and wave 

TABLE 3.1 Principal particulars of S175 with a rudder 
Specifications Full scale Model 

Length between perpendiculars (m) 175 3.00 
Beam (m) 25.4 0.435 
Draft (m) 8.5 0.1457 

Block coefficient 0.559 0.559 
L.C.B. from F.P. (m) 90.65 1.554 

Radius of gyration about z-axis (m) 42 0.72 
Height of C.G. above base line (m) \ 0.1290 

Height from keel to transverse metacenter KM(m) 10.39 0.1781 
Height from keel to center of buoyancy KB (m) 4.6154 0.07912 

Displacement (m3) 21222 0.10686 
Rudder height(m) 7.7583 0.133 

 
It should be noticed that the definition of the surf-riding condition in the present 

captive model tests is a little different from that in the free-running tests. In the latter, 
the surf-riding condition is a phenomenon when a ship traveling in the following sea is 
captured by the wave and forced to move at the same speed as the wave celerity. The 
horizontal motions are free which might change rapidly, and this unstable phenomenon 
might cause the capsizal named as broaching-to. For the present simulated captive 
model tests, the horizontal motions (surge-sway-yaw) are predetermined, which makes 
the horizontal motions during the surf-riding condition somewhat different from those 

O

Z

X

Wave direction
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in the free-running tests. Nevertheless, for the hydrodynamic derivatives in the surf-
riding condition obtained through the PMM tests, the differences between the definition 
of the surf-riding condition in the free-running tests and that in the captive model tests 
do not affect the results. Therefore, the characterization of "surf-riding" for the ship 
conditions representing the same vessel speed as the wave celerity is acceptable, which 
is also accepted by other scholars (Motora et al, 1981, Son and Nomoto, 1982). 

Two right-handed coordinate systems, i.e., the earth-fixed cartesian system 

0 0 0 0O X Y Z−   and the ship-fixed cartesian system G XYZ−  , are used to solve the 

maneuvering motion equations, as shown in Fig 3.3. In the ship-fixed system, the 3 
DOF maneuvering motion equations can be expressed as Eq(3.1) relying on the rigid 
body motion functions and the velocity transformation between two coordinate systems: 

( ) ( )

( ) ( )

( )

x y H W

y x H W

z z H W

m m u m m vr X X

m m v m m ur Y Y

I J r N N

 + − + = +


+ + + = +


+ = +

 (3.1) 

where m   stands for the ship mass, xm   and ym   are the added mass in X   and Y  

directions, respectively. zI  represents the moment of inertia around the z-axis, and zJ  

is the added moment of inertia around the Z -axis, u  and v  are ship longitudinal 
and lateral speed in the ship-fixed system, r  is the ship yaw rate around the gravity 
center of the ship, X , Y , N  are the forces and moment in longitudinal, lateral, and 
yaw directions, the subscripts H and W represent the hull and wave forces. 

  
FIGURE 3.3 Coordinate systems utilized for the PMM test simulations in waves 

To compare with the experimental data and simplify the problem, we take the same 
assumption as Son and Nomoto (1982) did that the hydrodynamic derivatives are linear 
ignoring the nonlinear and coupling hydrodynamic derivatives. The wave forces can be 

expressed as the linear function of the incident wave angle   because the wave force 

component is constant in this condition and this assumption is also be used by other 
scholars (Araki et al, 2011). Then, Eq(3.1) can be transferred into Eq(3.2) by linear 
expansion. 
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( ) ( )

( )

y x v r

z z v r

m m v m m ur Y v Y r Y

I J r N v N r N








 + + + = + +


+ = + +

 (3.2) 

Due to the linear assumption, only the oblique towing tests and the pure yaw tests 
should be simulated to obtain hydrodynamic derivatives in Eq(3.2). 

For the oblique towing tests, the simulation conditions are shown in Table 3.2. The 
motion definition is illustrated in Fig 3.4. The ship is moving straight ahead with a 
constant drift angle. Meanwhile, the wave celerity is equal to the vessel longitudinal 

speed Mu , which makes the relative position stationary. 

For the pure yaw tests, the simulation conditions are summarized in Table 3.3. The 
motion definition is illustrated in Fig 3.5. The ship is moving ahead with a yaw angular 
velocity, which makes the lateral velocity component in the ship-fixed coordinate 
system equals zero. The motions can be expressed as follows. 

( )

( )
( )

max cos

sin
cos

M

2 2

v y t

r t
1 t

 




 

= −



= +

 (3.3) 

where max My u = , Mu  is the vessel longitudinal speed in the earth-fixed coordinate 

system which equals the wave celerity. In addition, the wave incidence angle   is the 

same as the yaw angle   , which is easy to obtain that r  = = . Considering the 

extremely small value of   , we regarded 
( )cos2 21 t



 +
  as a constant as Son and 

Nomoto (1982) did. Then, the coefficients in Eq(3.3) can be expressed as follows. 

( )

( )

cos
sin
0

0

t
r r t

0

  



 

= −


=
 = =

(3.4) 

where the 0  is the maximum incident wave angle, 0r  is the maximum yaw angular 

velocity.  
For the present simulations, the model speed is 2.4 m/s corresponding to the 

Froude number of 0.443 which is the same as the experimental data. The wave 

parameters in simulations are .L 1 0 =   and .h 0 0625 =  , which are in accordance 

with the experimental data. The initial position should be precalculated to ensure the 
correct position of the gravity center of the ship on the wave. The heave and pitch 
motion in all simulations are free. 

 
 



TABLE 3.2 Simulation conditions for oblique towing tests

Drift angle (deg) Relative positions between the ship and the wave G 

0, -2, -4 Trough, Up-slope, Down-slope, Crest

TABLE 3.3 Simulation conditions for pure yaw tests

maxy (m) Oscillation frequency 
ω(1/s)

Maximum yaw 
angular velocity

0r (1/s)
G 

0.1 0.6283 0.0104 Trough, Up-slope, 
Down-slope, Crest0.2 0.6283 0.0208

0.3 0.6283 0.0311

FIGURE 3.4 Schematic diagram of the oblique towing test

FIGURE 3.5 Schematic diagram of the pure yaw test

-v

Y
X

VR=uMβ

χ

G
Yo

XoOo

u

Y
X

uM

r

χ

G
Yo

XoOo

u=VRvM



 

28 

 

3.2 Simulation method 

There are some differences between the simulation method of the Star-CCM+ 
utilized in this Chapter and the method introduced in Chapter 2. For the solution method 
of the government equations, the method in this chapter adopts the SIMPLE (Semi-
Implicit Method for Pressure Linked Equations (Patankar, 1981)) method rather than 
the artificial compressibility approach.  

Considering the huge wave steepness and possible green water phenomenon, the 
two-phase VOF method is adopted to capture the free surface rather than the single-
phase level-set method. The method for wave generation and absorption is also different. 
To avoid the reflection of the ship wave and minimize the calculation domain, the Euler 
overlay method (Kim et al, 2012) is utilized on the inlet, outlet, and side boundaries. 
For the six surfaces of the cubic computation domain, the velocity-inlet boundary 
condition is applied to five surfaces except the upside one where the pressure-outlet 
boundary condition is used. As is shown in Fig 3.6, for the Euler overlay method, a new 
source term is added to the transport equations in the form of Eq(3.5) for the purpose 
of transfering the solution of internal RANS solver to that of a potential flow theory 
solver on the boundary smoothly. 

( )*
i i if u u= − − (3.5) 

where the coefficient    satisfies the equation ( )cos2
0 x 2  = −  , iu   is the current 

solution of the transport equation and *
iu  is the value towards which the solution is 

forced.  
As for the wave type, the fifth order stokes wave is adopted because it is closer to 

the actual generated wave under the high wave steepness condition ( .h 0 0625 = ). The 

simulated wave evaluation around the ship model is monitored and validated by the 
theoretical data based on the Stokes theory of waves. The comparison result shown in 
Fig 3.7 reveals the accuracy of the present simulation strategy for wave generation. 

 
FIGURE 3.6 Euler overlay method illustration 

3D Navier-Stokes

Forcing Zone



FIGURE 3.7 Comparison of the computational and theoretical wave elevation (x=6m)

3.3 Computational domain and Grids

To conduct the PMM motions simulation under the surf-riding condition, the 
whole calculation domain should be divided into two parts, which are the overset region 
and the background region. As shown in Fig 3.8, the background domain extends to -
2.5L<x<2.0L, -1.5L<y<1.5L, and -1.0L<z<0.8L. The overset mesh region has the same 
motions as the ship, i.e., the PMM motion together with the pitch and heave motions. 
The background region moves with the ship to minimize the calculation domain by 
setting the same longitudinal and lateral velocities as the ship. Considering better 
maintaining the stability of the flow field, the background region will not rotate with 
the same yaw angular velocity as the ship model in present study.

To capture the motion and wave accurately, the grid near the ship and free surface 
should be refined. The total grid number for the oblique towing tests and the pure yaw 
tests is around 8 million, where the background grid varies with different lateral 
distances of different pure yaw test simulation cases. For the case with larger maximum 
lateral distance, the overlap region should be larger making the total grid number larger. 

FIGURE 3.8 Illustration of the calculation domain
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FIGURE 3.9 Overset grid and the finer mesh around the free surface 

3.4 Verification 

The verification and validation for the numerical simulation method should be 
conducted for determining the uncertainty. Restrained by the unprovided experimental 
data for the time histories of the forces, the validation of forces and moments during 
the PMM tests is not conducted. However, the calculated hydrodynamic derivatives 
using the forces can be validated by the experimental data in next section. The V&V 
process is carried out according to ITTC 7.5-03-01-01 (ITTC, 2017a). 

For the oblique towing tests, the lateral forces and yaw moments are utilized to 
verify the grid convergency and calculate the grid uncertainty. The oblique towing test 
chosen to conduct the uncertainty analysis is the case in which the gravity center locates 
on the up-slope position with a -4 deg drift angle. The mesh of the calculation domain 
is generated based on a base size, which means that the base size will determine the 
whole mesh of the calculation domain. Therefore, we generated three meshes referred 

to as fine (S1), medium (S2), and coarse (S3) based on the refinement ratio ( Gr ) of 2 . 

The results of grid convergence are shown in Table 3.4. 

In this table, 21 2 1 1 1=S S S S −   and 32 3 1 2 1=S S S S −   stand for the changes 

between medium-fine solutions and coarse-medium solutions, respectively. Then, the 

convergence ratio GR   can be defined as 21   divided by 32  . Three convergence 

conditions are possible: (i) Monotonic convergence (MC): G0<R 1 ; (ii) Oscillatory 

convergence (OC): GR 0  ; (iii) Divergence: GR 1  . For condition (i), generalized 

Richardson extrapolation (RE) is utilized to estimate the grid uncertainty GU   and 

simulation numerical error due to the grid 
GRE . For condition (ii), uncertainties are 

Background mesh

Overset meshOverlap region
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obtained from the oscillation maximum US  and minimum LS  , i.e., ( )G U L
1U S S
2

= − . 

More than three cases should be conducted if the condition (ii) is used. For condition 
(iii), errors and uncertainties cannot be estimated. In the present study, only three 
solutions using different grid sizes are performed. Therefore, the order of accuracy   

Gp  can be defined as ( )

( )

ln
ln

32 21
G

G

p
r

 −
=  and the estimate for error is 

G G

21
RE p

Gr 1


 =
−

.  

As is clearly shown in Table 3.4, for simulations on oblique towing tests in waves, 
the lateral force shows monotonic convergence (MC) and the predicted value achieves 
satisfactory accuracy with the uncertainty of 0.176%. The yaw moment shows 
oscillatory convergence (OC) with the uncertainty of 3.779%. This chart indicates that 
the grid density for present generated grid has a slight influence on the hull forces. In 
addition, the yaw moment is more sensitive to the grid compared with the lateral force 
for the oblique towing tests which might be due to the small value.  

Different from the steady forces during oblique towing tests, the lateral force and 
yaw moment during the pure yaw tests are sinusoidal rather than constant. According 
to ITTC guidance (ITTC, 2017a) and the time histories of forces, the Fourier series are 
adopted to express the forces as shown below. 

cos sin
cos sin

CFD 1 2

CFD 1 2

Y Y t Y t
N N t N t

 

 

= + 


= + 
 (3.6) 

Therefore, we can conduct uncertainty analysis through these coefficients 1Y , 2Y , 

1N , and 2N . Table 3.5 shows that all the lateral force components and yaw moment 

components are monotonic convergent. Contrary to the results of oblique towing tests, 
the lateral forces in pure yaw tests seem to be more sensitive to the grid with the highest 
error of 14.45%. All the coefficients are convergent which reveals that the numerical 
simulation grid is acceptable. 

TABLE 3.4 Grid convergence study of oblique towing tests 
 Y N 

S1 33.6 17.2 
S2 33.5 16.5 
S3 33.2 17.5 
ε21 -0.0030 -0.0407 
ε32 -0.0089 0.0581 
RG 0.33 -0.70 

Convergence MC OC 
pG 3.169925 / 

GRE   -0.05004 / 

UG 0.059085 0.65 
UG (%S1) 0.176 3.779 
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TABLE 3.5 Grid convergence study of pure yaw tests 
 

1Y  2Y  1N  2N  

S1 3.892 -2.722 -0.940 13.010 
S2 3.916 -3.106 -1.073 13.620 
S3 6.331 -3.865 -4.032 14.850 
ε21 0.0062 0.1411 0.1414 0.0469 
ε32 0.6205 0.2788 3.1475 0.0945 
RG 0.0099 0.5059 0.0449 0.4959 

Convergence MC MC MC MC 
pG 13.306 1.966 8.953 2.024 

GRE   0.0002 -0.3934 -0.006 0.601 

UG 0.0002 0.3934 0.006 0.606 
UG (%S1) 0.01 -14.45 0.7 4.7 

3.5 Results and discussions 

Based on the previous verification, the grid is acceptable for its small uncertainty. 
Then, systematical simulations of oblique towing tests and pure yaw tests are performed 
and the hydrodynamic derivatives in following waves can also be calculated and 
validated by experimental data. The simulations for predicting the hydrodynamic 
derivatives in calm water is also carried out to compare with those in waves. The 
detailed setup for the simulations in the calm water condition can refer to the previous 
work of the authors (Ma et al, 2019). By comparison, the wave effect on the linear 
hydrodynamic derivatives can be evaluated. The course stability in waves can also be 
analyzed to determine the reason for the occurrence of the broaching-to phenomenon.  

3.5.1 Hydrodynamic derivatives obtained from oblique towing tests 

The monitored hydrodynamic forces from the numerical simulations include the 

added mass component (inertia force y xm v m ur+   and zJ r  ), viscous maneuvering 

forces ( v rY v Y r+   and v rN v N r+  ), and wave forces ( Y   and N  ). Therefore, the 

lateral force CFDY  and yaw moment CFDN  monitored in numerical simulations can be 

expanded as follows. 

( )

( )

CFD v r y x

CFD v r z

Y Y v Y r Y m v m ur

N N v N r N J r








 = + + − −


= + + −

 (3.7) 

For oblique towing tests, the lateral velocity in the ship-fixed coordinate system is 
constant and the yaw angular velocity is zero, which can be expressed as  v r r 0= = = . 
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Hence, Eq(3.7) can be simplified as Eq(3.8). 

CFD v

CFD v

Y Y v Y
N N v N









= +


= +
 (3.8) 

The non-dimensional variables are shown below: 

CFD CFD
CFD CFD2 2 2 3

Y N
Y   N

1 2 U L 1 2 U L
v v U   r rL U       

 

   


 = =


    = = = =

 (3.9) 

Due to the relationship between the drift angle and dimensionless lateral velocity 

( )sin v U v U v = −  − = − , the dimensionless equations can be expressed as follows by 

combining Eq(3.8) and Eq(3.9).  

*

*

*

*

CFD

CFD

Y Y Y Y

N N N N

  

  

  

  

      = + =


      = + =


 (3.10) 

where *  is of the same physical meaning and value as  . The reason for choosing 

different symbols is to distinguish whether the wave forces are considered. 
After a series of simulations, the lateral forces and yaw moments in different drift 

angles in various relative positions are calculated. The lateral-velocity-related 

hydrodynamic derivatives *Y

  and *N


 , which are the slopes of the force-fitting lines, 

can be obtained by the regression of these forces. Fig 3.10 shows the fitting curve and 

the regression formula of *N

  when the ship gravity center locates on the wave crest 

( .G 0 5  = ). The hydrodynamic derivatives in other relative positions between the ship 

and the wave can be obtained in the same way. The results are summarized in Table 3.6 
and drawn in Fig 3.11. The error between the predicted derivatives and the experimental 
ones shows that the simulated lateral forces agree well with the experimental results. 
However, when the ship gravity center locates on the up-slope condition and the wave 

trough, the predicted value *N

   is not quite close to the experimental results. The 

errors mainly come from two aspects. On the one hand, there is quite serious green-
water phenomenon during the simulations of the PMM tests in following waves. In Fig 
3.12, we can notice that there is a serious green-water phenomenon when the gravity 
center locates on the up-slope condition (Fig 3.12(b)) and the wave trough condition 
(Fig 3.12(c)), in which the errors are huge. On the other hand, the yaw moment when 
the gravity center locates on the wave trough is so small that a small difference in the 
flow field will cause a large relative error. However, the absolute error is not significant. 
In addition, Fig 3.11 also indicates that the variation trend and numerical value of 
hydrodynamic derivatives obtained from the simulation are in good agreement with the 
experimental ones. 
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Fig 3.11 illustrates that *Y

   and *N


   fluctuate in an approximately sinusoidal 

form around their calm-water values with the change of the relative position G  . In 

Fig 3.11(a), when the gravity center locates on the up-slope position, *Y

  reaches the 

maximum value. On the down-slope position, it reaches the minimum value. The 

maximum value is 77% larger than the minimum value. On the contrary, *N

  has a 

contrary tendency. The maximum value occurs on the down-slope position and the 

minimum value on the up-slope position. Compared with *Y

 , *N


  fluctuates more 

significantly. The maximum value of *N

   is 4.5 times of the minimum value. It is 

revealed that the hydrodynamic derivatives in regular waves change significantly. Thus, 
the wave effect on the maneuvering hydrodynamic derivatives cannot be ignored under 
this condition. Furthermore, it illustrates that the yaw moments induced by the drift 
angle change more rapidly compared with the lateral forces induced by the drift angle.  

 

 
FIGURE 3.10 Curve fitting of the *N


  with G =0.5   
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(b) 

FIGURE 3.11 Comparison of hydrodynamic derivatives in calm water and regular 

following waves (a) *Y

  (b) *N


  
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（c） 

 
(d) 

FIGURE 3.12 Free surface captured for oblique towing tests in regular following waves 
(β=-4°) (a) crest (b) up-slope (c)wave trough (d) down-slope 

Fig 3.12 shows the contour maps of wave elevation with different relative 
positions between the ship and the wave. The generated Kelvin waves in these pictures 
are similar but the obvious green-water phenomenon occurs when the ship gravity 
center locates on the wave trough. In addition, the cases with obvious trim by stern (Fig 
3.12 (a) and (b)) have larger wave elevations of the Kelvin waves. 

The contour maps of wave elevation with different drift angle when the gravity 
center locates on the wave crest are provided in Fig 3.13. The asymmetry of the flow 
field induced by the drift angle causes lateral forces and yaw moments. For the 
condition with a larger drift angle, the wave height range will be wider. 

Fig 3.14 shows the dynamic pressure on the hull in various drift angles when the 
gravity center locates on the wave crest. The differences between the port side and 
starboard side can be seen clearly. For example, the red dotted rectangles show the 
differences between the bow and the parallel middle body near the stern. The dynamic 
pressure on the port side is larger than that on the starboard on the bow of the ship. 
However, when it comes to the parallel middle body near the stern, the dynamic 
pressure on the port side is much smaller than that on the starboard. With the increasing 
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drift angle, the differences will be much more obvious. Fig 3.15 shows the dynamic 

pressure on the hull with a constant drift angle o4 =  on various relative positions. On 

different relative positions, the distribution areas and the intensity of the dynamic 
pressure values are totally different. 

 
(a) 

 
(b) 

 
(c) 

FIGURE 3.13 Free surface captured for oblique towing tests in regular following waves 

( .G 0 5  = ) (a) β=0° (b) β=-2° (c) β=-4° 



(a)

(b)

(c)

FIGURE 3.14 Dynamic pressure distribution on the hull ( .G 0 5  = )

(a) β=0° (b) β=-2° (c) β=-4° 

(a)

(b)

(c)

FIGURE 3.15 Dynamic pressure distribution on the hull ( o4 = − )

(a) .G 0 75  = (b) .G 0 25  = (c) .G 0 5  =

(b)
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TABLE 3.6 Comparison of derivatives in regular following waves obtained from CFD 
and experiments 

Relative position Derivatives CFD Experiment Error 

Wave crest 
*Y
  0.0180 0.0203 -11% 

*N
  0.0059 0.0055 7% 

Down-slope 
*Y
  0.0155 0.0155 0% 

*N
  0.0077 0.0070 10% 

Up-slope 
*Y
  0.0275 0.0240 15% 

*N
  0.0017 0.0010 70% 

Wave trough 
*Y
  0.0232 0.0238 -3% 

*N
  0.0061 0.0043 42% 

3.5.2 Hydrodynamic derivatives obtained from pure yaw tests 

The ship conducts pure yaw tests with the same forward speed as the wave celerity 
to realize the surf-riding condition. The motion control is set according to Eq(3.4) to 

obtain the linear yaw-rate-related hydrodynamic derivatives rY    and rN   . In these 

simulations, the lateral velocity component is zero, which means v v 0= = . Therefore, 
the Eq(3.7), which are the forces obtained by the numerical simulations, can be 
simplified as below: 

CFD x r

CFD z r

Y m ur Y r Y
N J r N r N









= − + +


= − + +
 (3.11) 

Substituting the Eq(3.4) into this expression, we can obtain 

( ) ( ) ( )

( ) ( ) ( )

sin cos
cos cos sin

CFD r x o o

CFD z o o r o

Y Y m u r t Y t
N J r t N t N r t





  

    

 = − −


= − − +
 (3.12) 

Based on Eq(3.9), the dimensionless equations can be expressed as follows: 

( ) ( ) ( )

( ) ( ) ( )

sin cos
cos cos sin

CFD r x o o

CFD z o o r o

Y Y m u r t Y t
N J r t N t N r t





  

    

     = − −


   = − − +
 (3.13) 

By the Fourier series expansion, the forces can be expressed as follows: 
cos sin
cos sin

CFD 1 2

CFD 1 2

Y Y t Y t
N N t N t

 

 

 = +


 = +
 (3.14) 



 

40 

 

By comparison of the Eq(3.13) and Eq(3.14), it is easy to get the following 
equations: 

( )
0 1

r 0 2

z 0 0 1

r 0 2

Y Y
m u Y r Y

J r N N
N r N







 

 =
   − =


 + =
 − =

 (3.15) 

Through Eq(3.15), the hydrodynamic derivatives , , ,r rY N Y N   can be obtained by 

fitting in a Fourier series form. For example, Fig 3.16 shows the time histories of lateral 

force and yaw moment in the specific condition where .G 0 25  =  and maximum yaw 

angular velocity is set as 0.0208 rad/s. By Fourier series expansion and curve fitting 
techniques, the hydrodynamic derivatives under the surf-riding condition can be 
obtained. 

 

(a)                                (b) 

FIGURE 3.16 Time history of the force and moment ( .G 0 25  = , 0r =0.0208 rad/s) 

 (a) lateral force Y (b) yaw moment N 

  

       （a）                                        (b) 

FIGURE 3.17 Comparison of hydrodynamic derivatives in calm water and regular 

following waves (a) rN   (b) ( )x rm m Y  + −  

The linear yaw-rate-related hydrodynamic derivatives are drawn in Fig 3.17. It is 
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obvious that rN   and ( )x rm m Y  + −  vary with the change of the relative position. For 

( )x rm m Y  + − , the maximum value is obtained when gravity center locates on the crest 

and the minimum data is obtained on the trough. For rN    under the .G 0 5  =  

condition, the absolute value is much smaller than those in other relative positions and 
the calm water condition. It is because that the ship gravity center locates on the wave 
crest making the altitude of the free surface on the bow and stern lower than that under 
the calm water condition. The dynamic pressure on the bow and stern is crucial for the 

whole yaw moment. Hence, the absolute value of the rN    in this condition is the 

lowest, which is approximately one-sixth of the largest one. It also indicates the huge 
wave effect on the hydrodynamic derivatives. 

 
（a） 

  
(b) 

FIGURE 3.18 Comparison of wave-induced hydrodynamic derivatives 

(a) comparison of *, ,Y Y Y  
    (b) comparison of *, ,N N N  

    
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TABLE 3.7 Comparison of hydrodynamic derivatives in following waves obtained 
from numerical and experimental pure yaw tests 

Relative position Derivatives CFD Experiment 

Wave crest 

rY   -0.0002 -0.0012 

rN   -0.0008 -0.0015 

Y
  0.0015 -0.0017 

N
  -0.0027 -0.0033 

Down-slope 

rY   0.0035 0.0032 

rN   -0.0033 -0.0021 

Y
  -0.0038 -0.0071 

N
  0.0012 0.0016 

Up-slope 

rY   0.0027 0.0032 

rN   -0.0040 -0.0053 

Y
  0.0036 0.0015 

N
  -0.0007 -0.0004 

Wave trough 

rY   0.0046 0.0048 

rN   -0.0059 -0.0065 

Y
  -0.0011 -0.0013 

N
  0.0007 0.0009 

 

Moreover, the wave-induced hydrodynamic derivatives Y
   and N

   can be 

obtained by these simulations. In section 3.5.1, the hydrodynamic derivatives *Y

  and   

*N

   include the wave force component, which makes the comparison of these 

derivatives in waves and calm waters inappropriate. Therefore, the wave-induced 

hydrodynamic derivatives Y
   and N

   should be calculated according to Eq(3.15) 
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and subtracted to obtain Y
  and N

 . The results are summarized in Table 3.7. In Fig 

3.18, all the parameters obtained are drawn and compared with the experiment data. 

The wave-induced hydrodynamic derivatives Y
  and N

  are obtained by Eq(3.15). 

The curves of the wave-induced hydrodynamic derivatives are fluctuating around the 

y=0 axis. In Fig 3.18(a), the simulated Y
  and *Y


  are in good agreement with those 

experimental data. However, for the experimental result of Y
  , there is no obvious 

sinusoidal trend as the curve of 
CFD

Y

 . For the yaw moment, the simulation results agree 

well with the experiment ones shown in Fig 3.18(b). 

3.5.3 Course stability index in waves without steering 

For the study of the surf-riding/broaching-to phenomenon, the weak course 
stability is considered as the possible reason for this stability failure mode. By 
simulating the PMM tests in the surf-riding condition, the course stability in waves can 
be assessed to verify this hypothesis. Son and Nomoto (1982) evaluated the course 
stability in waves using the traditional course stability discriminant 

( ( )v r x r vD Y N m m Y N     = + + −  ). The comparison between the experimental data and the 

calculated data obtained from the CFD simulation is shown in Fig 3.19. It is obvious 
that the CFD predicted results are well consistent with the experimental ones. As we all 
know, D>0 represents that the ship has course stability and the larger the value, the 
better the course stability. Therefore, Fig 3.19 reveals that the stability discriminant D 
near the crest is smaller than that in calm water and the minimum value is negative 
which may result in poor stability in the down-slope condition.  

  
FIGURE 3.19 Course stability discriminant D  

However, the conclusion that the most dangerous condition is the wave crest 
condition is not satisfied with the actual situation. In addition, the course stability 
discriminant in calm water is not suitable in the wave conditions in theory. Because this 
discriminant should be obtained from the motion equations and stability discrimination 
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of the system. In the surf-riding condition, the longitudinal velocity u  is a constant. 
Therefore, the equation in the longitudinal direction can be neglected. For the wave 
condition, the motion equations are different from those in calm water, which can be 
expressed as follows. 

( ) ( )

( )

y x v r

z z v r

m m v m m ur Y v Y r Y Y

I J r N v N r N N
 

 

 

 

 + + + = + + +


+ = + + +

 (3.16) 

The dimensionless equations are 

( ) ( )

( )

y x v r

zz zz v r

m m v m m r Y v Y r Y Y

I J r N v N r N N
 

 

 

 

              + + + − − − =


          + − − − =

 (3.17) 

According to the physical meaning, the yaw angular velocity can also be expressed 

as r = . The equations can be expressed as: 

( ) ( )

( )

y x r v

zz zz v r

m m v m m Y Y v Y Y

I J N v N N N
 

 

  

   

             + + + − − − =


          + − − − =

 (3.18) 

When the rudder is not steering, the equations have general solution: 
t tv ve         e   = =  (3.19) 

It should be noticed that the condition when the rudder is not steering is unrealistic 
for the real adverse wave conditions. However, to explore the characteristics of bare 
hull ship itself, and to simplify the problem, we use this condition in this paper. 

Then the new equations can be obtained by adding these terms into the equations 
above. 

( ) ( )

( )

y x r v

2
zz zz v r

m m v m m Y Y v Y 0

I J N v N N 0




  

   

       + + + − − − =


    + − − − =

(3.20) 

To ensure the equations have non-zero solutions, the determinant of v  and r  
should be zero, i.e., 

( ) ( )

( )

y v x r

2
v zz zz r

m m Y m m Y Y
0

N I J N N




 

 

      + − + − −
=

    − + − −
 (3.21) 

Finally, we can obtain  
3 2

w w w wA s B s C s D 0+ + + =  (3.22) 

where,  

( )( )

( ) ( )

( ) ( )

w y zz zz

w y r zz zz v

w y r v x r v

w v v

A m m I J

B m m N I J Y

C m m N N Y m m Y N

D N Y N Y


 

   = + +

     = − + − +

        = − + + + + −

   = −

 (3.23) 

According to the criterion of Routh-Hurwitz, the coefficients wA  to wD  should 
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satisfy the following equations to ensure the stable system. 
, , ,w w w w

w w w w

A 0 B 0 C 0 D 0
B C A D 0

   


− 
 (3.24) 

Based on Eq(3.23) and the definition of the physical parameters, it is easy to obtain 

that , ,w w wA 0 B 0 C 0    . Therefore, critical criteria should be wD 0   and 

w w w wB C A D 0−  .  

v
w v v v

v

N ND N Y N Y Y Y 0
Y Y



  



 
     = − = −     

 (3.25) 

It is clearly seen from the simulation results that when the gravity center locates 

on the up-slope position ( .G 0 25  =  ), ,Y 0 N 0 
    , which makes the critical 

discriminant D 0  . When it comes to the downslope condition ( .G 0 75  =  ), the 

hydrodynamic derivatives ,Y 0 N 0 
    which makes the critical discriminant wD 0 . 

The discriminant of the course stability in waves wD  in different relative positions is 

calculated and drawn in Fig 3.20. It reveals that the ship system in the downslope 
condition is unstable, which might result in the occurrence of the broaching-to 
phenomenon. 

Comparing Fig 3.19 and Fig 3.20, it can be found that the discriminant D  cannot 

be adopted as a simple alternative for wD  , because the calculated unstable regions 

evaluated by these two discriminants are quite different. The discriminant in waves can 

also indicate that the dominated factors are the wave force coefficients ,Y N 
  , which 

reveals that the course stability in waves is determined by the wave effect on the hull.  
Furthermore, the stability of the ship system can be evaluated quantitatively by the 

symbol of the solutions of the characteristic equation Eq(3.22). In this method, the 
nonnegativity of the roots of the characteristic equation is the sufficient and necessary 
condition for the asymptotic stability of the ship system. If the maximum root is larger 
than zero, the lateral velocity and yaw angle will be far from zero as time passes, which 
means the system is unstable. In contrast, if all the roots are negative, the velocities will 
approach zero, which indicates the ship system is stable.  

After calculating roots of the univariate cubic equation, the largest real part of 

characteristic roots of the equation for course stability max  can be drawn in Fig 3.21. 

Two lines obtained from the experiments and the numerical simulation are drawn in 
this figure. Obviously, both results show the instability under the downslope condition. 

The critical values of the stability (the value when max 0 = ) in these two lines are close. 
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The values calculated by the CFD method differ significantly from those obtained from 
the experiment data in some cases, especially the upslope and downslope condition. 
The reason might come from the previous errors of hydrodynamic derivatives. The 
largest real part of characteristic roots is calculated by the cubic equation including all 
the hydrodynamic derivatives. The errors of the simulated hydrodynamic derivatives, 

such as the wave-induced hydrodynamic derivatives ,Y N 
   , are accumulated and 

expanded, which causes a huge difference. However, for the instability zone prediction, 
the CFD method is of high accuracy due to the close critical values of the course 
stability. The value of the root is not important for this unsafety range or risk possibility. 

 

FIGURE 3.20 The discriminant of the course stability in waves wD  

 
FIGURE 3.21 Largest real part of characteristic roots for course stability 

3.5.4 Course stability in waves with PID control 

For the actual steer condition, the rudder will be steered to keep the sailing 
direction. PID (proportional–integral–derivative) autopilot is one of the most widely 
used methods. A function of the rudder angle should be added in Eq(3.17) as: 

t

p i d
0

K K dt K   = + +  (3.26) 
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where pK  is the proportional gain, iK  is the integral gain, and dK  is the derivative 

coefficient. 
To ensure that Eq(3.17) has non-zero solutions, the determinant of lateral velocity, 

wave incident angle and rudder angle should be zero, i.e., 

( ) ( )

( )

y v x r

2
v xx xx r

p i d

m m Y m m Y Y Y

N I J N N N 0
10 K K K 1

 

 

 

 




       + − + − − −

     − + − − − =

− − −

 (3.27) 

Then, it can be transferred as follows. 
4 3 2

4 3 2 1 0a a a a a 0   + + + + =  (3.28) 
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 

    = + +

         = − + − + − +

           = − + + + + − −


     − + +

           = − − + − +


   = − +

  

Based on Routh–Hurwitz stability criterion, to keep the stability of the system, the 

coefficients ( )~na n 0 4=  should satisfy the following equations. 

( )~n

3 2 4 1
2 2

3 2 1 4 1 3 0

a 0 n 0 4
a a a a

a a a a a a a

 =



  +

 (3.29) 

TABLE 3.8 Stability discriminants calculated using the experimental hydrodynamic 

derivatives (EFD) with , . ,p i dK 1 K 0 1 K 4= − = − = −  

Discriminant Trough Up-slope Crest Down-slope 
a4 1.40E-05 1.40E-05 1.40E-05 1.40E-05 
a3 1.95E-04 1.84E-04 1.09E-04 1.19E-04 
a2 3.11E-04 2.80E-04 2.04E-04 1.57E-04 
a1 1.42E-05 4.87E-05 1.08E-04 -3.65E-05 
a0 3.92E-06 3.51E-06 4.92E-06 3.59E-06 

a3 a2- a4 a1 6.05E-08 5.08E-08 2.08E-08 1.92E-08 
a3 a2 a1- a4 a2

1-a2
3 a1 7.12E-13 2.36E-12 2.19E-12 -7.51E-13 
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TABLE 3.9 Stability discriminants calculated using the numerical hydrodynamic 

derivatives (CFD) with , . ,p i dK 1 K 0 1 K 4= − = − = −  

Condition Trough Up-slope Crest Down-slope 
a4 1.40E-05 1.40E-05 1.40E-05 1.40E-05 
a3 1.86E-04 1.66E-04 1.15E-04 1.34E-04 
a2 3.08E-04 2.74E-04 1.83E-04 1.72E-04 
a1 2.23E-05 6.72E-05 1.02E-04 -1.17E-05 
a0 4.34E-06 3.97E-06 4.21E-06 3.45E-06 

a3 a2- a4 a1 5.70E-08 4.46E-08 1.95E-08 2.32E-08 
a3 a2 a1- a4 a2

1-a2
3 a1 1.12E-12 2.89E-12 1.93E-12 -3.34E-13 

TABLE 3.10 Stability discriminants calculated using the experimental hydrodynamic 

derivatives (EFD) with . , . ,p i dK 0 5 K 0 1 K 4= − = − = −   

Condition Trough Up-slope Crest Down-slope 
a4 1.40E-05 1.40E-05 1.40E-05 1.40E-05 
a3 1.95E-04 1.84E-04 1.09E-04 1.19E-04 
a2 3.02E-04 2.69E-04 1.94E-04 1.49E-04 
a1 -5.37E-06 3.11E-05 8.35E-05 -5.45E-05 
a0 3.92E-06 3.51E-06 4.92E-06 3.59E-06 

a3 a2- a4 a1 5.89E-08 4.91E-08 2.01E-08 1.84E-08 
a3 a2 a1- a4 a2

1-a2
3 a1 -4.66E-13 1.41E-12 1.62E-12 -1.06E-12 

TABLE 3.11 Stability discriminants calculated using the numerical hydrodynamic 

derivatives (CFD) with . , . ,p i dK 0 5 K 0 1 K 4= − = − = −  

Condition Trough Up-slope Crest Down-slope 
a4 1.40E-05 1.40E-05 1.40E-05 1.40E-05 
a3 1.86E-04 1.66E-04 1.15E-04 1.34E-04 
a2 2.98E-04 2.63E-04 1.73E-04 1.63E-04 
a1 6.31E-07 4.73E-05 8.06E-05 -2.90E-05 
a0 4.34E-06 3.97E-06 4.21E-06 3.45E-06 

a3 a2- a4 a1 5.56E-08 4.31E-08 1.87E-08 2.23E-08 
a3 a2 a1- a4 a2

1-a2
3 a1 -1.16E-13 1.93E-12 1.45E-12 -7.08E-13 

 
To reveal the effect of the PID autopilot on the course stability and evaluate the 

simulated hydrodynamic derivatives, the stability discriminants are calculated using the 
experimental and numerical hydrodynamic derivatives in waves. The results are 
summarized in Tables 3.8~3.13. The red bold numbers represent the instability of the 
corresponding case. The unstable phenomenon occurs when the gravity center locates 

on the downslope of the wave with , . ,p i dK 1 K 0 1 K 4= − = − = − . Compared with the results 

in Section 3.5.3, these results reveal that the wave trough condition and the up-slope 
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condition are transferred from the unstable condition to the stable one by using the PID 
autopilot. Then, the PID parameters are changed to calculate the stability 
discriminations using the experimental and the numerical hydrodynamic derivatives in 
the surf-riding condition. The new results are listed in Tables 3.10~11. Both indicate 
that the wave trough condition will be unstable due to rudder control with mild 
sensitivity. These four tables also reveal that the difference of the hydrodynamic 
derivatives in waves results in the difference of the course stability which makes the 
ship is dangerous when locates on the downslope condition. The comparison between 
the numerical and experimental results verified that the course stability discriminants 
using the numerical hydrodynamic derivatives can provide the same conclusion as the 
experimental one. In Tables 3.12~13, the stability discriminants calculated with higher 
sensitive PID parameters are listed. The results show that the ship is stable in all four 
typical positions when adopting these PID parameters. This does not mean the 
broaching-to phenomenon can be avoided for any ship and any conditions through the 
modification of the PID parameters. The calculation results are utilized to clarify that 
the appropriate PID control parameters can be helpful for the course stability in waves 
and the numerical hydrodynamic derivatives can replace the experimental ones to 
calculate the course stability discriminants in waves. 

TABLE 3.12 Stability discriminants calculated using the experimental hydrodynamic 

derivatives (EFD) with , . ,p i dK 2 K 0 1 K 4= − = − = −   

Condition Trough Up-slope Crest Down-slope 
a4 1.40E-05 1.40E-05 1.40E-05 1.40E-05 
a3 1.95E-04 1.84E-04 1.09E-04 1.19E-04 
a2 3.67E-04 3.43E-04 2.61E-04 2.07E-04 
a1 1.32E-04 1.54E-04 2.56E-04 7.12E-05 
a0 3.92E-06 3.51E-06 4.92E-06 3.59E-06 

a3 a2- a4 a1 6.98E-08 6.10E-08 2.50E-08 2.36E-08 
a3 a2 a1- a4 a2

1-a2
3 a1 9.06E-12 9.28E-12 6.34E-12 1.63E-12 

TABLE 3.13 Stability discriminants calculated using the numerical hydrodynamic 

derivatives (CFD) with , . ,p i dK 2 K 0 1 K 4= − = − = −   

Condition Trough Up-slope Crest Down-slope 
a4 1.40E-05 1.40E-05 1.40E-05 1.40E-05 
a3 1.86E-04 1.66E-04 1.15E-04 1.34E-04 
a2 3.64E-04 3.37E-04 2.40E-04 2.22E-04 
a1 1.53E-04 1.86E-04 2.28E-04 9.16E-05 
a0 4.34E-06 3.97E-06 4.21E-06 3.45E-06 

a3 a2- a4 a1 6.57E-08 5.34E-08 2.43E-08 2.84E-08 
a3 a2 a1- a4 a2

1-a2
3 a1 9.87E-12 9.85E-12 5.50E-12 2.54E-12 
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3.6 Summary 

In this chapter, a standard ship model, S175, is chosen as the target ship model. 
The wave-effected hydrodynamic derivatives of S175 are calculated by PMM test 
simulations in following waves, the surf-riding condition, specifically. The results are 
validated using experimental data and achieve good agreements in most cases. This 
study aims to provide preliminary research on hydrodynamic derivatives in waves. In 
addition, the course stability in waves is calculated based on the hydrodynamic 
derivatives obtained from the numerical simulation, which reveals the mechanism of 
the broaching-to phenomenon. 

The main conclusions can be summarized as follows: 
(1) The numerical simulation method established here can effectively deal with 

problems of captive model tests in regular following waves. The overset grid and Euler 
overlay method are useful and efficient. Grid convergence study for PMM tests in the 
surf-riding condition is firstly performed to verify the CFD setup. A good consistency 
has been obtained by comparing the calculated hydrodynamic derivatives in waves with 
those in experiments in most cases. 

(2) Wave effect on the hydrodynamic derivatives is significant in some conditions 
which cannot be ignored. The detailed changing tendencies and calculation equations 
of all wave-affected hydrodynamic derivatives in numerical simulations are proposed. 

rN    under the wave trough is twice that under the calm water condition, and 

( )x rm m Y  + −  under the wave crest is also around twice the value under the calm water 

condition. 
(3) By calculating the course stability in waves qualitatively and quantitatively, 

the ship system in the down-slope condition is verified to be unstable, which results in 
the broaching-to phenomenon. In addition, this conclusion is also validated by the 
calculated course stability in waves with PID control.  

There are some limitations for this first study on the numerical simulation of the 
captive model tests in waves. Firstly, to reduce the grid number and ensure the 
convergence, the rolling mode motion is not considered in this paper. Further 
investigation should consider the roll motion effect and coupling terms. Secondly, only 
four typical relative positions are selected for simplification. However, the extreme 
points of sinusoidal variation of the hydrodynamic derivatives are not precisely at these 
four positions in practice. Therefore, if these hydrodynamic derivatives in waves are 
utilized in the mathematical model in the future, eight relative positions of ship and 
waves should be selected at least. 
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Chapter 4 Captive model tests in head waves 

The previous chapter focused on the following wave condition without other wave 
direction conditions. The main reason why the current research mainly limited on the 
following wave condition is that the experimental method as well as the data processing 
method in other wave conditions is difficult. For instance, in head waves, the relative 

position between the ship and the wave ( G   ) will change rapidly rather than be 

stationary all the time, which makes it hard to obtain the influence of G   on the 

maneuvering hydrodynamic derivatives.  
To solve this problem, a method of separating the whole hydrodynamic forces into 

the low-frequency and high-frequency part based on the Fast Fourier transform 

technique is adopted. The influence of the rapidly changed parameter G   on the low-

frequency forces is considered as a time-average effect and not researched. A similar 
method has been utilized by Rameesha and Krishnankutty (2019) before. Relying on 
the mesh-morphing method, they simulated the PMM tests in head waves and the low-
frequency components obtained by the FFT technique are utilized to calculate the wave-
effected hydrodynamic derivatives. However, their simulations are conducted only in 
one wave condition. To explore the influence of the wave parameters on hydrodynamic 
derivatives, various wavelengths and wave steepness should be simulated to conduct 
the PMM tests. What’s more, the simulation results were not validated by the 
experimental data in the referenced paper (Rameesha and Krishnankutty, 2019). 
Therefore, in present research, the simulations of the PMM tests in various head wave 
conditions are carried out and validated by the experimental data. 

In this section, the head wave direction is chosen as the target wave direction. The 
standard ship model, KVLCC2, is the target ship model. The captive model tests in 
calm water conditions and regular head wave conditions are performed in the towing 
tank of Shanghai Jiao Tong University. Considering the economy and time cost, the 
numerical simulation is a useful and effective alternative for the experiments. What’s 
more, the numerical method can also provide flow field information easily. Hence, the 
captive model tests in calm water and regular head waves are carried out by the 
numerical and experimental methods together in this section. Systematic simulations in 
head waves are performed based on the RANS code. The simulation results of the 
captive model tests in head waves are verified and validated by the experimental data 
for the first time. The conclusions obtained from the simulations are summarized to 
reveal the wave effect on the hydrodynamic derivatives in head wave conditions. 

4.1 Simulation conditions 

Principal particulars of the target ship model KVLCC2 are listed in Table 4.1. The 



bare hull without a rudder and a propeller is utilized in the experiments and simulations.
For the captive model tests in head waves. they are carried out in the towing tank 

of Shanghai Jiao Tong University. The towing tank is 300m long, 16m wide, and 7.5m 
deep equipped with a drive carriage, a Planar Motion Mechanism (PMM), a wave maker, 
and a wave-damping beach shown in Fig 4.1. The detailed PMM facility and the data 
acquisition system are drawn in Fig 4.2. In this figure, the drive carriage is instrumented 
with a computer for data acquisition and post-processing, a signal amplifier, two strain 
gauge balances for analog voltage measurements of forces, and a control panel for 
controlling the horizontal motions of the PMM facility by the stepper motor. To 
generate the preset regular wave, the multi-unit wave-maker system relying on 40 
rocker flaps is adopted. The wave-absorption system includes a wave-damping beach 
and an active wave-absorption system. The ship model and the PMM facility are 
connected by two strain gauge balances located on the aft and fore of the model. These
two connecting points are symmetrical about the ship gravity center. The total lateral or 
longitudinal force on the ship model is the sum of the data measured by two strain gauge 
balances. The moment of the ship model should be calculated as follows.

( )E yf ya pmmN F F l= − (4.1)

where yfF   and yaF   denote the lateral forces monitored on the fore and aft of the 

model, respectively. pmml is the distance between two strain gauge balances.

FIGURE 4.1 Illustration of the captive model tests in waves in the towing tank of SJTU

FIGURE 4.2 Illustration of the PMM system
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TABLE 4.1 Principal particulars of the KVLCC2 
Parameters Full scale Model scale 

Scale 1 70 
Length between perpendiculars (m) 320.0 4.5714 

Breadth (m) 58.0 0.8286 
Draft (m) 20.8 0.2971 

Displacement (ton) 312622 0.9114 
Metacentric height (m) 16.8 0.2393 

Longi. Center of buoyancy from F.P. (m) 11.1 0.1600 
Block coefficient 0.8098 0.8098 

The test conditions in regular head waves are summarized in Table 4.2. The 
simulation conditions are listed in Table 4.3. Considering the high cost of the 
experiment method, only several simulation conditions are chosen to conduct the 
experiments to verify the simulation results and explore the physical mechanism. For 

the simulations, the wavelength to ship length ratio L  varies from 0.5 to 1.0 with the 

wave steepness H    varying from 0.03 to 0.055. The vessel speed is 0.953m/s 

corresponding to the same Froude number (0.142) as the designed speed of the full-
scale ship. The oscillation periods of the pure yaw tests are chosen according to the 
ITTC Guidelines 7.5-02-06-02 (2017) and the parameters of the present experimental 
facility. For the pure yaw tests in the calm water condition, the model velocities in earth-
fixed coordinate system and ship-fixed coordinate system can be expressed as Eq(4.2) 
and Eq(4.3), respectively (Yoon, 2009). 

( )
max cos

arctan cos

E

E

E

u const
v y t

t
 

  

=


= −
 = −

 (4.2) 

cos

sin
cos

2 2
E

2 2

u u 1 t
v v 0

1r t
1 t

 
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 


 = +


= =

 =

+

 (4.3) 

where max Ey u =  , Eu   and Ev   are the longitudinal and lateral velocities of the 

model motivated by the PMM facility under the earth-fixed coordinate system.   is 
the oscillation circular frequency. u , v , and r  are the longitudinal, lateral, and yaw 
angular velocities of the model in the ship-fixed coordinate system.  

The hull hydrodynamic forces can be expressed as: 

H v rv v r r v r v r

H v rv v r r v r v r

Y Y v Y v v Y r Y r r Y v r Y v r

N N v N v v N r N r r N v r N v r

 = + + + + +


= + + + + +

 (4.4) 

For the pure yaw tests, the components related with the lateral velocity in Eq(4.4) 
will be removed and the hydrodynamic derivatives only related with the yaw angular 
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velocity can be calculated. 
The main difference between the tests in the calm water condition and those in 

waves is the generation of waves. The experimental process can be divided into the 
following steps. Firstly, the model should sway and yaw with the preset parameters. 
Then, the regular head waves are generated by the wavemaker. When the distance 
between the wavefront and the ship model is about 10 meters long, the carriage starts 
to move forward at the preset longitudinal velocity, and the data of the forces and 
motions are collected from then on. The obtained experimental results will be shown 
later and can be utilized to validate the numerical simulation results. 

TABLE 4.2 Test conditions for the PMM tests in regular head waves 
Test Drift angle (deg) Oscillation period (s) L  H   

Oblique towing -4 / 0.5,0.8,1.0 0.03 
/ 0.5 0.04 

-8, -2 / 0.5 0.03 

Pure yaw / 17.26,14.10,12.21,10.92 0.5 0.03 
12.21 0.8 0.03 

TABLE 4.3 Simulation conditions for the PMM tests in regular head waves 
Test Oscillation period (s) L  H   

Pure yaw 

17.26,14.10,12.21,10.92, 9.23 0.5 0.03 
14.10,12.21,10.92, 9.23 0.8 0.03 
14.10,12.21,10.92, 9.23 0.8 0.055 
14.10,12.21,10.92, 9.23 0.1 0.03 
14.10,12.21,10.92, 9.23 0.8 0.03 

4.2 Computational method and data processing 

The simulation model and setup utilized in this chapter are close to those in 
Chapter 3. For the simulations in the calm water condition, the computational domain 
and the boundary conditions are drawn in Fig 4.3. Except the outlet surface adopting 
the pressure outlet boundary condition, the other five surfaces of the cubic calculation 
domain adopt the velocity inlet boundary condition. For the hull surface, a no-slip wall 
boundary is utilized here. The background region is moving horizontally with the same 
longitudinal and lateral velocities as those of the ship for the purpose of minimizing the 
calculation domain. The other four degrees of freedom (heave-roll-pitch-yaw) of the 
background region is fixed. For the wave generation and absorption method, wave 
damping zones are placed around the outlet and side surfaces to speed up the dissipation. 
In the wave damping zone, a resistance term is added to the equation for vertical 
velocity (Choi and Yoon, 2006).  

For the simulations in regular head waves, the computational domain and the 
boundary conditions are shown in Fig 4.4. Different from the calm water cases, the up 
surface adopts the pressure outlet boundary condition, and the outlet surface adopts the 
velocity inlet condition to decrease the reverse flow and keep the results convergent. 



In fact, there are several dynamic mesh motion techniques, such as the mesh-
morphing method, the sliding interface method, and the overset mesh method. 
Compared with other methods, the mesh-morphing method requires fewer grid 
numbers and saves the simulation resources. However, the displacement of the body 
leads to a deformation of single control volumes, which makes the original high-quality 
mesh can be poor grid quality during the simulations. Some problems, such as the large 
aspect ratios and the highly skewed cells, might appear, resulting in numerical stability 
issues. The sliding interface method can handle rotational motion with good numerical 
stability. However, it is limited by the main disadvantage that they are only appropriate 
for single DOF (degree of freedom) motions except the multiple sub-domains nested 
approach. The overset mesh method, also known as “Chimera” or overlapping mesh 
method, is utilized to discretize a computational domain with several different mesh 
regions that overlap each other. Even though the required simulation resources are 
larger than the mesh-morphing method, and the interpolation between meshes may 
cause some uncertainty, the mesh structure and quality remain constant throughout the 
simulation with large amplitude motions in multiple DOFs (Davidson et al, 2019). 
Some scholars (Windt et al, 2020) have concluded that the overset grid method with the 
same accuracy as the mesh-morphing one is better able to handle the large amplitude 
motions.

For the current research, a series of wave conditions will be simulated, in which 
the ship model might have large motions in multi DOFs. Hence, considering the 
simulation accuracy and the possibility of the extension to more dangerous wave 
conditions in the future, the overset mesh technique is adopted here.

FIGURE 4.3 Computational domain of the pure yaw tests in the calm water condition

FIGURE 4.4 Computational domain of the pure yaw tests in head waves

For the captive model tests in the calm water condition, the maneuvering motion 
equations can be expressed as follows:
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( )

y x H E

z z H E

m m v m m ur Y Y

I J r N N

 + + + = +


+ = +

 (4.5) 

Based on Eq(4.5) and the functions of the velocities, the equations for the pure 
yaw tests can be expressed as: 

( )

( )

x r Er r

z z r Er r

m m ur Y r Y r r Y

I J r N r N r r N

 + = + +


+ = + +

 (4.6) 

For the pure yaw tests, the forces are not constant. Hence, Eq(4.7) is utilized to 
calculate the corresponding hydrodynamic derivatives relying on the integral properties 
of trigonometric functions. 

( ) ( )

( )

2
22 2

out E E r r r
0

2
22 2

out E E r r r
0

1Y Y d t Y d t Y mu a u+Y a u
4 4

1N N d t N d t N a u+N a u
4 4

 



 




   


   

  
= − = −  

  


 
= − = 

 

 

 

 (4.7) 

For the captive model tests in regular head waves, the wave forces should be added 
on the motion functions. The FFT method is adopted to separate the low-frequency 

(PMM-frequency  ) forces and high-frequency (encounter wave frequency e  and 

its multiples) forces. Then, the low-frequency forces are utilized to calculate the 
hydrodynamic derivatives in waves based on the same method as that in the calm water 
condition. 

For numerical simulations, the mathematical model is slightly different from those 
for the experiments. The monitored simulated forces are the hydrodynamic components 
and can be expressed as: 

H y x CFD

z H z CFD

mv mur Y m v m ur Y
I r N J r N

+ = − − =


= − =
 (4.8) 

The transfer function between the numerical simulation results and the 
experimental results can be expressed as Eq(4.9). Based on that, the simulation results 
can be transferred into the experimental ones. 

E CFD

E z CFD

Y mv mur Y
N I r N
= + −


= −

 (4.9) 

4.3 Verification and Validation (V&V) 

Verification is a process to assess the simulation numerical uncertainty and 
estimate the magnitude of the simulation numerical error together with the uncertainty 
in the error estimate. Validation is a process for assessing simulation modeling 
uncertainty and estimating the magnitude of modeling error (ITTC, 2017a). The V&V 
should be carried out before the systematical simulations. 
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4.3.1 V&V for the case in the calm water condition 

The pure yaw test in the calm water condition, whose oscillation period pmmT  is 

9.23s, is chosen to perform the V&V of the present simulation model. Three various 
grid sizes are utilized to conduct the simulations for the purpose of revealing the 
convergence of the solutions and calculating the simulation uncertainty. The simulated 

force coefficients ampY  and ampN  ( ( ) ( )sinE ampY t Y t = +  and ( ) ( )sinE ampN t N t = + ) 

are compared with the experimental ones to validate the effectiveness. 
For the present simulations, the unstructured trimmed hexahedral grid is generated 

with the base size and its multiples. The base size is defined as a fundamental mesh size, 
and other values such as surface minimum/target size and boundary layer thickness are 
proportional to it. Therefore, the total mesh sizes can be refined or coarsened by 
modifying the base size value. The base size for the fine mesh, the middle mesh, and 
the coarse mesh are 0.01m, 0.015m, and 0.02m, respectively. The total grid number are 
0.99 million (0.31 million for the overset region and 0.68 million for the background 
region), 2.06 million (0.57 million for the overset region and 1.49 million for the 
background region), and 6.36 million (1.41 million for the overset region and 4.96 
million for the background region) for the coarse, middle, and fine mesh, respectively.  

The simulated time histories of the lateral force and the yaw moment using 
different grid sizes are summarized in Fig 4.5. Obviously, all three results are close. For 
the coarse mesh, the simulation results are in good consistency with the other two 
results except for several unreasonably high-frequency oscillations. Considering the 
sine form of the time histories, the amplitudes of the forces are utilized to conduct the 
verification process and the results are listed in Table 4.4. For the grid uncertainty 
analysis, the results using the Richardson Extrapolation method can be estimated based 
on Eq(4.10) and Eq(4.11). 

( )
GG G REU 2 1 C 1 = − +  (4.10) 

( ) ( )GG estpp
G G GC r 1 r 1= − −  (4.11) 

where 
estGp  is the limiting order of accuracy of the method. This table reveals that the 

forces are convergent, and the uncertainty of the mesh size is smaller than 1%S1 which 
reveals the small effect of the mesh size on the forces. 

The validation of the numerical simulation is drawn in Fig 4.6. The good 
agreement of the numerical and experimental results indicates that the present 
numerical method can predict the forces with quite good accuracy. The comparison 
error E  is defined as the difference between the experimental and numerical results. 

( )%E D  for lateral force Y and yaw moment N are 8.6% and 5.2%, respectively. The 

validation uncertainty VU   is defined as 2 2 2
V D GU U U= +  , where the uncertainty of 
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experimental data for lateral force and yaw moment are 1.04% and 1.14%, respectively. 
Hence, according to ITTC 7.5-03-01-01 (2017), the validation is successful at the 8.6% 
level for Y and 5.2% level for N from a programmatic standpoint.  

 

 

(a)                             (b) 
FIGURE 4.5 Time histories of the lateral force Y and yaw moment N with various mesh 

sizes in calm water condition 

 

(a)                            (b) 
FIGURE 4.6 Comparison between the numerical and experimental forces  

TABLE 4.4 Amplitudes of the lateral force Y and yaw moment N with different mesh 
sizes in calm water condition 

Parameter ampY (N) ampN (N·m) 
Fine 109.9 203.9 

Middle 109.7 203.8 
Coarse 108.8 204.6 

21  -0.2 -0.1 

32  -0.9 0.8 

GR  0.2 -0.1 
Convergence MC OC 

Gp  4.342 - 
GRE  -0.057 - 

GU  0.138 0.400 
( )%G 1U S  0.126 0.196 

4.3.2 V&V for the cases in head waves 

The pure yaw test in the head wave condition, whose oscillation period is 12.21s, 
is chosen to perform the V&V of the simulation model. The wavelength to ship length 

ratio L  is 0.5 and the wave steepness H   equals 0.03.  
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Similarly, three different grid sizes are utilized to conduct the simulations for the 
head wave condition. The base size for the fine mesh, the middle mesh, and the coarse 
mesh are 0.01m, 0.015m, and 0.02m, respectively. The total grid number are 1.12 
million (0.31 million for the overset region and 0.81 million for the background region), 
2.29 million (0.57 million for the overset region and 1.71 million for the background 
region), and 7.20 million (1.41 million for the overset region and 5.80 million for the 
background region) for the coarse mesh, middle mesh, and fine mesh, respectively.  

The time histories of the lateral force Y and the yaw moment N are summarized in 
Fig 4.7. Obviously, all three curves obtained from cases with various grid sizes are close 
to each other. The verification results are listed in Table 4.5. Both forces are monotonic 
convergent with small uncertainty. Considering the calculation efficiency and accuracy, 
the middle grid size will be utilized to perform the simulations hereafter.  

Fig 4.8 shows the experimental frequency spectrum of the lateral force and yaw 
moment, which indicates that there are mainly three groups of peaks. The low-
frequency part is the maneuvering force, and the other high-frequency forces are the 

wave-induced forces at the frequency of the encounter wave e  and its double e2 . 

The comparison between the numerical and experimental forces are drawn in Fig 4.9. 
In this figure, “EFD w 1st” represents the experimental results containing only the 
wave-induced force at the encounter wave frequency and the maneuvering force. The 

other forces, such as the high-frequency forces in the frequency of e2   and the 

environment noises, are removed. “EFD w 1st 2nd” stands for the experimental data 
containing all three forces at the three groups of peaks, i.e., the maneuvering frequency, 
the encounter wave frequency and the double of the encounter wave frequency. The 
comparison shows the simulation results are agreed well with the “EFD w 1st”. As for 
the higher frequency forces, the current simulation results may not reflect these forces 
clearly. The authors considered the error might come from the difference between the 
experimental and numerical setup. For the experiments, the link point of the ship and 
PMM facility is two strain gauge balances, which enables the ship to move slightly 
within the allowable range of the strain balances during the PMM motion. Combined 
with the large wave loads, the ship will vibrate frequently, and a high-frequency force 
is produced. This high-frequency force is hard to simulate due to the difference between 
the experimental setup and numerical setup, which makes the error. In addition, for the 
present study, the low-frequency maneuvering force is important. The difference 

between the CFD and EFD results in the high-frequency part ( e2 ) can be acceptable. 

The validation is successful at the 10.2% level for Y and 6.4% level for N from a 
programmatic standpoint. 
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(a) 

 
(b) 

FIGURE 4.7 Time histories of the lateral force Y and yaw moment N with different 
mesh sizes in regular head waves 

 

FIGURE 4.8 Frequency spectrum of the lateral force and yaw moment obtained from 
the experiment in head wave condition 

TABLE 4.5 Amplitudes of the lateral force Y and yaw moment N with different mesh 
sizes in regular head waves 

Parameter ampY (N) ampN (N·m) 
Fine 63.58 92.48 

Middle 63.20 92.22 
Coarse 63.04 91.72 

21  -0.4 -0.3 

32  -0.2 -0.5 

GR  2.4 0.5 
Convergence MC MC 

Gp  -2.497 1.888 
GRE  0.656 -0.282 

GU  4.237 0.845 
( )%G 1U S  6.663 0.914 
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(a) 

 
(b) 

FIGURE 4.9 Comparison between the numerical and experimental data in head waves 

4.4 Results and discussions 

After the V&V, the present numerical method is considered to be acceptable. Then, 
systematical simulations are performed relying on this methos and the middle grid size.  

4.4.1 Comparison of the forces in calm water and regular head waves 

The pure yaw tests are simulated to obtain the hydrodynamic derivatives related 

with the yaw angular velocity r , such as rY , rN , r rY  and r rN . The time histories of 

the lateral force and yaw moment for pure yaw tests in the calm water and regular head 
wave condition are drawn in Fig 4.10. Y  and N  are the simulated hydrodynamic 

forces in calm water and wave conditions. waveY  and waveN   are the simulated 

hydrodynamic forces in waves minus those in calm water. The typical real-time attitude 
of the ship is also shown in these figures. The low-frequency forces in the wave 
condition seem to be close to the forces in calm water condition. In addition, when the 

heading angle reaches the extreme value, the wave-induced lateral force _ waveY  reaches 

the peak. When the heading angle is zero, representing the model is parallel to the wave 

propagation direction, wave-induced lateral force _ waveY  is the minimum. It is because 

that the wave-induced forces are larger when the encounter wave direction is closer to 
the transverse wave. For the yaw direction, there is a phase difference between the 
motion and the yaw moment.  

To analyze the wave effect on the forces, the frequency spectrums of the lateral 
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force and yaw moment in regular head waves are drawn in Figs 4.11 and 4.12, 
respectively. The spectrums in waves have obvious peaks around the encounter wave 

frequency and its multiples. The forces at the frequency larger than e2  is not obvious. 

With the increase of the oscillation period, the maneuvering motions slow down, and 
the forces at the PMM motion frequency   and encounter wave frequency are also 
decreased. The wave-induced forces increase with the increase of the wavelength and 
wave steepness, but the maneuvering forces do not.  

For the high-frequency part, there are two peaks around the encounter wave 
frequency and its multiples. It is easy to know through the motion analysis. As shown 
in Fig 4.13, in step 1, the encounter wave frequency for the fore part of the model is 
smaller than that at the gravity center. Then, in step 2, the encounter wave frequency 
for the fore part of the model is larger than that at the gravity center. Similarly, there are 
also two encounter wave frequencies for the aft part of the ship model. Hence, two 
peaks will occur around the encounter wave frequency and its multiples. Due to the 
difference between the flow field around the aft and the fore, the amplitudes of these 
two peaks are not the same. In addition, with the decrease of the oscillation frequency, 
the maximum yaw angle of the PMM motion will decrease, and the two peak 
frequencies will be closer to the encounter wave frequency, representing that the gap 
between two peaks will decrease. Fig 4.11 and Fig 4.12 verify the correctness of the 
hypothesis. This finding also indicates the possible errors in some previous methods 
(Gu et al, 2015). In these methods, the wave forces are obtained by using the pre-
calculated frequency-domain drift coefficient and interpolating according to the 
encountered wave frequency calculated at the gravity center. 
 

 

(a)                           (b) 
FIGURE 4.10 Time histories of the lateral force and yaw moment and the instantaneous 

attitude of the ship in regular head waves ( =0.0819 ; .L 0 5 = , .H 0 03 = ) 
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(a) 

 
(b) 

 
(c) 

FIGURE 4.11 The frequency spectrums of the lateral force Y in regular head waves 

 (a: .L 0 5 = , .H 0 03 = ; b: .L 0 8 = , .H 0 03 = ;c: .L 1 0 = , .H 0 03 = ) 
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(b)

(c)
FIGURE 4.12 The frequency spectrums of the yaw moment N in head waves

(a: .L 0 5 = , .H 0 03 = ; b: .L 0 8 = , .H 0 03 = ;c: .L 1 0 = , .H 0 03 = )

FIGURE 4.13 Illustration of one oscillation motion of the pure yaw test

(a)                                        (b)

FIGURE 4.14 Comparison of outY  and outN  in calm water and head waves
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TABLE 4.6 Comparison of the force coefficients of pure yaw tests in calm water and 
regular head waves 

Case ampY  ampN  YGap (%)  NGap (%) 
pmmT =9.23s, calm water -109.7 -203.8 0.0 0.0 

pmmT =9.23s, L
 =0.5, H

 =0.03 -109.8 -208.2 0.1 2.2 

pmmT =9.23s, L
 =0.8, H

 =0.03 -110.8 -212.5 1.0 4.3 

pmmT =9.23s, L
 =1.0, H

 =0.03 -110.1 -218.4 0.4 7.2 

pmmT =10.92s, calm water -79.13 -122.7 0.0 0.0 

pmmT =10.92s, L
 =0.5, H

 =0.03 -79.63 -126.9 0.9 4.9 

pmmT =10.92s, L
 =0.8, H

 =0.03 -80.31 -130.6 1.8 7.9 

pmmT =10.92s, L
 =1.0, H

 =0.03 -79.08 -136.6 0.2 12.9 

pmmT =10.92s, L
 =0.8, H

 =0.055 -83.80 -138.9 6.2 14.8 

pmmT =12.21s, calm water -62.76 -88.70 0.0 0.0 

pmmT =12.21s, L
 =0.5, H

 =0.03 -63.74 -92.25 1.8 6.3 

pmmT =12.21s, L
 =0.8, H

 =0.03 -63.68 -96.20 1.7 10.8 

pmmT =12.21s, L
 =1.0, H

 =0.03 -63.27 -99.65 1.0 14.8 

pmmT =12.21s, L
 =0.8, H

 =0.055 -67.32 -106.6 7.5 22.8 

.pmmT 14 10s= , calm water -46.27 -60.12 0.0 0.0 

pmmT =14.10s, L
 =0.5, H

 =0.03 -46.72 -62.11 0.9 6.8 

pmmT =14.10s, L
 =0.8, H

 =0.03 -47.36 -65.65 2.3 12.9 

pmmT =14.10s, L
 =1.0, H

 =0.03 -47.21 -68.76 2.0 18.3 

pmmT =14.10s, L
 =0.8, H

 =0.055 -51.01 -73.35 10.2 26.2 

.pmmT 17 26s= , calm water -30.21 -33.85 0.0 0.0 

.pmmT 17 26s= , L
 =0.5, H

 =0.03 -30.62 -36.47 1.2 8.9 

TABLE 4.7 Hydrodynamic derivatives ( 310 ) 
Case *

rY   *
rN   rY   r rY   rN   r rN   

Calm water 2.4 -2.1 2.4 0.56 -2.2 0.06 

L
 =0.5, H

 =0.03 2.4 -2.2 2.3 -0.10 -2.4 0.18 

L
 =0.8, H

 =0.03 2.2 -2.3 2.1 -0.40 -2.5 0.12 

L
 =1.0, H

 =0.03 2.4 -2.5 2.2 -0.35 -2.7 0.17 

L
 =0.8, H

 =0.055 1.4 -2.7 1.4 -0.80 -3.1 0.75 
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*The derivatives with superscript * represent the results obtained by linear fitting, 
and the others are obtained by quadratic function fitting. 

 
For the low-frequency part, the FFT method is utilized to obtain the wave-effected 

maneuvering forces. The curve fitting method is adopted to obtain the coefficients ampY  

and ampN  in regular waves. All results are summarized in Table 4.6. In this table, YGap  

and NGap  represent the differences between the force coefficients in the calm water 

condition and waves. The values larger than 10% are highlighted in red. Obviously, 

YGap  is small except for the steepest wave condition. NGap  is large in waves and 

increases significantly with the increase of the wave steepness and the wavelength. 

Based on Eq(4.7), outY    and outN    can be calculated and drawn in Fig 4.14. The 

differences between outY   in various wave conditions are smaller than the uncertainty 

range. However, the differences between outN    in various waves are larger than the 

uncertainty range indicating the significant wave effect on the yaw moment.  
Table 4.7 shows the whole simulated hydrodynamic derivatives. We can conclude 

that the lateral hydrodynamic derivative *
rY    does not change obviously with the 

wavelength but decreases significantly with the increase of the wave steepness. 

However, the absolute value of the yaw hydrodynamic derivative *
rN    increases 

significantly with the increase of the wavelength and wave steepness. For the nonlinear 

hydrodynamic derivatives r rY    and r rN    in waves, they change notably compared 

with those in the calm water condition. Unfortunately, for these high-order derivatives, 
there is no monotonically changing tendency with the increase of the wavelength and 
wave steepness. Therefore, it is hard to propose a simple modification on the wave 
effect on the high-order hydrodynamic derivatives. 

4.4.2 Comparison of the flow field in calm water and head waves 

The instantaneous free surfaces of the pure yaw tests in the calm water condition 
and regular waves with various wave parameters are summarized in Figs 4.15~4.17. In 
these figures, the position z represents the distance between the free surface and the 

base line of the ship. For the periodic motion with the period pmmT , the typical time 

pmmt T 2=  is chosen to draw the free surface. The comparison between Fig 4.15 and 



Fig 4.16 indicates that the wave height around the bow in head waves is higher than 
that in the calm water condition. In addition, the amplitude of the ship wave in the head 
wave condition is higher than that in the calm water condition. With the increase of the 
wavelength, the amplitude of the ship wave increases. Comparing Fig 4.16(a) and Fig 
4.17, it is obvious that the PMM motions have little effect on the amplitude of the ship 
wave and significant effect on the waveform.

Figs 4.18~4.21 show the dynamic pressure on the hull. The windward side is the 

port side, and the leeward side is the starboard for pmmt T 2= . For the port side of the 

hull in calm water condition, there is an obvious high-pressure zone on the bow and a 
low-pressure zone after the high-pressure zone. For the starboard in calm water 
conditions, the low-pressure zone in the bow is larger and with lower pressure than that 
on the port side. The significant asymmetry of the port side and starboard leads to the 
lateral force and yaw moment during the motions. For the wave condition, the dynamic 
pressure distribution on the hull is characterized by the staggered distribution of the 
high-pressure region and the low-pressure region clearly. Compared with the calm 
water condition, the dynamic pressure in wave conditions is much higher around the 
bow and much lower in the low-pressure of the bow. For the wave conditions with 
different wave parameters, the range of the dynamic pressure is changed significantly. 
With the increase of wavelength and wave steepness, the amplitude of hull dynamic 
pressure is greater. The increase of the low-frequency maneuvering motion period also 
makes the amplitude of hull dynamic pressure larger.

Compared with the hydrodynamic derivatives obtained by FFT and time average 
processing in the last section, the flow field information analyzed in this section is 
instantaneous. This analysis not only gives the instantaneous information of the flow 
field but also explains the source of the difference of time average force from the
perspective of the flow field. It can be seen from the analysis that for the instantaneous 
flow field information, the influence of waves on free surface fluctuation and dynamic 
pressure is more significant than that of low-frequency maneuvering motions.

FIGURE 4.15 The free surface in the pure yaw tests ( pmmT =9.23s, pmmt T 2= ) for the calm 
water condition

Position z (m) 
0.266          0.282        0.297        0.312        0.328        0.344



    
(a)

(b)
FIGURE 4.16 The free surface in the pure yaw tests ( pmmT =9.23s, pmmt T 2= ) for the head 

wave condition (a: .L 0 5 = , .H 0 03 = ; b: .L 0 8 = , .H 0 03 = )

FIGURE 4.17 The free surface in the pure yaw tests ( pmmT =17s, pmmt T 2= ) for the head 
wave condition ( .L 0 5 = , .H 0 03 = )

FIGURE 4.18 The dynamic pressure on the hull in the pure yaw tests (Tpmm=9.23s, 
t=Tpmm/2) for the calm water condition

Position z  (m) 
0.237          0.267      0.297        0.327        0.357        0.387

Position z (m) 
0.196          0.240        0.284        0.327        0.371        0.415

Position z (m) 
0.237          0.266        0.295        0.325        0.354        0.384

Dynamic Pressure (Pa)
-270.65     -123.63      23.385    170.40         317.42      464.44

Starboard

Port side



  (a)

  (b)
FIGURE 4.19 The dynamic pressure on the hull in the pure yaw tests (Tpmm=9.23s, 

t=Tpmm/2) for the head wave condition (a: .L 0 5 = , .H 0 03 = ; b: .L 0 8 = , .H 0 03 = )

FIGURE 4.20 The dynamic pressure on the hull in the pure yaw tests (Tpmm=17s, 
t=Tpmm/2) for the head wave condition ( .L 0 5 = , .H 0 03 = )

  (a)

  (b)
FIGURE 4.21 The dynamic pressure on the hull in the pure yaw tests (Tpmm=12s, 

t=Tpmm/2) for the head wave condition (a: .L 0 8 = , .H 0 03 = b: .L 0 8 = , .H 0 055 = )

4.5 Summary

In this chapter, the numerical simulations of the pure yaw tests in regular head 
waves for the KVLCC2 are carried out to detect the wave effect on the maneuvering 
hydrodynamic derivatives. The relative experiments were carried out in the towing tank 
of Shanghai Jiao Tong University for the first time. The simulations are carried out
based on a RANS code with the overset mesh and Euler overlay techniques. The 
verification and validation of the simulation method are performed, which reveals the 
effectiveness of the current numerical methods. Three main conclusions can be
summarized here.

1. The present numerical simulation methods can deal with the problem of PMM 
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tests in head waves efficiently and accurately. Considering the simulation efficiency 
and potential requirement of extension to more dangerous wave conditions, the overset 
mesh and Euler overlay techniques are crucial for the simulations of the captive model 
tests in waves. 

2. In regular head waves, the hydrodynamic derivatives will be affected by the 

wave steepness and the wavelength. rY   is basically unchanged from that in the calm 

water condition except for extremely steep waves. For rN   , the absolute value 

increases significantly with the increase of wave steepness and wavelength. This 
explains why the ship might undergo uncontrollable deviation under head waves. 
However, a simple modification method is hard to be proposed because the nonlinear 
hydrodynamic derivatives do not increase or decrease monotonically with the increase 
of the wave steepness and wavelength. 

3. The hydrodynamic forces during the maneuvering motions are changed by the 
high-frequency encounter wave frequency and the low-frequency maneuvering motions. 
There are two peaks around the encountered wave frequency and its multiples. 
Therefore, the previous studies on maneuverability in waves using the precalculated 
second-order wave force and real-time encounter wave frequency corresponding to the 
gravity center are not accurate enough. 

4. The flow field of the captive model tests in head waves are also provided. It not 
only gives the instantaneous information of the flow field but also explains the source 
of the difference of time average force from the aspect of the flow field. The effect of 
waves on free surface fluctuation and dynamic pressure is much more significant than 
that of low-frequency maneuvering motions. Hence, the wave effect cannot be ignored 
when considering the instantaneous action and flow field information. 
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Chapter 5 Free-running tests in the calm water condition 

As described in Chapter 1, there are three methods on assessing the 
maneuverability in waves. The experimental methods are expensive and always be 
adopted at the final design stage, which make the hull form optimization aiming to 
improve the maneuverability hard to achieve. The most widely utilized methods, the 
potential flow methods, are much more efficient and with acceptable engineering 
precision nowadays at many conditions. However, the potential flow methods require 
plenty of parameters obtained from captive model tests, such as the self-propulsion 
point, the hull maneuvering hydrodynamic derivatives, the interaction parameters 
among a hull, the propeller, and the rudder. In addition, the research shown in Chapter 
3 and Chapter 4 reveals that the maneuvering hydrodynamic derivatives will change 
under the wave conditions, which indicates that there might be some error for present 
potential flow methods assuming hydrodynamic derivatives in calm water as those in 
waves. The pure CFD method for free-running tests can solve these problems. The self-
propulsion point can be obtained through the pre-calculated simulations. The hull 
maneuvering hydrodynamic derivatives and the parameters for the hull-propeller-
rudder interaction are not needed to obtain from experiments or empirical formulas 
because all the forces are considered in the simulations. 

Before the simulations of free-running tests in waves, the free-running tests in the 
calm water condition should be simulated first. The research on this topic has been 
developed for about two decades. Carrica et al (2013) conducted simulations for turn 
and zigzag tests of a surface combatant using dynamic overset grids and a simplified 
actuator disk model. Broglia et al (2015) carried out the simulations of turning tests for 
a fully appended twin-screw vessel considering single and twin rudder configurations, 
respectively. For the above-mentioned studies, the propellers were simulated using the 
simplified actuator disk models. Shen et al (2015) implemented overset grid into 
OpenFOAM and applied the technique to simulate zigzag test using the discretized 
propeller. Wang and Wan (2018) further extended the solver in simulating the turning 
tests with discretized propellers and rudders. For these studies, varying degrees of 
success are achieved. However, the calculation speed and required simulation resources 
also limit the wide utilization of this method.  

As the basis of maneuverability research in waves, this chapter will deal with 
maneuverability simulation in calm water. In present study, the free-running tests will 
be simulated using the structured overset Navier-Stokes solver NAGISA with dynamic 
overset grids. The resistance simulation should be carried out at the first step. Next, the 
self-propulsion simulation is performed to obtain the propeller rotation speed keeping 
the balance between the resistance and propulsion. Finally, the turning tests and zigzag 
tests are simulated using the results of the self-propulsion case as the initial condition.  
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5.1 Simulation conditions based on the experiments 

The containership S175 is the target ship of the present simulations because it is 
one of the benchmark models for researching the maneuvering in waves according to 
ITTC (2017b). The free-running tests have been performed in the towing tank of 
Shanghai Jiao Tong University (Zhang et al, 2017). The principal dimensions and 
geometry of the ship model are shown in Table 5.1 and Fig 5.1, respectively.  

TABLE 5.1 Principal particulars of S175 with a propeller and a rudder 
Specifications Full Model Nondimensionalized 

Length between perpendiculars, ppL  175m 3.0337m 1 

Beam, B  25.4m 0.4403m 0.1451 
Draft, d  9.5m 0.1647m 0.0543 

Block coefficient bC   0.57 0.57 0.57 

L.C.B. from F.P. 90.65m 1.554m 0.5122 
Height of C.G. above base line \ 0.1647m 0.0543 

Radius of gyration in roll, xxk  0.33 B  0.23 B  0.23 B  

Radius of gyration in pitch, yyk  0.25 ppL  0.262 ppL  0.262 ppL  

Radius of gyration in yaw, zzk  0.269 ppL  0.262 ppL  0.262 ppL  

Displacement 24742 m3 0.127 m3 0.004549 
Diameter of the propeller 6.5064m 0.1128m 0.03718 

Numbers of blades 5 5 5 
Pitch ratio 0.915 0.915 0.915 

Rudder aspect ratio 1.8268 1.8268 1.8268 
Rudder area 32.46 m2 0.0098 m2 0.001065 

Rudder height 7.7583m 0.1335m 0.04401 

 
FIGURE 5.1 Ship model picture captured during the experiments 
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Fig 5.2 shows the flow chart of all simulation conditions for the free-running tests 
in calm water condition and waves. The free-running tests, including the course-
keeping maneuvers, turning maneuvers, and the zigzag maneuvers, are simulated in 
calm water and wave conditions. For the calm water condition, the resistance test 
simulation and self-propulsion simulation should be performed before. The resistance 
test simulation is utilized to obtain the ship resistance in calm water and the initial flow 
field information for the self-propulsion simulation case. Then, the open-water 
characteristic of the propeller will be calculated, and the propeller rotation speed will 
be modified to keep the balance of the propulsion force and the resistance during the 
self-propulsion simulation case. Finally, different kinds of free-running tests can be 
simulated based on the flow field of the final steady self-propulsion case. For the 
simulations in waves, the self-propulsion simulations in various wave conditions should 
be performed to provide the flow filed information. Finally, based on the flow filed files, 
course-keeping maneuvers, zigzag maneuvers, and turning maneuvers in regular and 
irregular waves can be simulated. 

Generally, turning circle tests are performed to starboard or port side with 35° 
rudder angle or the maximum design rudder angle permissible at the test speed. The 
rudder angle should be executed with a steady speed. The essential parameters 
measured from turning maneuvers are tactical diameter, advance, and transfer (IMO, 
2002a, b). Zig-zag maneuvers are carried out by reversing the rudder alternately to the 

other side at a deviation   from the initial course.   is the execute heading angle 

which means the heading angle when the rudder is reversed. The zig-zag test begins by 
applying a specified amount of rudder angle to an initially straight approach ("first 
execute"). Then, the rudder angle is alternately shifted to the other side after a specified 
deviation from the ship's original heading is reached ("second execute" and following). 
The essential parameters measured from zig-zag maneuvers are the overshoot angles, 
initial turning time to second execute and the time to check yaw (IMO, 2002a, b). The 
course-keeping maneuvers are the steered ship maintain a straight path in a 
predetermined course direction without excessive oscillations of rudder and heading 
angle. In fact, the course-keeping maneuvers do not belong to the required experiments 
to assess the maneuverability in the standards. Usually, the course-keeping ability is 
assessed by the modified zig-zag tests (with 1 deg execute heading angle and 5- or 10-
degrees rudder angle), the direct spiral tests or the reverse spiral tests. However, the 
simplicity of the direct course-keeping test simulations and the importance of the 
course-keeping ability for ship navigation in waves requires to conduct these 
simulations. 

For the calm water condition, the turning test is carried out with the maximum 
rudder angle of 35deg and the rudder speed of 13deg/s which are the same as the 
experimental ones. The 20/20 zigzag test is simulated with the rudder speed 13deg/s. 
The propeller rotation is fixed to the predicted value obtained from the self-propulsion 
case. The vessel speed is set to be 0.818m/s corresponding to the Froude number 0.15. 
It should be noted that the dimensionless RANS code NAGISA is utilized to conduct 
the simulations in this and the next chapter. Therefore, the rotation speed and the vessel 
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speed should be nondimensionalized.  

 

FIGURE 5.2 Flow chart of simulation conditions for the free-running tests 

5.2 Computational domain and Grids 

The ship geometry for the simulations, S175, is shown in Fig 5.3. Fig 5.4 shows 
the arrangement of the calculation domain. The base region extends to -3.0L<x<2.0L, 
-2.5L<y<2.5L, and -1.0L<z<0.2L. As mentioned before, the flow filed result of the 
resistance case is the initial condition for the self-propulsion simulations, and the result 
of the self-propulsion case is the initial condition for the free-running case in calm water 
and wave conditions. Hence, the mesh size around the free surface is determined based 
on the wave condition for the higher requirement for the mesh size. To achieve the good 
simulation for the wave field, the minimum size in the longitudinal and lateral 

directions is calculated by 85   and the minimum size in the vertical direction is 

calculated by wH 15  for the flattest wave condition, which represents at least 85 points 

per wavelength and 15 points per wave height. Therefore, the grid number for the base 
region is around 5 million. The hull region extends to -0.6L<x<0.6L, -0.1L<y<0.1L, 
and -0.1L<z<0.1L with the grid number of around 1 million. Considering that the 
calculation domain will rotate and translate with the ship and the wave is generated 
from the maximum and minimum coordinates in x and y directions under the initial 
coordinate system, the cylindrical calculation domain is adopted to reduce the 
calculation domain size. Wang and Wan (2018) also adopted the same region for the 
turning test simulations, which shows good accuracy compared with the experimental 
data. For the cylindrical calculation domain, it has the same horizontal motions (surge-
sway-yaw) with the hull region. The other motions are fixed without moving with the 
hull region.  

Fig 5.5(a) shows the overall grid distribution. The black part is the hull overset 

Resistance

Self-propulsion

Self-propulsion in 
regular waves

Turning maneuver in calm 
water condition

Zigzag maneuver in calm 
water condition

Self-propulsion in 
irregular waves

Turning maneuver in regular 
waves

Zigzag maneuver in regular 
waves

Course-keeping maneuver in 
irregular waves

Zigzag maneuver in irregular 
waves



 

75 

 

region. The red part contains the hull surface and the rudder surface. The rudder overset 
region is marked in yellow. The outer base grid is drawn in green. Fig 5.5(b) shows the 
finer grid distribution around the hull from the top view. The detailed overset grid 
information is drawn in Fig5.5(c) and (d). All the grids are generated by Pointwise. 
Then, they are pretreated by the grid deformation/machining program UP_MOD and 
overset grid information generation program UP_OVS of the UP_GRID code (Kodama 
et al, 2012). The wall function is utilized and y+ is set to be 40 considering the 
turbulence model requirement. The grid numbers are listed in Table 5.2.  

As for the boundary conditions, the hull surface and the rudder surface adopt the 
wall boundary condition. The other surfaces all adopt the outer boundary condition 
since the velocity is specified by the ship motion.  
 

 
FIGURE 5.3 Ship geometry for the simulations 

 
FIGURE 5.4 Arrangement of the calculation domain 



(a)                                   (b)

  
(c)                         (d)

FIGURE 5.5 Grid arrangement

TABLE 5.2 Number of the cells
Grid IM×JM×KM Grid number
Hull 167×139×49 1.10 million

Rudder 77×65×45 0.21 million
Rudder overlap region 33×21×61 0.04 million

Base 347×129×111 4.87 million
Total / 6.22 million

5.3 Numerical simulations

For the resistance simulation, the ship is forced to move ahead with the test
velocity. Considering the small value of the pitch and heave motion for the low-speed 
vessel, the ship is free only in the surge direction with the other five motions fixed. The 
ship wave pattern at Fn=0.15 in model scale is drawn in Fig 5.6. For Nagisa the code 
utilized for free-running test simulations, the z=0 plane locates on the undisturbed free 
surface. Hence, the coordinate Z in Fig 5.6 represents the wave elevation. The 
symmetry Kelvin wave can be seen clearly in this figure.

Then, the self-propulsion case should be carried out based on the results of the 
resistance case. Before that, the open-water characteristics of the propeller is simulated. 
The result of the open-water propeller test is shown in Fig 5.7. It is obvious that the 

Hull mesh

Base mesh

Hull mesh

Base mesh

Rudder overlap mesh

Rudder mesh



simulation results are in good agreement with the experimental data, which can also 
reveal the high quality of the body force method. Based on the calculated open-water 
characteristics of the propeller, the self-propulsion case is simulated. The propeller 
rotation speed is modified from the initial value to keep the balance of the resistance 
and propeller thrust. The results are shown in Fig 5.8 and Fig 5.9. Figure 5.8 shows the 
axial inflow velocity distribution around the wake field. The inflow velocity shown in 
this figure is also nondimensionalized by the vessel speed. The negative value means 
that the velocity direction is from the aft to the fore. Hence, the positive values on the 
propeller section shows clearly that the propeller pushed the water backward. The 
vector also shows the effect of the right-handed propeller on the flow field. The non-
uniformity of flow field velocity caused by propeller rotation can be seen clearly. In Fig 
5.9, the time history of the predicted propeller rotation speed is compared with the 
experimental one, which shows good agreement. The error between the average value 
of the experimental data and the steady predicted value is about 5%. Even though the 
simulations using the real discretized propeller can decrease the error to about 2% by 
some scholars (Wang et al, 2017), the large computational resources increased by the 
grid number and extremely small time-step make these simulations of the maneuvering 
in calm water and wave conditions time-costing. Hence, the simplified propeller model 
is adopted and utilized in present simulations. In addition, the error might come from 
the difference between the experiment and the simulation. For the simulations, the ship 
is free only in the surge motion with the other motions fixed considering the little pitch 
and heave motion for the target low-speed containership model. 

Finally, the simulations of the ship free-running test in calm water can be 
conducted relying on the results of the self-propulsion case. For these simulations, six
degrees of freedom are utilized to predict the ship trajectories and motions.

FIGURE 5.6 Computational result of ship wave pattern at Fn=0.15 in model scale

Fn=0.15
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FIGURE 5.7 Open-water curve for experiments (dot) and simulations (dashed line) 

 
FIGURE 5.8 Axial inflow velocity distribution on the propeller section 

 
FIGURE 5.9 Comparison between the simulated propeller rotation speed and the 

experimental data 
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5.4 Results and discussions 

5.4.1 zigzag tests in calm water condition 

The 20/20 zigzag maneuver with the rudder speed of 13 deg/s is simulated and 
analyzed in this section. Fig 5.10 shows the simulated and experimental time histories 
of the heading angle and the rudder angle. In this figure, t  denotes the physical time 

and the simulated CFD data is calculated using the function PPt t L U= , in which t  

is the nondimensionalized physical time obtained from the simulation and U  is the 
ship initial velocity at the beginning. There are six typical positions marked as A to F 
respectively. Point A denotes the initial position when the rudder angle and yaw angle 
are zero. Point B and E represent the positions when the rudder angle reaches the 
specified angle to starboard and the specified angle to port side, respectively. Point C, 
D, and F represent the position when the heading angle reaches the maximum yaw angle, 
zero yaw angle, and the minimum yaw angle, respectively. These typical positions will 
be utilized to analyze the time histories of the forces and flow filed information later. 
In general, some typical parameters should be obtained and compared, which are the 
first overshot angle, the second overshoot angle, time to check yaw and time of a 
complete cycle. In terms of the heading angle prediction, there are quite small 
differences between the predicted magnitude value and the experimental data (0.04%) 
for the first cycle and slightly larger difference for the second cycle (4.44%). For the 
rudder period, the consistence is quite good with 2.76% difference for the first cycle 
and a little larger (4.15%) for the second cycle. The criteria parameters of the zigzag 
maneuvers are listed in Table 5.3. Good agreement between the CFD results and the 
experimental data is achieved in terms of the 1st overshot angle (0.13%) and the time 
for that (2.76%). When the ship rudder executes to the port side, especially the rudder 
angle keeps -20deg, the yaw rate predicted by the CFD methods seems to be 
underestimated. The 2nd overshoot angle predicted is overestimated by 10.30% and the 
time to the 2nd overshoot angle is overestimated by 4.15%. The discrepancies might 
come from the insufficient propeller model and the uncertainty of the measurement data. 
For the former, the body force method based on the potential-flow theory might ignore 
the strong viscous hull-propeller-rudder interaction and the propeller forces might be a 
little different from the experimental one. For example, the high-frequency fluctuation 
can be founded in the experimental data and actual rotating propeller method (Wang et 
al, 2018). This high-frequency fluctuation is considered to be the interaction of the 
blades on the flow field when rotating. For the latter, the uncertainty analysis of the 
experiments is not provided and the error between the simulated and experimental 
results should be determined considering the uncertainty level of the experimental data. 
Except the 2nd overshoot angle, the error for these parameters is smaller than 5%. In 
summary, considering the efficiency and accuracy, the present simulation results are 
acceptable and valuable. In Fig 5.11, the yaw rate predicted by the CFD method is 
presented and compared with the experimental results. The predicted yaw rate is 



calculated based on PPr r U L= . At the beginning, the predicted yaw rate agrees well 

with the experimental time history of the yaw rate. With the rudder executing to the 
port side, especially 12s t 17s   , the difference seems to be larger, resulting in the 
obvious error for the yaw angle in the second cycle of the zigzag test.

FIGURE 5.10 Yaw and rudder angle for the 20/20 maneuver in calm water condition

FIGURE 5.11 Yaw rate for the 20/20 maneuver in calm water condition

TABLE 5.3 Comparison of main parameters for 20/20 zigzag maneuver in calm water 
condition with rudder angle of 13deg/s 

Parameters EFD CFD Error
1st overshoot angle (deg) 10.53 10.54 0.13%

Time (1st overshoot angle) (s) 11.00 11.30 2.76%
2nd overshoot angle (deg) 15.19 16.76 10.30%

Time (2nd overshoot angle) (s) 29.10 30.31 4.15%
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(d)
FIGURE 5.12 Non-dimensional forces and moments for the 20/20 maneuver in calm 

water condition (a: longitudinal force; b: lateral force; c: moment in the roll motion; d: 
moment in the yaw motion)

Fig 5.12 presents the time histories of longitudinal forces, lateral forces, roll 
moments and yaw moments on the hull and rudder in the ship-fixed coordinate system. 
The forces and moments are nondimensionalized through the functions: 

( ). 2 2
x x PPC F 0 5 U L=   and ( ). 2 3

nz z PPC M 0 5 U L=  . For the longitudinal direction, the 

propeller force is also considered. The total force in this figure represents the sum of 
the hull force and rudder force. As can be seen from this figure, the forces on the hull 
take the main parts of the resistance and lateral forces. However, the yaw moment 
created by the rudder takes larger proportion of the total yaw moment due to the longer 
arm of the forces even though the longitudinal and lateral forces on the rudder are 
smaller than those on the hull. 

When the rudder executes to starboard (from A to B), the rudder lateral force points 
to the port side, which makes a large negative yaw moment on the rudder as shown in 
Fig 5.12(d). The ship is forced to turn to starboard by this negative yaw moment. Then, 
the positive yaw moment and lateral force on the hull are generated by reaction force 
of the water for the ship motion. When the rudder angle reaches the maximum specified 
value and keeps it, the ship yaw angle will increase due to the negative yaw moment. 
The longitudinal and lateral force on the rudder decrease during this period. When the 
rudder starts to turn to port side (Point B to Point C), the rudder yaw moment and lateral 
rudder force will change from the negative values to the positive ones. From the Point 
C to Point D, the rudder angle keeps, and the yaw angle changes from the maximum 
angle to zero. When the ship yaw angle is zero in Point D, the yaw moment on the hull 
is negative and huge forcing the ship turn to port side. The rudder yaw moment is huge 
and positive, which makes the total yaw moment close to zero. During the period from 
Point D to Point E, the hull yaw moment dominates the total yaw moment rather than 
the rudder in the other periods. By comparing the Point A with the Point D, it is clear 
that even though the yaw angle is the same, the lateral force at Point D is totally different 
from that at the Point A due to the large hull yaw moment and the different flow filed. 
The rudder starts to turn to starboard at Point E, the rudder yaw moment rapidly 
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decreases from the positive value to the negative. The lateral forces on the rudder at 
Point B and E are the extreme points. It can be seen that for this 20/20 zigzag maneuvers, 
the dominant part of the yaw moment is the rudder yaw moment at most times. For the 
rudder, the absolute values of Cy when the rudder in port side and those when the rudder 
locates starboard are close, which reveals the symmetry of the rudder force. So is the 
yaw moment coefficient on the rudder Cnz.

In addition, during the zigzag maneuver, there is an obvious speed loss 
phenomenon shown in Fig 5.13. The increased resistance due to the drift angle and the 
motions might contribute greatly to the 20% decrease of the vessel speed. When the 
propeller rotation speed is fixed and the rudder is executed frequently, the ship speed 
will decrease inevitably.

FIGURE 5.13 Dimensionless velocity for the 20/20 maneuver in calm water

FIGURE 5.14 KT and 10KQ for the 20/20 maneuver in calm water
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FIGURE 5.15 Self-propulsion factors for the 20/20 maneuver in calm water

To gain more insight into the effect of the propulsion system during the zigzag 
maneuver, the propeller thrust coefficient KT, the torque coefficient KQ, and the advance 

coefficient J are shown in Fig 5.14. KT is defined as 2 4
TK T n D= , KQ is calculated 

using the equation 2 5
QK Q n D= and J is defined as AVJ nD= . T and Q represent 

thrust and torque of the propeller. AV is the advance speed of the propeller, n is the 

propeller rotation speed in revolutions per second and D represents the diameter of the 
propeller. The time histories of self-propulsion factors are drawn in Fig 5.15. Due to the 
added resistance by the propeller, the thrust deduction fraction can be obtained using

( )t Thrust-Resistance Thrust= . The wake fraction reflecting the hull effect on the propeller 

can be computed by t A1 V U = − . The hull efficiency for propulsion can be calculated 

by ( ) ( )H t1 1 t = − −  reflecting the interaction between the hull and propeller. The 

relative rotative efficiency of the ship propeller respect to the open water propeller is 

computed from R Q0 QK K = reflecting the nonuniformity of wake. Q0K is calculated 

in the open-water condition. The thrust and torque have the same low-frequency 
fluctuation. Both thrust and torque are evidently related to the ship motions and rudder 
execution. When the rudder executes, the thrust and torque of the rotating propeller will 
show significant difference, which is mainly due to the large flow disturbance around 
the propeller caused by the rudder. Even though the vessel speed decreased in a 
fluctuating way, the advance coefficient J will not decrease following it all the time. 
The advance coefficient is determined by the ship motion and the wake flow field 
influenced by the hull, propeller and rudder simultaneously. In addition, the zigzag 
maneuver can cause the advance coefficient to fluctuate in the range of 20% of the 
average value in this case. The advance coefficient is negatively correlated with thrust 

and torque. 1 t− and t1 − are positively correlated with the advance coefficient J .
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Hence, the hull efficiency for propulsion H   keeps constant during the zigzag 

maneuvers. The time history of the relative rotative efficiency of the ship propeller R  

shows that the nonuniformity of wake also changes with time.  

 

 
FIGURE 5.16 Snapshots of free surfaces colored by wave elevation and cross sections 
colored by vorticity magnitude during the 20/20 maneuver in calm water condition 
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Fig 5.16 shows the vorticity magnitude on significant sections and the wave 
elevation on the free surface during the zigzag maneuver in calm water condition. The 
sequence of pictures provides a clear representation of the flow evolution along the hull 
during the zigzag maneuver motions. The formation of large vorticial structures 
detaching from the hull as well as strong vortex/vortex and vortex/boundary layer 
interactions are shown in this figure. There are 12 equidistant sections on the hull and 
7 equidistant sections from the after perpendicular of ship to 0.3L behind the hull. In 
Fig 5.16(A), the initial boundary layer is close to the self-propulsion case in calm water. 
A relatively weak vortex detaches from the bulbous bow and transports downstream 
following the hull. The vortex magnitude increases toward the stern. Particularly strong 
vortices are generated at the propeller and rudder. These vortices merge with the 
bulbous bow vortex to generate a complex wake near the free surface. Due to the 
symmetry of the hull and rudder, the vortices also show clear symmetry. When the 
rudder executes to starboard and keeps the 20deg till the yaw angle reaches 20deg (Fig 
5.16(B)), the bulbous bow vortex on the starboard is much larger than that on the port 
side. The behind-hull vortices as well as the wake deflect towards the starboard. When 
the rudder executes to port side and the yaw angle reaches the maximum value (Fig 
5.16(C)), the asymmetry of the vortex on the starboard and port side seems to be smaller 
compared with Fig 5.16(B) even though the yaw angle is larger. The larger hull yaw 
angle can cause the stronger vortices on the starboard and clear wake deflecting towards 
the starboard. However, the rudder angle deflecting to the port side has the contrary 
effect on the flow filed and the hull yaw angular velocity is zero at this point, which 
makes the flow filed closer to that shown in Fig 5.16(A). In Fig 5.16(D), the vortices 
on the port side are much stronger than those on the starboard even though the hull yaw 
angle is zero. It is due to the large yaw angular velocity and the rudder angle. Then, the 
vorticity distribution in Fig 5.16(E) is approximately symmetrical to that in Figure 
5.16(B) about the longitudinal section of the ship. Finally, the deflection of tail vortices 
will be decreased when the ship yaw angular velocity close to zero in Fig 5.16(F), which 
is the same as that in Fig 5.16(C). 

The pressure on the rudder is drawn in Fig 5.17, which indicates that the pressure 
distribution on the rudder is mainly related to the rudder angle. When the rudder deflects 
towards the starboard at point B and F, there is a low-pressure region on the port side 
of the rudder. When the rudder deflects towards the port side at point C, D and E, there 
is a low-pressure region on the starboard of the rudder. The pressure distributions at 
point D and E are similar, which corresponds to the time history of the lateral force 

coefficient yC  and yaw moment coefficient nzC  shown in Fig 5.12.  
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FIGURE 5.17 Snapshots of pressure on the rudder during the 20/20 maneuver in calm 

water condition 

5.4.2 turning tests in calm water condition 

The turning maneuver with the rudder speed of -13deg/s to the rudder angle of -
35deg was simulated. The trajectory of the turning circle is shown in Fig 5.18. Some 
typical parameters for the turning circles should be defined to assess the turning ability. 

Advance 90x  denotes the longitudinal distance from the initial point to the point when 

the heading angle change is 90 deg. Transfer 90y  represents the lateral distance from 

the initial point to the point when the heading angle change is 90 deg. Steady turning 

radius means the radius of the steady turning circle. Similarly, 180x  and 180y  can also 

be defined to conduct the validation. 90T   and 180T   represent the time from the 

beginning of the rudder execution to the time when the heading angle changes are 90 
deg and 180 deg, respectively. The results are summarized in Table 5.4. The tactical 
diameter error for this case is 2.78% and the predicted advance is a little larger with 
5.50% error compared with the experimental data. These errors might come from the 
difference between the experiments and the simulation setup and the insufficient 
performance of the propeller model. In addition, the present simulation strategy still has 
some room for improvement considering resolving the large flow separation with such 
considerable rudder angle. Overall, the simulation strategy using the body force method 
to calculate the propeller force and the overlapping grid technology to deal with the 
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multiple motions can deal with the problem of simulating the turning motion. The 
comparison between the experimental and simulated trajectory indicates that the 
present simulation method can predict the turning maneuver with satisfying accuracy. 
The time histories of the yaw rate and dimensionless velocity are drawn in Fig 5.19 and 
Fig 5.20, respectively. The comparisons also validate the efficiency of the present 
simulation method. A clear speed loss phenomenon is shown in Fig 5.20. Compared 
with that of the zigzag test simulation, the speed loss of the turning test simulation is 
much larger with a 50% decrease of the initial vessel speed.

FIGURE 5.18 Trajectory of the ship turning maneuvers in calm water condition

FIGURE 5.19 Yaw rate for the turning maneuver in calm water condition
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FIGURE 5.20 Dimensionless velocity for the turning maneuver in calm water condition

TABLE 5.4 Comparison of main parameters for the turning maneuver in calm water 
condition with rudder angle of 13deg/s 

Parameters EFD CFD Error

Advance 90x (m) 3.07 3.24 5.50%

Transfer 90y (m) 1.56 1.57 0.85%

180x (m) 1.87 1.90 6.38%

180y (m) 3.86 3.69 4.40%

Steady turning radius (m) 3.60 3.50 2.78%
T90 (s) 18.2 17.97 1.25%
T180 (s) 34.6 36.8 6.38%
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(b)
FIGURE 5.21 Non-dimensional forces and moments for the -35deg turning maneuver in 

the calm water condition (a: lateral force; b: yaw moment)

FIGURE 5.22 Drift angle for the turning maneuver in calm water condition

FIGURE 5.23 KT and 10KQ for the turning maneuver in calm water
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FIGURE 5.24 Self-propulsion factors for the turning maneuver in calm water

The time histories of the lateral forces and yaw moments on the hull and rudder 
are drawn in Fig 5.21. In general, there are three stages during the turning circle motions, 
which are the rudder execution stage, the transition stage, and the steady turning stage. 
For this simulation, the first stage is from 0s to 2.7s, and the second stage is from 2.7s 
to about 30s, and the stage after 30s belongs to the steady turning stage. The lateral 
force on the rudder increase rapidly at the rudder execution stage and the lateral force 
on the hull increases due to the drift angle of the hull. The peak of the lateral force on 
the hull comes later than that on the rudder because of the increasing drift angle shown 
in Fig 5.22. The yaw moment on the rudder also increases rapidly at the first stage and 
comes to the peak earlier than that on the hull. The difference between the yaw moments 
on the rudder and hull is much smaller than that between the lateral forces. A clear 
decrease can be seen in the time history of the lateral force during the transition stage. 
It is because the increase of the yaw angle will cause an increasing yaw moment to 

decrease the yaw motion. The lateral component of this moment reduces the nyC  . 

Hence, the similar decrease can be seen in the time histories of the yaw angle and nzC

but not in the drift angle. 
To gain more insight into the effect of the propulsion system during the turning

maneuver, the propeller thrust coefficient TK  , the torque coefficient QK   and the 

advance coefficient J are shown in Fig 5.23. The time histories of self-propulsion
factors are drawn in Fig 5.24. For the rudder execution stage, the thrust and torque 

decrease a little due to the increase of the advance coefficient J . ( )1 t− and ( )t1 −

increase slightly. During the transition stage, the advance coefficient decreases 
significantly owing to the speed loss. Hence, the thrust and torque will increase with 

over 30% of the initial values. ( )1 t− and ( )t1 − have the contrary change trend.

Compared with those in the zigzag tests, the variation ranges of the coefficients in the 
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turning tests increase much more significant. Finally, during the steady turning stage, 
all these parameters are constant as expected.  

Fig 5.25 shows the vorticity magnitude on significant sections and the wave 
elevation on the free surface during the turning maneuver in the calm water condition. 
The sequence of pictures provides a clear representation of the flow evolution along the 
hull during the turning maneuver motions. There are also 12 equidistant sections on the 
hull and 7 equidistant sections from the after perpendicular of ship to 0.3L behind the 
hull. In Fig 5.25(A), the initial boundary layer is close to the self-propulsion case in 
calm water. When the rudder executes to the port side and keeps the -35deg till the 
turning motion steady, the vortices distribution is shown in Fig 5.25(B). There are much 
stronger vortices on the port side (leeward side) compared with those on the starboard 
due to the ship drift angle and the yaw motion. The transverse flow comes from the 
windward side (starboard) to the leeward side (port side). The tail vortices transport 
downstream following the circular path. Compared with Fig 5.16(D) and Fig 5.16(E), 
the drift degree and strength for the vortices around the stern and wake flow seem to be 
larger.  

The pressure distribution on the rudder during the steady turning stage is shown in 
Fig 5.26. Due to the larger rudder angle, the high-pressure region and the low-pressure 
region are larger than those in the 20/20 zigzag test. 

 
(a) 
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(b) 

FIGURE 5.25 Snapshots of free surfaces colored by wave elevation and cross sections 
colored by vorticity magnitude during the turning test in the calm water condition 

(a) rudder execution stage (b) steady turning stage 

 

FIGURE 5.26 Snapshots of pressure on the rudder during the steady turning stage of the 
turning test simulation in the calm water condition  

5.5 Summary 

In this chapter, the numerical studies on the free-running tests in the calm water 

Port sideStarboard
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condition for the standard model S175 containership are carried out to assess the 
effectiveness of the present simulation strategy. The numerical simulations are 
performed using an URANS code based on the dynamic overset mesh and body force 
techniques. The main conclusions are summarized as follows. 

The present numerical simulation methods can deal with the problem of free-
running test simulation efficiently and accurately. In the free-running case simulations, 
the body force technique can predict the propulsion forces with acceptable accuracy 
even though it is based on the potential flow theory ignoring the viscous effect. To 
minimize the calculation resources, the dynamic overset mesh is also necessary. 

The ship motion and trajectory during the zigzag and turning maneuvers are 
predicted successfully. The time histories of the forces and moments on the hull are 
obtained. Propulsion forces and the rudder forces are also presented to illustrate the 
hydrodynamic performance during free-running tests. Flow visualizations, such as 
wave elevations, generation and evolution of vortices, and the pressure on the rudder 
are presented to give a better description of the flow variation during the maneuvers in 
the calm water condition. 
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Chapter 6 Free-running tests in waves 

In this chapter, the numerical simulations on free-running tests in waves can be 
conducted based on the previous simulation methods in calm water condition and the 
wave generation and absorption method. The focus of the current research is placed on 
not only the ship motions but also propulsion coefficients and the rudder forces. In 
addition, the free-running test simulations under the regular and the long-crested and 
short-crested irregular wave conditions are also performed to analyze the wave effect 
on the maneuvering motions. 

6.1 Simulation conditions 

The containership S175 is the target ship of the present simulations. The principal 
particulars and geometry of the ship model are shown in Table 5.1 and Fig 5.1. As 
shown in Fig 5.2, the self-propulsion simulations in waves should be performed before 
the free-running test simulations in waves. The model speed is 0.818m/s corresponding 
to the Froude number of 0.15. The propeller rotation speed is 9.44 rps which is obtained 
from the self-propulsion test simulation in calm water. The experimental average 
rotation speed is 9.9 rps which is 5% larger than the simulated one as shown in Fig 5.9. 
For the purposes of comparison between the forces in calm water and waves, the same 
simulated propeller rotation speed 9.44rps is utilized to conduct all the simulations in 
waves. The regular wave is the head wave with the wavelength 0.7L and the wave 

amplitude 0.00742L (wave steepness wH   equals to 0.021).  

The turning test is carried out with the maximum rudder angle 35deg and the 
rudder speed 13deg/s in the head regular wave condition. The 20/20 zigzag test is also 
simulated with the rudder speed 13deg/s. 

For the irregular wave conditions, the ISSC spectrum is adopted by NAGISA. The 

wave spectrum can be expressed as ( ) ( )exp 4
5

AS f B f
f

= − , where . 2 4
sA 0 1107H f=  and 

. 4B 0 4427 f=  . The ISSC spectrum is a two-parameter wave spectrum based on the 

significant wave height sH  and the mean frequency f . The significant wave height 

of 4.5 meter and 0.122 1/s mean frequency for the full scale, corresponding to the sea 
state 6, are adopted in present simulations. The short-crested irregular wave is also 
considered in the present research. Compared with the long-crested irregular wave, the 
short-crested one is obtained by multiplying the long-crested irregular wave spectrum 

( )S f  with the directional spectrum ( )G   whose function is ( ) cos22G  


= .  
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6.2 Numerical simulations 

As mentioned in section 5.1, the grid and boundary conditions are the same as 
those under the calm water conditions, which are not described here again. Before the 
free-running test simulations in waves, the self-propulsion simulations in different wave 
conditions should be performed to obtain the flow field information as the initial 
conditions for the maneuver simulations. The snapshots of the free surfaces are shown 
in Fig 6.1. A clear kelvin wave can be seen in the regular head wave condition but not 
obvious in the irregular head wave condition for the much higher irregular wave 
amplitude (significant value). For these simulations, the propeller rotation speed is 
fixed rather than modified to balance the resistance and propulsion as the self-
propulsion case in the calm water condition. When the wave covers all the calculation 
domain, the simulations can be finished. Then, the free-running test simulations can be 
carried out based on the flow filed information. 

 
（a） 

 
（b） 
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(c) 

FIGURE 6.1 Snapshots of free surface for the self-propulsion cases in waves 
(a) regular wave condition (b) long-crested irregular wave condition (c) short-crested 

irregular wave condition  

6.3 Results and discussions 

6.3.1 course-keeping tests in irregular waves 

The course-keeping ability is important for the economy and navigation safety of 
ship operation at seas. Compared with the zigzag test and turning circle test, the course-
keeping test need less time to analyze the hydrodynamic phenomenon because of the 
high-frequency rudder execution. Hence, the course-keeping test is utilized to conduct 
the simulations in waves first. Considering that the head regular wave and head long-
crested irregular wave are symmetry about the longitudinal section of the ship. The yaw 
angular velocity will be slight making the rudder angle tiny. To obtain an obvious rudder 
angle and yaw angle, the asymmetric environmental force is necessary. In the present 
study, the course-keeping test simulation in the short-crested irregular wave condition 
is carried out for its asymmetry. 

For evaluating the course-keeping ability and keep the route automatically, a 
proportional-integral-derivative (PID) controller is applied to keep ship navigate in the 
predetermined route when the ship suffers asymmetry environmental forces to deflect. 
The control function is defined by the following expressions: 

t

p i d
0

K K dt K   = + +  (5.1) 

con  = −  (5.2) 

where pK  is the proportional gain, iK  is the integral gain, and dK  is the differential 
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time constant,    is the heading angle, and con   denotes the target heading angle 

which is set to 0 deg to keep the ship advance straight. In this study, the gains are set to 

, ,p i dK 5 K 0 K 6= − = = − .  

The trajectory of the ship is drawn in Fig 6.2, which shows that the ship can keep 
the predetermined route with a slight deflection. The maximum lateral drift is 0.04L.  
The time histories of the yaw angle and rudder angle are shown in Fig 6.3. As expected, 
the short-crested irregular wave will cause the yaw motion of the ship model. Due to 
the directional spectrum, the yaw angle will not increase or decrease monotonically. 
There will be some high-frequency fluctuations on the time history of the yaw angle. 
The sign of rudder angle is basically opposite to that of heading angle to ensure the yaw 
angle close to zero. Some scholars have simulated the course-keeping tests in regular 
head waves and calm water conditions (Kim et al, 2021b; Wang and Wan, 2018). They 
found the symmetry wave loads cause little yaw motion whose maximum value is 
smaller than 1deg. However, for the short-crested irregular wave condition simulated 
here, the maximum value of the yaw angle reaches 20deg and the maximum rudder 
angle up to 3deg.  

Non-dimensional forces and moments for the course-keeping maneuver in short-
crested irregular waves can be obtained and drawn in Fig 6.4. For all the forces, the hull 
forces are the dominant parts. The amplitudes of the high-frequency fluctuations on the 
longitudinal force, lateral force, and the yaw moment are extremely large compared 
with the low-frequency values.  

Fig 6.5 shows the time history of the vessel speed. The speed loss comes from the 
wave added resistance and the yaw motions. The speed seems to be steady after 12s for 
the balance between the ship resistance and the propulsion force. 

As for the propeller coefficients and the self-propulsion factors, they are drawn in 
Fig 6.6 and Fig 6.7. For the advance coefficient J , it decreases due to the drop of the 
vessel speed. The amplitude of the high-frequency wave-induced fluctuation is about 
20% of the average value. The thrust and torque also have significant fluctuations. The 
variations of the low-frequency parts due to the rudder and ship motion for these 
parameters are not obvious. On the contrary, the self-propulsion parameters changed 
significantly not only for the high-frequency components but also for the low-frequency 

ones, except the relative rotative efficiency R . It is because the waves will have a 

significant impact on the flow field near the propeller. 
The vorticity magnitude on significant sections and the wave elevation on the free 

surface during the course-keeping maneuver is drawn in Fig 6.8. By comparison, the 
vortex structure and the strength seem to be close to the zigzag maneuver. The free 
surface varies greatly without a clear wave crest and trough. 



FIGURE 6.2 Trajectory of the course-keeping simulation in short-crested irregular 
waves

FIGURE 6.3 Time histories of the yaw and the rudder angle for the course-keeping 
simulation in short-crested irregular waves
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(c)
FIGURE 6.4 Non-dimensional forces and moments for the course-keeping maneuver in 
short-crested irregular waves (a: longitudinal force; b: lateral force; c: yaw moment)

FIGURE 6.5 Non-dimensional velocity for the course-keeping maneuver in short-
crested irregular waves

FIGURE 6.6 KT and 10KQ for the course-keeping maneuver in irregular waves
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FIGURE 6.7 Self-propulsion factors for the course-keeping maneuver in irregular 
waves

FIGURE 6.8 Snapshots of the free surface colored by wave elevation and cross sections 
colored by vorticity magnitude during the course-keeping maneuver

6.3.2 zigzag tests in regular waves

The 20/20 zigzag maneuver is simulated with the rudder speed of 13 deg/s under 

the head wave condition ( .L 0 7 = , .H 0 045m= for the model scale). Fig 6.9 shows the 

computational and experimental time histories of the heading angle and the rudder 
angle. There are also six typical positions marked as A to F, respectively. In terms of 
the heading angle prediction, there are acceptable differences between the 
computational and the experimental magnitude value for the first cycle (5.09%) and the 
second cycle (2.69%). The criteria parameters of the zigzag maneuvers are listed in 
Table 6.1. Good agreement between the CFD results and the experimental data is 
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achieved. In Fig 6.10, the yaw rate predicted by the CFD method is presented and 
compared with the experimental results. The predicted one agrees well with the 
experimental time history of the yaw rate. Compared with the yaw rate in the calm 
water condition, there are high-frequency fluctuations caused by the regular wave.

FIGURE 6.9 Yaw and rudder angle for the 20/20 maneuver in regular head waves

FIGURE 6.10 Yaw rate for the 20/20 maneuver in regular head waves

During the zigzag maneuver, there is also a speed loss phenomenon as shown in 
Fig 6.11. The propulsion thrust does not change significantly shown in Fig 6.12. The 
increased resistance comes from the drift angle, huge ship motions, and the wave added 
forces. As expected, the ship speed loss is much more obvious than that in the calm 
water condition.

Fig 6.12 and Fig 6.13 show the parameters related with the propulsion. Compared 
with the time histories of these parameters in the calm water condition, those in regular 
waves have high-frequency fluctuations, which is caused by the periodic changes of the 
flow field due to waves. Not only the variation trends but also the values of low-
frequency parts of the time histories of these factors are close to those in the calm water
condition.

Fig 6.14 shows the vorticity magnitude on significant sections and the wave 
elevation on the free surface during the zigzag maneuver in regular head waves. 
Compared with Fig 5.16 shown the formation and transportation of the vortices, the 
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results under waves in this figure are similar, except that the generation of vortices near 
the free surface and the complexity of tail vortices are stronger. In addition, except 
Kelvin wave which can also be seen under calm water condition, the crest and trough
of the regular wave can be clearly seen on the free surface under the wave condition.

TABLE 6.1 Comparison of main parameters of zigzag maneuver in regular head waves
Parameters EFD CFD Error

1st overshoot angle (deg) 12.55 10.89 13.21%
Time (1st overshoot angle) (s) 11.20 10.56 5.71%

2nd overshoot angle (deg) 13.45 14.35 6.68%
Time (2nd overshoot angle) (s) 28.50 29.91 4.96%

FIGURE 6.11 Dimensionless velocity for the 20/20 maneuver in regular wave condition

FIGURE 6.12 KT and 10KQ for the 20/20 maneuver in regular wave condition
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FIGURE 6.13 Self-propulsion factors for the 20/20 maneuver in regular waves
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FIGURE 6.14 Snapshots of free surfaces colored by wave elevation and cross sections 
colored by vorticity magnitude during the 20/20 maneuver in regular wave condition

To analyze the effect of the wavelength on zigzag maneuvers in waves, various 

wavelengths ( . , . , .L 0 5 0 7 1 0 = ) and a constant wave height ( .H 0 03m= ) are utilized to 

perform the simulations. The time histories of the yaw angle and rudder angle are shown 
in Fig 6.15. The computed yaw and rudder angles are consistent with the experimental 
data. With the decrease of the wavelength, the time to reach the 1st and 2nd overshoot 
angle decrease obviously, and the values for the 1st and 2nd overshoot angle do not 
change significantly.

The roll motions of different cases are drawn in Fig 6.16. The roll motion can be 
considered as the superposition of the low-frequency motion influenced by the rudder 
execution and the high-frequency fluctuations due to the wave effect. The variation 
trend, amplitude and fluctuation frequency of roll motion can be simulated well, but 
there is still room for improvement. The error mainly comes from the difference 
between experimental and simulation conditions. At the beginning of the experiment, 
the ship has an initial roll angular velocity, which might be the main reason for the 

slightly larger error of long wavelength case ( .L 1 0 = ). This is validated by Fig 6.17(a) 

in which the initial roll angular velocity of the experiment shows the large value. Fig 
6.17 shows the roll angular velocities under different wavelengths. Combing Fig 6.15
and Fig 6.17, we can see that the largest roll angular velocity amplitude occurs when 
the yaw angles reach the peaks, and the smallest roll angular velocity amplitude occurs 
when the yaw angles reach zero. It is because when the yaw angle reaches the peaks 
under the head wave conditions, the incident wave angle will reach the peaks which 
makes huge roll motions. Different from the calm water conditions, the pitch motion is 
much more obvious under the head wave conditions. Therefore, the comparison 
between the experimental and numerical pitch angle is drawn in Fig 6.18. The CFD 
method can predict the amplitude and frequency of the pitch motion with high accuracy. 
In addition, the upper envelope and lower envelope of the pitch motion fluctuate during 
the zigzag maneuvers. Obviously, the amplitude of the pitch motion for the longer 

(E) (F)



wavelength condition is larger than that for the shorter wavelength condition. 
The time histories of the forces and moments are drawn in Fig 6.19. Compared 

with the forces and moments under the calm water condition, those under the regular 
head waves have obvious high-frequency fluctuations whose amplitudes are extremely 
larger than those of the low-frequency values. For the lateral force coefficient, the 
values under various wavelength conditions are similar. However, the roll and yaw 
moment coefficients are influenced significantly by wave parameters. With the increase 
of the wavelength, the amplitude of the upper and lower envelope increases obviously. 

Fig 6.20 shows the self-propulsion factors for the 20/20 zigzag maneuver under 
various regular wave conditions. Compared with those under the calm water condition, 
the variation trends and values of low-frequency parts are similar except obvious high-
frequency fluctuations. In addition, when the wave height is the same, the longer the 
wavelength, the greater the fluctuation.

(a)

(b)

(c)

FIGURE 6.15 Yaw and rudder angle for the 20/20 maneuver under the regular wave 
condition ( 0 03H . m= ) (a: 1 0L . = , b: 0 7L= . , c: L=0.5 )
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(a)

(b)

(c)

FIGURE 6.16 Roll angle for the 20/20 maneuver under the regular wave condition 
( 0 03H . m= ) (a: 1 0L . = , b: 0 7L= . , c: L=0.5 )
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(b)

(c)
FIGURE 6.17 Roll angular velocity for the 20/20 maneuver under the regular wave 

condition ( 0 03H . m= ) (a: 1 0L . = , b: 0 7L= . , c: L=0.5 )

FIGURE 6.18 Pitch angle for the 20/20 maneuver under the regular wave condition 
( 0 03H . m= ) (Top: 1 0L . = , Middle: 0 7L= . , Bottom: L=0.5 )
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(a)

(b)

(c)

FIGURE 6.19 Dimensionless forces and moments for the 20/20 maneuver under the 
regular wave condition ( 0 03H . m= ) (a: 1 0L . = , b: 0 7L= . , c: L=0.5 )
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(c)
FIGURE 6.20 Self-propulsion factors for the 20/20 maneuver under the regular wave 

condition ( 0 03H . m= ) (a: 1 0L . = , b: 0 7L= . , c: L=0.5 )

6.3.3 zigzag tests in irregular waves

Considering the irregular wave condition is much closer to the actual sea state, the 
20/20 zigzag maneuvers under the long-crested and short-crested irregular head wave 
condition are simulated and summarized in Figs 6.21~6.24. The significant wave height 
of 3m and the mean period 6.685s for the full-scale ship corresponding to the sea state 
5 are adopted to conduct the simulations. For the short-crested irregular wave, the 
directional spectrum ( ) 22G cos 


= is utilized. In Fig 6.21, it seems that there is not 

obvious difference between the time histories of the rudder and the yaw angles in long-
crested and short-crested irregular waves. The comparison between the roll angular 
velocities under the long-crested and short-crested irregular waves is shown in Fig 6.22. 
Compared with the results under the regular wave conditions, the main difference might 
be the frequency and amplitude of the high-frequency components. Dimensionless 
forces and moments for the zigzag maneuver under the irregular wave conditions are 
also shown in Fig 6.23. The hydrodynamic loads In Fig 6.24, self-propulsion factors 
under the irregular waves seem to be similar to those under the regular wave conditions.

(a)                                         (b)

FIGURE 6.21 Yaw and rudder angle for the 20/20 maneuver under the irregular wave 

condition (a: long-crested irregular wave, b: short-crested irregular wave)
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(a)                                         (b)

FIGURE 6.22 Roll angular velocity for the 20/20 maneuver under the irregular wave 

condition (a: long-crested irregular wave, b: short-crested irregular wave)

FIGURE 6.23 Dimensionless force and moment for the 20/20 maneuver in the irregular 

waves (Up: long-crested irregular wave, Bottom: short-crested irregular wave)

(a)                                         (b)

FIGURE 6.24 Self-propulsion factors for the 20/20 maneuver under the irregular wave 

condition (a: long-crested irregular wave, b: short-crested irregular wave)

-4.00

-2.00

0.00

2.00

4.00

6.00

0 10 20 30 40

R
ol

l a
ng

le
 v

el
oc

ity
  (

de
g/

s)

t (s)
-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

0 5 10 15 20 25 30 35

R
ol

l a
ng

le
 v

el
oc

ity
  (

de
g/

s)

t (s)

-4.0E-03

-2.0E-03

0.0E+00

2.0E-03

4.0E-03

0 10 20 30 40

HULL
RUDDER

C
y 

  (
F

y/
(0

.5
*r

ho
*U

2 *
L P

P2 )
)

t (s) -1.5E-03
-1.0E-03
-5.0E-04
0.0E+00
5.0E-04
1.0E-03
1.5E-03

0 10 20 30 40

HULL
RUDDER

t (s)
C

nz
   

(M
z/

(0
.5

*r
ho

*U
2 *

L P
P3 )

)

-1.0E-02

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

0 5 10 15 20 25 30 35

HULL
RUDDER

C
y 

  (
F

y/
(0

.5
*r

ho
*U

2 *
L P

P2 )
)

t (s) -2.0E-03

-1.0E-03

0.0E+00

1.0E-03

2.0E-03

0 5 10 15 20 25 30 35

HULL
RUDDER

t (s)

C
nz

   
(M

z/
(0

.5
*r

ho
*U

2 *
L P

P3 )
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40

J
KT
10KQ
1-wt
ETA_R

Se
lf-

pr
op

ul
sio

n 
fa

ct
or

s

t (s) 0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30 35

J
KT
10KQ
1-wt
ETA_RSe

lf-
pr

op
ul

sio
n 

fa
ct

or
s

t (s)



 

112 

 

6.3.4 turning tests in regular waves 

The turning maneuver with the rudder speed of -13deg/s to the rudder angle of -

35 deg in regular head waves ( L=1.0 , H=0.03m ) was also simulated. The trajectory 

of the turning circle is shown in Fig 6.25. Compared with the trajectory in the calm 
water condition, the turning circle has an obvious drift tendency towards the starting 
point of the maneuvering motion in head waves which is due to the second-order wave 
force. The comparison between the simulated and experimental typical parameters for 
the turning circles are summarized in Table 6.2, which indicates the present simulation 
strategy can simulate the turning circle in waves with acceptable accuracy. However, 

due to the small value of 180x , the relative error is large which reveals that the drift 

distance is not simulated quite well. Hence, there is still some room for improvement 
on the prediction for the drift distance. Compared with the trajectory in the calm water 
condition (Fig 5.18), the maximum longitudinal and lateral displacements of the turning 
circle decrease. A drift motion of the turning circle to the original rudder execution point 
can be also seen clearly. 

The dimensionless velocity shown in Fig 6.26 indicates that the speed loss 
phenomenon is similar to that under the calm water condition except the high-frequency 
fluctuations due to the wave effect. Fig 6.27 shows the comparison between the 
computational and experimental time histories of the roll angle and the pitch angle. The 
variation trend and high-frequency fluctuation can be simulated with satisfactory 
accuracy. The envelope of rolling and pitching motion changes significantly as the 
encounter wave direction. When the ship turns from the head waves to the beam seas, 
the pitch angle decreases rapidly from 1 deg to nearly 0 deg and the roll angle also 
decreases. Then, the maximum pitch angle increases to 1 deg and the maximum roll 
angle increases significantly to 4 deg when the ship turns from the beam seas to the 
following wave condition through the quartering waves. In the following wave 
condition, the pitch angle is still large, but the roll angle decreases obviously. Then, 
when the ship turns from the following wave condition to the beam seas through the 
quartering wave condition, the maximum roll angle increase significantly to around 6 
deg and the maximum pitch angle does not change obviously. 

The dimensionless forces and moments shown in Fig 6.28 have the similar low-
frequency components as those under the calm water condition and the significant high-
frequency components. Compared with the low-frequency parts on the hull, the high-
frequency ones on the hull are extremely larger. However, the wave effect on the rudder 
forces is not as large as that on the hull. Fig 6.29 shows that the variation trend of self-
propulsion factors under waves is the same as that in still water. The difference is that 
high-frequency components are added in these factors. Meanwhile, the stable value of 
torque coefficient during the steady turning stage decreases from about 0.5 under the 
calm water condition to about 0.4 under waves, which might be caused by the different 
aft flow field of the ship in waves compared with that in the calm water condition. 

 



FIGURE 6.25 Trajectory of the ship turning maneuvers in a regular wave condition

FIGURE 6.26 Dimensionless velocity for the turning maneuver in regular waves

FIGURE 6.27 Roll and pitch for the turning maneuver in the regular wave condition

FIGURE 6.28 Dimensionless forces and moments for the 20/20 maneuver under the 
regular wave condition
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FIGURE 6.29 Self-propulsion factors for the turning maneuver in regular waves

Table 6.2 Comparison of main parameters for the turning maneuver in regular waves 
Parameters EFD CFD Error

Advance 90x (m) 3.04 3.19 4.97%

Transfer 90y (m) 1.67 1.60 4.50%

180x (m) 1.27 1.92 50.34%

180y (m) 3.74 3.66 2.14%

T90 (s) 17.20 18.74 8.96%
T180 (s) 35.40 36.76 3.84%
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(b) 
FIGURE 6.30 Snapshots of free surfaces colored by wave elevation and cross sections 

colored by vorticity magnitude during the turning maneuver in regular wave condition 
(a: transition stage; b: steady turning stage) 

 
FIGURE 6.31 Snapshots of pressure on the rudder during the steady turning stage of the 

turning test simulation in the regular wave condition  

The free surfaces colored by wave elevation and cross sections colored by vorticity 
magnitude during the turning maneuver in regular wave condition are drawn in Fig 6.30. 
The top picture is the transition stage and the bottom one is the steady turning stage. 
Even though the rudder angles of these two stages are the same, the vortices 



 

116 

 

distributions are different. The vortices on the port side in the steady stage will be more 
strengthened than those in the transition stage. The tail vortex has slight skewness in 
the transition stage and obvious skewness following the circulating trajectory in the 
steady turning stage. 

The pressure distribution on the rudder during the steady turning stage is shown in 
Fig 6.31. As expected, high-pressure region locates on the port side and low-pressure 
region locates on the starboard. The wave seems not affect the pressure distribution on 
the rudder significantly by comparing with that under the calm water condition. 

6.4 Summary 

In this chapter, the numerical studies on the free-running tests in the regular and 
irregular waves are performed. The comparison between the experimental data with the 
predicted ones reveals that the present numerical simulation methods can deal with the 
problem of free-running test simulation in waves. The body force technique can be 
adopted to predict the propulsion forces for accelerating the calculation efficiency. The 
dynamic overset mesh can deal with the problem of multiple motions and the wave 
generated in the base region can keep the quality during the free-running test 
simulations. The simulations on the course-keeping test and the zigzag test in irregular 
waves also extend the scope of the application of the CFD methods.  

Propulsion forces and the rudder forces during these simulations are presented to 
illustrate the wave effect on the hydrodynamic performance during free-running tests. 
Flow visualizations, such as wave elevations, generation and evolution of vortices, and 
the pressure on the rudder are also presented to give a better description of the flow 
variation during the maneuvers in waves. 

The zigzag maneuvers under the calm water condition, various regular head wave 
conditions, the long-crested and short-crested irregular wave conditions are performed 
to obtain the hydrodynamic loads and self-propulsion factors. It is concluded that the 
ship motions and hydrodynamic loads increase with the increasing of the wavelength 
when the wave height keeps constant. In addition, the variation trends and magnitudes 
for low-frequency components of the self-propulsion factors in waves are similar to 
those under the calm water condition except obvious high-frequency fluctuations. The 
time histories of the yaw and rudder angle under the long-crested and short-crested 
irregular waves seem to be similar. However, the roll motion and hydrodynamic loads 
on the hull under two various conditions are changed obviously. The typical flow fields 
during the maneuvering motions are also provided to explore the evolution of the flow 
field and the physical mechanism.  

The turning circle tests under the calm water condition and regular head waves are 
simulated successfully. The comparison between the non-dimensional forces under the 
calm water and regular waves illustrates that the wave effect is extremely significant. 
The wave effect on self-propulsion factors is also obtained. Compared with the roll 
motion of zigzag test under the same wave condition, the amplitude of roll motion of 
turning test in waves is obviously larger. The amplitudes of pitch motions for the turning 
test and zigzag test under the same wave condition are similar. Meanwhile, the drift of 
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the turning circle trajectory due to the wave is obvious. 
The simulation on the course-keeping maneuver under the short-crested irregular 

waves corresponding to sea state 6 is carried out. It is concluded that the control strategy 
is feasible to keep the navigation course under the rough sea conditions. In addition, a 
course keeping simulation can be an alternative tool to predict course keeping maneuver 
in waves. The hydrodynamic loads and self-propulsion factors under the rough seas are 
also calculated. 
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Chapter 7 Conclusion and future work 

7.1 Conclusions 

Aiming at the complex problems of hydrodynamic load and motion prediction of 
a ship maneuvering in waves, this dissertation achieved the numerical simulations on 
the captive model tests in waves and the free-running tests in calm water and waves 
based on the CFD approach. The main content of this dissertation can be divided into 
two parts: the numerical studies on captive model tests in waves, and the numerical 
studies on free-running tests in calm water and waves. For the former, the numerical 
simulations based on the overset mesh technique and the Euler overlay method are 
proposed to conduct these simulations and the mathematical model to deal with the 
simulation results is also provided. For the later, the dynamic overset mesh and the body 
force method for propeller force prediction are adopted to conduct the simulations on 
the turning tests, zigzag tests, and course-keeping tests in clam water and wave 
conditions. The main contributions and conclusions can be summarized as follows: 

1. A numerical simulation method using the overset grid and Euler overlay 
method on captive model tests in following waves is proposed for the first time. 
The verification and validation (V&V) on that reveal the effectiveness of this 
method. The maneuvering hydrodynamic derivatives in following waves is 
obtained using the numerical simulation method for the first time, which 
reveals that the wave has significant effect on these coefficients. The detailed 
changing tendencies of the hydrodynamic derivatives in waves are obtained. 

For instance, rN   is twice that under the calm water condition when the ship 

gravity center locates on the wave trough, and ( )x rm m Y  + −  under the wave 

crest condition is around twice the value under the calm water condition. Based 
on these wave-effected hydrodynamic derivatives, a newly defined 
discriminant of the course stability in the following wave condition is 
calculated, which indicates the possible reason for the occurrence of the 
unstable broaching-to phenomenon. The course stability in waves with the PID 
control is also evaluated quantitatively relying on the Routh-Hurwitz criterion. 

2. The simulation method on the captive model tests in following waves is 
extended to the head wave condition successfully. A mathematical model to 
obtain the wave-effected maneuvering hydrodynamic derivatives relying on 
the FFT technique in this condition is provided. By comparing the 
hydrodynamic derivatives in the calm water and regular head wave conditions, 
the obvious wave effect on these coefficients is obtained, reflecting that the 
wave effect on maneuvering components cannot be ignored sometimes. For 
Yr’, it is basically unchanged from that in calm water except for extremely 
steep waves. For Nr’, the absolute value increases significantly with the 
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increase of wave steepness and wavelength. The obvious difference between 
the hydrodynamic derivatives in calm water and wave conditions explains why 
the ship might undergo uncontrollable deviation under head waves rather than 
the calm water condition. The wave-effected nonlinear hydrodynamic 
derivatives are also calculated. However, a simple modification function is 
hard to proposed because of the nonlinear and nonmonotonic characteristics of 
the wave-effect hydrodynamic derivatives. 

3. The simulation method based on the dynamic overset mesh with a structured 
grid is extended to the free-running test in the calm water condition. Based on 
the dynamic overset mesh approach and the body force method, the 
simulations on the zigzag test and turning test in calm water condition can be 
of satisfactory accuracy. The propulsion forces and the rudder forces are 
presented to illustrate the hydrodynamic performance during free-running tests. 
The time histories of the self-propulsion factors are also calculated, which 
reveals the effect of the maneuvering motions on the propeller hydrodynamic 
performance. Flow visualizations, such as wave elevations, generation and 
evolution of vortices, and the pressure on the rudder are presented to give a 
better description of the flow variation during the maneuvers in the calm water 
condition. 

4. Based on the wave generation and absorption method, the numerical 
simulation method on the free-running tests in regular, long-crested and short-
crested irregular wave conditions is provided and validated by the 
experimental data with reasonably accuracy. For the zigzag maneuvers, the 
ship motions and hydrodynamic loads increase with the increasing of the 
wavelength when the wave height keeps constant. The variation tendencies 
and magnitudes for low-frequency components of the self-propulsion factors 
in waves are similar to those under the calm water condition except huge high-
frequency fluctuations. For the cases under the long-crested and short-crested 
irregular waves with the same significant wave height, the time histories of the 
yaw and rudder angle seem to be similar. However, the roll motion and 
hydrodynamic loads on the hull of these cases are significantly different. For 
the turning tests in regular waves, the amplitude of roll motion is obviously 
larger than that of the zigzag maneuvers in the same wave condition, and the 
amplitudes of pitch motion is similar to that of the zigzag maneuvers. Besides, 
the drift of the turning circle trajectory due to the second-order wave forces is 
obvious. For the course-keeping maneuvers using PID control in the short-
crested irregular waves, the reasonable results indicates that the current course-
keeping simulation strategy can be an alternative to predict course keeping 
maneuver in waves. Flow visualizations are also obtained revealing the 
differences between the cases in the calm water condition and wave conditions. 

Based on these simulations, different kinds of tests on the maneuverability 
research in waves can be simulated using the CFD method, which will offer useful 
research tool for the complex hydrodynamic problem and contribute to the navigation 
safety in the future.  
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7.2 Prospects for future work 

There are still many works to be improved considering the accuracy and the 
utilization on the design stage. 

1. The present simulations focused on the maneuverability assessment on the ship 
in calm water and wave conditions. However, some dangerous and extreme 
conditions are not researched yet. In future, the free-running tests in the 
following wave conditions which is much more complex should be considered. 

2. The present propulsion force is simulated based on a body force method in 
which the lateral propeller force and cavitation phenomenon are not considered. 
In future, more different state-of-the-art propeller force model should be 
considered. The cavitation phenomenon should be considered when the 
simulations on the propeller emergence or shallow draft condition. 

3. The other kinds of controller should be carried out to achieve the simulations 
on all kinds of maneuvering tests automatically. For example, the stop tests 
involving the reverse performance of propeller should be performed. 

4. Due to the huge grid number, the uncertainty analysis procedure is not 
proposed on the free-running tests in waves yet. In future, the method to assess 
the simulation uncertainty should be proposed. 
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